Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Prolonged interval between fusion and activation impairs embryonic development by inducing chromosome scattering and nuclear aneuploidy in pig somatic cell nuclear transfer

Jinyoung You A D , Kilyoung Song B D and Eunsong Lee A C E
+ Author Affiliations
- Author Affiliations

A College of Veterinary Medicine, Kangwon National University, Chuncheon 200-701, Korea.

B JCOM R&D Center, Daedae-ri 289, Cheoin-gu, Yongin 449-822, Korea.

C Institute of Veterinary Science, Kangwon National University, Chuncheon 200-701, Korea.

D These authors contributed equally to this work.

E Corresponding author. Email: eslee@kangwon.ac.kr

Reproduction, Fertility and Development 22(6) 977-986 https://doi.org/10.1071/RD09309
Submitted: 18 December 2009  Accepted: 27 January 2010   Published: 1 July 2010

Abstract

The aim of the present study was to examine the effect of various intervals between electrofusion and activation (FA interval) on the nuclear remodelling and development of somatic cell nuclear transfer (SCNT) embryos in pigs. Reconstructed oocytes were activated at 0 (simultaneous fusion and activation; SFA), 1, 2 and 3 h (delayed activation) after electrofusion; these groups were designated as DA1, DA2 and DA3, respectively. When oocyte nuclear status was examined at 0.5, 1, 2 and 3 h after electrofusion, the incidence of chromosome scattering was increased (P < 0.01) as the FA interval was extended (0.0%, 12.0%, 77.3% and 78.0%, respectively). Extending the FA interval led to an increase (P < 0.01) in the percentage of oocytes containing multiple (≥3) pseudopronuclei (PPN) (0.0% of SFA; 5.3% of DA1; 21.7% of DA2; and 33.5% of DA3). The development of SCNT embryos to the blastocyst stage was decreased (P < 0.05) in DA2 (5.7%) and DA3 (5.0%) compared with SFA (18.1%) and DA1 (19.5%). Our results demonstrate that extending the FA interval impairs the development of SCNT pig embryos by inducing chromosome scattering and the formation of multiple PPN, which may result in increased nuclear aneuploidy.

Additional keywords: maturation promoting factor, nuclear ploidy, nuclear remodelling, pseudopronucleus.


Acknowledgements

The authors thank Gyeonggi Veterinary Service (Suwon, Gyeonggi-do, Korea) for supplying pig ovaries and Ms Eunjin Kwon for transporting the pig ovaries. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2009-0072438).


References

Akagi S., Yokota M., Noguchi T., Taniyama A., Fuchimoto D., Izaike Y. (2001). The timing of fusion and chemical activation in nuclear transfer affects development potential of bovine embryos. Theriogenology 55, 252. [Abstract]

Anas, M.-K. I. , Shoho, A. , Shimada, M. , and Terada, T. (2000). Effects of wortmannin on the kinetics of GVBD and activities of the maturation-promoting factor and mitrogen-activated protein kinase during bovine oocyte maturation in vitro. Theriogenology 53, 1797–1806.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bavister, B. D. , Leibfried, M. L. , and Lieberman, G. (1983). Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol. Reprod. 28, 235–247.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Campbell, K. H. , Loi, P. , Otaegui, P. J. , and Wilmut, I. (1996). Cell cycle co-ordination in embryo cloning by nuclear transfer. Rev. Reprod. 1, 40–46.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

De Sousa, P. A. , Dobrinsky, J. R. , Zhu, J. , Archibald, A. L. , and Ainslie, A. , et al. (2002). Somatic cell nuclear transfer in the pig: control of pronuclear formation and integration with improved methods for activation and maintenance of pregnancy. Biol. Reprod. 66, 642–650.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gioia, L. , Barboni, B. , Turriani, M. , Capacchietti, G. , Pistilli, M. G. , Berardinelli, P. , and Mattioli, M. (2005). The capability of reprogramming the male chromatin after fertilization is dependent on the quality of oocyte maturation. Reproduction 130, 29–39.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ibáñez, E. , Albertini, D. F. , and Overström, E. W. (2003). Demecolcine-induced oocyte enucleation for somatic cell cloning: coordination between cell-cycle egress, kinetics of cortical cytoskeletal interactions, and second polar body extrusion. Biol. Reprod. 68, 1249–1258.
PubMed |

