ROCK inhibitor Y-27632 enhances the survivability of dissociated buffalo (Bubalus bubalis) embryonic stem cell-like cells
Ruchi Sharma A , Aman George A , Manmohan S. Chauhan A , Suresh Singla A , Radhey S. Manik A and Prabhat Palta A BA Embryo Biotechnology Lab, Animal Biotechnology Centre, National Dairy Research Institute, Karnal132001, Haryana, India.
B Corresponding author. Email: prabhatpalta@yahoo.com
Reproduction, Fertility and Development 25(2) 446-455 https://doi.org/10.1071/RD11315
Submitted: 19 December 2011 Accepted: 5 April 2012 Published: 3 May 2012
Abstract
This study investigated the effects of supplementation of culture medium with 10 μM Y-27632, a specific inhibitor of Rho kinase activity, for 6 days on self-renewal of buffalo embryonic stem (ES) cell-like cells at Passage 50–80. Y-27632 increased mean colony area (P < 0.05) although it did not improve their survival. It decreased OCT4 expression (P < 0.05), increased NANOG expression (P < 0.05), but had no effect on SOX2 expression. It also increased expression of anti-apoptotic gene BCL-2 (P < 0.05) and decreased that of pro-apoptotic genes BAX and BID (P < 0.05). It increased plating efficiency of single-cell suspensions of ES cells (P < 0.05). Following vitrification, the presence of Y-27632 in the vitrification solution or thawing medium or both did not improve ES cell colony survival. However, following seeding of clumps of ES cells transfected with pAcGFP1N1 carrying green fluorescent protein (GFP), Y-27632 increased colony formation rate (P < 0.01). ES cell colonies that formed in all Y-27632-supplemented groups were confirmed for expression of pluripotency markers alkaline phosphatase, SSEA-4 and TRA-1–60, and for their ability to generate embryoid bodies containing cells that expressed markers of ectoderm, mesoderm and endoderm. In conclusion, Y-27632 improves survival of buffalo ES cells under unfavourable conditions such as enzymatic dissociation to single cells or antibiotic-assisted selection after transfection, without compromising their pluripotency.
Additional keywords: apoptosis, cryopreservation, pluripotency, transfection.
References
Anand, T., Kumar, D., Singh, M., Shah, R. A., Chauhan, M., Manik, R., Singla, S., and Palta, P. (2011). Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens. Reprod. Domest. Anim. 46, 50–58.| Buffalo (Bubalus bubalis) embryonic stem cell-like cells and preimplantation embryos exhibit comparable expression of pluripotency-related antigens.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itlChuw%3D%3D&md5=50617dd324fee2be8b0c6b25114bd263CAS | 20042025PubMed |
Claassen, D. A., Desler, M. M., and Rizzino, A. (2009). ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells. Mol. Reprod. Dev. 76, 722–732.
| ROCK inhibition enhances the recovery and growth of cryopreserved human embryonic stem cells and human induced pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXovVKjsrY%3D&md5=475ecf9e87cf36f27510138d2f86b427CAS | 19235204PubMed |
Dvorak, P., Dvorakova, D., Koskova, S., Vodinska, M., Najvirtov, M., Krekac, D., and Hampla, A. (2005). Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23, 1200–1211.
| Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFCks7jF&md5=806bd2cd224c9e7eda08d23bfaddadd6CAS | 15955829PubMed |
Gauthaman, K., Fong, C., and Bongso, A. (2010). Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion. Stem Cell Rev. Rep. 6, 86–95.
| Effect of ROCK inhibitor Y-27632 on normal and variant human embryonic stem cells (hESCs) in vitro: its benefits in hESC expansion.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVGqsLs%3D&md5=a95abcd9512cfec4dfd62961563e3a22CAS |
George, A., Sharma, R., Singh, K. P., Panda, K. P., Singla, S. K., Palta, P., Manik, R. S., and Chauhan, M. S. (2011). Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro-fertilized and cloned blastocysts. Cell Reprogram 13, .
| Production of cloned and transgenic embryos using buffalo (Bubalus bubalis) embryonic stem cell-like cells isolated from in vitro-fertilized and cloned blastocysts.Crossref | GoogleScholarGoogle Scholar | 22029416PubMed |
Gong, G., Roach, M. L., Jiang, L., Yang, X., and Tian, X. C. (2010). Culture conditions and enzymatic passaging of bovine ESC-like cells. Cell. Reprogram. 12, 151–160.
| 1:CAS:528:DC%2BC3cXlvVahtL4%3D&md5=2d305c585e863b64fcc54a18ab0afb0dCAS | 20677930PubMed |
Harb, N., Archer, T. K., and Sato, N. (2008). The Rho-Rock-Myosin signalling axis determines cell–cell integrity of self-renewing pluripotent stem cells. PLoS ONE 3, e3001.
| The Rho-Rock-Myosin signalling axis determines cell–cell integrity of self-renewing pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar | 18714354PubMed |
Heng, B. C., Ye, C. P., Liu, H., Toh, W. S., Rufaihah, A. J., Yang, Z., Bay, B. H., Ge, Z., Ouyang, H. W., Lee, E. H., and Cato, T. (2006). Loss of viability during freeze–thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis. J. Biomed. Sci. 13, 433–445.
| Loss of viability during freeze–thaw of intact and adherent human embryonic stem cells with conventional slow-cooling protocols is predominantly due to apoptosis rather than cellular necrosis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFarsrg%3D&md5=1d6057c45412824af01d5d305b3a1f7eCAS | 16374523PubMed |
Keefer, C. L., Karatzas, C. N., Lazaris-Karatzas, A., Gagnon, I., Poulin, S., and Downey, B. R. (1996). Isolation and maintenance of putative embryonic stem cells derived from Nigerian dwarf goat embryos. Biol. Reprod. 54, Abst 462.
Koyanagi, M., Takahashi, J., Arakawa, Y., Doi, D., Fukuda, H., Hayashi, H., Narumiya, S., and Hashimoto, N. (2008). Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors. J. Neurosci. Res. 86, 270–280.
| Inhibition of the Rho/ROCK pathway reduces apoptosis during transplantation of embryonic stem cell-derived neural precursors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhslGitro%3D&md5=ec96a69836e27861eb8e378980fcde5fCAS | 17828770PubMed |
Krawetz, R. J., Li, X., and Rancourt, D. E. (2009). Human embryonic stem cells: caught between a ROCK inhibitor and a hard place. Bioessays 31, 336–343.
| Human embryonic stem cells: caught between a ROCK inhibitor and a hard place.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkslGkur4%3D&md5=36fff9b75c83ee91e2c41312a04ead52CAS | 19260014PubMed |
Li, X., Meng, G., Krawetz, R., Liu, S., and Rancourt, D. E. (2008). The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation. Stem Cells Dev. 17, 1079–1085.
| The ROCK inhibitor Y-27632 enhances the survival rate of human embryonic stem cells following cryopreservation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVOju7bI&md5=674185dda1fedab567f9105406c4c583CAS | 19006455PubMed |
Li, X., Krawetz, R., Liu, S., Meng, G., and Rancourt, D. E. (2009). ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells. Hum. Reprod. 24, 580–589.
| ROCK inhibitor improves survival of cryopreserved serum/feeder-free single human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXis1Ciuro%3D&md5=6377b4244ee6f1a9f7f63afa4650b1c1CAS | 19056770PubMed |
Lim, M. L., Vassiliev, I., Richings, N. M., Firsova, A. B., Zhang, C., and Verma, P. J. (2011). A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine. Theriogenology 76, 133–142.
| A novel, efficient method to derive bovine and mouse embryonic stem cells with in vivo differentiation potential by treatment with 5-azacytidine.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXntFKitbs%3D&md5=c94acede1d7bdec3cb7787efcda0db37CAS | 21396694PubMed |
Martin-Ibanez, R., Unger, C., Stromberg, A., Baker, D., Canals, J. M., and Hovatta, O. (2008). Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor. Hum. Reprod. 23, 2744–2754.
| Novel cryopreservation method for dissociated human embryonic stem cells in the presence of a ROCK inhibitor.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVWmt7%2FO&md5=95ed317d668590bedde078b1bd47fc55CAS | 18716037PubMed |
Muñoz, M., Rodríguez, A., De Frutos, C., Caamaño, J. N., Díez, C., Facal, N., and Gómez, E. (2008). Conventional pluripotency markers are unspecific for bovine embryonic-derived cell lines. Theriogenology 69, 1159–1164.
| Conventional pluripotency markers are unspecific for bovine embryonic-derived cell lines.Crossref | GoogleScholarGoogle Scholar | 18420262PubMed |
Narumiya, S., Ishizaki, T., and Uehata, M. (2000). Use and properties of ROCK-specific inhibitor Y-27632. Methods Enzymol. 325, 273–284.
| Use and properties of ROCK-specific inhibitor Y-27632.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXot1ajtr8%3D&md5=f9fd3e67bca5037b359b0a69b8ada1c0CAS | 11036610PubMed |
Notarianni, E., Galli, C., Laurie, S., Moor, R. M., and Evans, M. J. (1991). Derivation of pluripotent, embryonic cell lines from the pig and sheep. J. Reprod. Fertil. Suppl. 43, 255–260.
| 1:STN:280:DyaK3s7ktVSrsg%3D%3D&md5=cfccdf4058057c6664aa539f8d7effd9CAS | 1843344PubMed |
Pakzad, M., Totonchi, M., Taei, A., Seifinejad, A., Hassani, S. N., and Baharvand, H. (2010). Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging. Stem Cell Rev. Rep. 6, 96–107.
| Presence of a ROCK inhibitor in extracellular matrix supports more undifferentiated growth of feeder-free human embryonic and induced pluripotent stem cells upon passaging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXivVGqsLg%3D&md5=b5f36cd9823e9a70e1539bed83600c80CAS |
Peerani, R., Rao, B. M., Bauwens, C., Yin, T., Wood, G. A., Nagy, A., Kumacheva, E., and Zandstra, P. W. (2007). Niche-mediated control of human embryonic stem cell self-renewal and differentiation. EMBO J. 26, 4744–4755.
| Niche-mediated control of human embryonic stem cell self-renewal and differentiation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht12gtbbJ&md5=02a8be38509106d26958b21dc83421e2CAS | 17948051PubMed |
Richards, M., Fong, C. Y., Tan, S., Chan, W. K., and Bongso, A. (2004). An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells. Stem Cells 22, 779–789.
| An efficient and safe xeno-free cryopreservation method for the storage of human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 15342942PubMed |
Rogers, C. S., Stoltz, D. A., Meyerholz, D. K., Ostedgaard, L. S., Rokhlina, T., Taft, P. J., Rogan, M. P., Pezzulo, A. A., Karp, P. H., Itani, O. A., Kabel, A. C., Wohlford-Lenane, C. L., Davis, G. J., Hanfland, R. A., Smith, T. L., Samuel, M., Wax, D., Murphy, C. N., Rieke, A., Whitworth, K., Uc, A., Starner, T. D., Brogden, K. A., Shilyansky, J., McCray, P. B., Zabner, J., Prather, R. S., and Welsh, M. J. (2008). Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs. Science 321, 1837–1841.
| Disruption of the CFTR gene produces a model of cystic fibrosis in newborn pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFCrtLrP&md5=8cb63018bac1d278f65e6b5b3d32b570CAS | 18818360PubMed |
Saito, S., Ugai, H., Yamamoto, Y., Minamihashi, A., Kurosaka, K., Kobayashi, Y., Murata, T., Obata, Y., and Yokoyama, K. (2002). Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro. FEBS Lett. 531, 389–396.
| Isolation of embryonic stem-like cells from equine blastocysts and their differentiation in vitro.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosFCks7o%3D&md5=b65b75f63c6b4fb358448214c8eb8f4bCAS | 12435581PubMed |
Sharma, R., George, A., Kamble, N. M., Singh, K. P., Chauhan, M. S., Singla, S. K., Manik, R. S., and Palta, P. (2011). Optimization of culture conditions to support long-term self-renewal of buffalo (Bubalus bubalis) embryonic stem cell-like cells. Cell. Reprogram. 13, 539–549.
| 1:CAS:528:DC%2BC3MXhs1yktL3K&md5=ec04dada2facc122df1d858998b8f774CAS | 22029416PubMed |
Strelchenko, N. (1996). Bovine pluripotent stem cells. Theriogenology 45, 131–140.
| Bovine pluripotent stem cells.Crossref | GoogleScholarGoogle Scholar |
Verma, V., Gautam, S. K., Singh, B., Manik, R. S., Palta, P., Singla, S. K., Goswami, S. L., and Chauhan, M. S. (2007). Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos. Mol. Reprod. Dev. 74, 520–529.
| Isolation and characterization of embryonic stem cell-like cells from in vitro-produced buffalo (Bubalus bubalis) embryos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhvFCqtbo%3D&md5=f4cac627f17e9cbb552f3c637d712bf6CAS | 17034054PubMed |
Watanabe, K., Ueno, M., Kamiya, D., Nishiyama, A., Matsumura, M., Wataya, T., Takahashi, J. B., Nishikawa, S., Nishikawa, S., Muguruma, K., and Sasai, Y. (2007). A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat. Biotechnol. 25, 681–686.
| A ROCK inhibitor permits survival of dissociated human embryonic stem cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtlers7o%3D&md5=c0f8abad633a945683bc520f341b4737CAS | 17529971PubMed |
Wheeler, M. B. (1994). Development and validation of swine embryonic stem cells: a review. Reprod. Fertil. Dev. 6, 563–568.
| Development and validation of swine embryonic stem cells: a review.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK28%2FlvVSksA%3D%3D&md5=e8091ed146c4a0c4c376967e1f865308CAS | 7569034PubMed |
Xu, R. H., Peck, R. M., Li, D. S., Feng, S., Ludwig, X., and Thomson, J. A. (2005). Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells. Nat. Methods 2, 185–190.
| Basic FGF and suppression of BMP signalling sustain undifferentiated proliferation of human ES cells.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXisVGisrc%3D&md5=aa09e35a5be76eed7031da46b0ff989bCAS | 15782187PubMed |