Kim, Y. S. , Lee, S. L. , Ock, S. A. , Balasubramanian, S. , Choe, S. Y. , and Rho, G. J. (2005). Development of cloned pig embryos by nuclear transfer following different activation treatments. Mol. Reprod. Dev. 70, 308–313.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Koo, D. B. , Kang, Y. K. , Choi, Y. H. , Park, J. S. , and Han, S. K. , et al. (2000). In vitro development of reconstructed porcine oocytes after somatic cell nuclear transfer. Biol. Reprod. 63, 986–992.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurome, M. , Fusimura, T. , Murakami, H. , Takahagi, Y. , Wako, N. , Ochiai, T. , Miyazaki, K. , and Nagashima, H. (2003). Comparison of electro-fusion and intracytoplasmic nuclear injection methods in pig cloning. Cloning Stem Cells 5, 367–378.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kurome, M. , Ishikawa, T. , Tomii, R. , Ueno, S. , Shimada, A. , Yazawa, H. , and Nagashima, H. (2008). Production of transgenic and non-transgenic clones in miniature pigs by somatic cell nuclear transfer. J. Reprod. Dev. 54, 156–163.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Kwon, D. J. , Park, C. K. , Yang, B. K. , and Cheong, H. T. (2008). Control of nuclear remodelling and subsequent in vitro development and methylation status of porcine nuclear transfer embryos. Reproduction 135, 649–656.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lee, J. H. , and Campbell, K. H. (2006). Effects of enucleation and caffeine on maturation-promoting factor (MPF) and mitogen-activated protein kinase (MAPK) activities in ovine oocytes used as recipient cytoplasts for nuclear transfer. Biol. Reprod. 74, 691–698.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lee, J. , You, J. , Kim, J. , Hyun, S. H. , and Lee, E. (2010). Postactivation treatment with nocodazole maintains normal nuclear ploidy of cloned pig embryos by increasing nuclear retention and formation of single pronucleus. Theriogenology 73, 429–436.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Macháty, Z. , Rickords, L. F. , and Prather, R. S. (1999). Parthenogenetic activation of porcine oocytes after nuclear transfer. Cloning 1, 101–109.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Martinez-Diaz, M. A. , Ikeda, K. , and Takahashi, Y. (2002). Effects of cycloheximide treatment and interval between fusion and activation on in vitro development of pig nuclear transfer embryos. Reprod. Fertil. Dev. 14, 191–197.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Mito, T. , Yoshioka, K. , Nagano, M. , Suzuki, C. , Yamashita, S. , and Hoshi, H. (2009). Transforming growth factor-alpha in a defined medium during in vitro maturation of porcine oocytes improves their developmental competence and intracellular ultrastructure. Theriogenology 72, 841–850.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Miyoshi, K. , Saeki, K. , and Sato, E. (2000). Improvement in development of porcine embryos reconstituted with cells from blastocyst-derived cell lines and enucleated oocytes by optimization of reconstruction methods. Cloning 2, 175–184.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nagashima, H. , Kurihara, T. , Wako, N. , Ochiai, T. , Kurome, M. , Mizuno, K. , Takahagi, Y. , Fujimura, T. , and Murakami, H. (2002). In vitro development of porcine nuclear transfer embryos reconstructed by intracytoplasmic microinjection of cumulus cell nuclei into in vitro matured oocytes. J. Reprod. Dev. 48, 121–129.
Crossref | GoogleScholarGoogle Scholar |

Ock, S. A. , Lee, S. L. , Kim, J. G. , Kumar, B. M. , Balasubramanian, S. , Choe, S. Y. , and Rho, G. J. (2007). Development and quality of porcine embryos in different culture system and embryo-producing methods. Zygote 15, 1–8.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Park, K. W. , Choi, K. M. , Hong, S. P. , Han, G. S. , Yoo, J. Y. , Jin, D. I. , Seol, J. G. , and Park, C. S. (2008). Production of transgenic recloned piglets harboring the human granulocyte–macrophage colony stimulating factor (hGM-CSF) gene from porcine fetal fibroblasts by nuclear transfer. Theriogenology 70, 1431–1438.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Park, Y. , Hong, J. , Yong, H. , Lim, J. , and Lee, E. (2005). Effect of exogenous carbohydrates in a serum-free culture medium on the development of in vitro matured and fertilized porcine embryos. Zygote 13, 269–275.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Petersen, B. , Lucas-Hahn, A. , Oropeza, M. , Hornen, N. , Lemme, E. , Hassel, P. , Queisser, A. L. , and Niemann, H. (2008). Development and validation of a highly efficient protocol of porcine somatic cloning using preovulatory embryo transfer in peripubertal gilts. Cloning Stem Cells 10, 355–362.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Petters, R. M. , and Wells, K. D. (1993). Culture of pig embryos. J. Reprod. Fertil. Suppl. 48, 61–73.
PubMed |  CAS |

Polejaeva, I. A. , Chen, S. H. , Vaught, T. D. , Page, R. L. , and Mullins, J. , et al. (2000). Cloned pigs produced by nuclear transfer from adult somatic cells. Nature 407, 86–90.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Prather, R. S. , Sutovsky, P. , and Green, J. A. (2004). Nuclear remodeling and reprogramming in transgenic pig production. Exp. Biol. Med. 229, 1120–1126.
CAS |

Shin, M. R. , Park, S. W. , Shim, H. , and Kim, N. H. (2002). Nuclear and microtubule reorganization in nuclear-trnasferred bovine embryos. Mol. Reprod. Dev. 62, 74–82.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Sims, M. , and First, N. L. (1994). Production of calves by transfer of nuclei from cultured inner cell mass cells. Proc. Natl. Acad. Sci. USA 91, 6143–6147.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Song, K. , Hyun, S. H. , Shin, T. , and Lee, E. (2009). Post-activation treatment with demecolcine improves development of somatic cell nuclear transfer embryos in pigs by modifying the remodeling of donor nuclei. Mol. Reprod. Dev. 76, 611–619.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Stice, S. L. , and Robl, J. M. (1988). Nuclear reprogramming in nuclear transplant rabbit embryos. Biol. Reprod. 39, 657–664.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Takahagi, Y. , Fujimura, T. , Miyagawa, S. , Nagashima, H. , Shigehisa, T. , Shirakura, R. , and Murakami, H. (2005). Production of alpha 1,3-galactosyltransferase gene knockout pigs expressing both human decay-accelerating factor and N-acetylglucosaminyltransferase III. Mol. Reprod. Dev. 71, 331–338.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tani, T. , Kato, Y. , and Tsunoda, Y. (2001). Direct exposure of chromosomes to nonactivated ovum cytoplasm in effective for bovine somatic cell nucleus reprogramming. Biol. Reprod. 64, 324–330.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, T. , and Yanagimachi, R. (2001). Mouse cloning with nucleus donor cells of different age and type. Mol. Reprod. Dev. 58, 376–383.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wakayama, T. , Perry, A. C. , Zuccotti, M. , Johnson, K. R. , and Yanagimachi, R. (1998). Full-term development of mice from enucleated oocytes injected with cumulus cell nuclei. Nature 394, 369–374.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Walker, S. C. , Shin, T. , Zaunbrecher, G. M. , Romano, J. E. , Johnson, G. A. , Bazer, F. W. , and Piedrahita, J. A. (2002). A highly efficient method for porcine cloning by nuclear transfer using in vitro-matured oocytes. Cloning Stem Cells 4, 105–112.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wells, D. N. , Misica, P. M. , and Tervit, H. R. (1999). Production of cloned calves following nuclear transfer with cultured adult mural granulose cells. Biol. Reprod. 60, 996–1005.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yin, X. J. , Tani, T. , Yonemura, I. , Kawakami, M. , Miyamoto, K. , Hasegawa, R. , Kato, Y. , and Tsunoda, Y. (2002). Production of cloned pigs from adult somatic cells by chemically assisted removal of maternal chromosomes. Biol. Reprod. 67, 442–446.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Yin, X. J. , Cho, S. K. , Park, M. R. , Im, Y. J. , Park, J. J. , Bhak, J. S. , Kwon, D. N. , Jun, S. H. , Kim, N. H. , and Kim, J. H. (2003). Nuclear remodeling and the developmental potential of nuclear transferred porcine oocytes under delayed-activated conditions. Zygote 11, 167–174.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |