Register      Login
Reproduction, Fertility and Development Reproduction, Fertility and Development Society
Vertebrate reproductive science and technology
RESEARCH ARTICLE

Involvement of peroxisome proliferator-activated receptor γ in gonadal steroidogenesis and steroidogenic acute regulatory protein expression

Mariusz P. Kowalewski A B , Matthew T. Dyson A , Pulak R. Manna A and Douglas M. Stocco A C
+ Author Affiliations
- Author Affiliations

A Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.

B Present address: Institute of Veterinary Anatomy, Vetsuisse-Faculty, University of Zurich, Winterthurerstr. 260, CH-8057 Zurich, Switzerland.

C Corresponding author. Email: doug.stocco@ttuhsc.edu

Reproduction, Fertility and Development 21(7) 909-922 https://doi.org/10.1071/RD09027
Submitted: 10 February 2009  Accepted: 15 June 2009   Published: 24 August 2009

Abstract

Peroxisome proliferator-activated receptor (PPAR) γ belongs to the PPAR family of nuclear transcription factors whose ligands, such as eicosanoids, fatty acids and prostaglandins, are known to affect gonadal function. Although several of these enhance the expression of the steroidogenic acute regulatory protein (STAR) and steroid production, the role of PPARγ in regulating STAR-mediated steroidogenesis remains unclear. In the present study, we used ciglitazone to selectively activate PPARγ and examine its role in STAR-mediated steroidogenesis in immortalised KK1 mouse granulosa cells and MA-10 mouse Leydig tumour cells. Cotreatment with both dibutyryl-cAMP and ciglitazone revealed a dose-dependent, significant increase in progesterone synthesis, Star promoter activity, Star mRNA and STAR protein relative to either compound alone. The overexpression of PPARγ further increased Star-promoter activity. The ciglitazone-induced activity of the Star-promoter appears to be mediated through the cAMP-response element half-sites located within its proximal 151 bp. Combined treatment with ciglitazone and dibutyryl-cAMP significantly increased the expression and activity of transcriptional pathways impacted by the activator protein-1 family member c-JUN. The present study demonstrates that ciglitazone and dibutyryl-cAMP synergistically enhance STAR expression in MA-10 and KK1 cells. Ciglitazone-activated PPARγ appears to increase the sensitivity of Leydig and granulosa cells to cAMP stimulation, possibly via upregulation of c-JUN expression.

Additional keywords: granulosa, Leydig.


Acknowledgements

This investigation was supported by National Institutes of Health grant HD-17481 and with funds from the Robert A. Welch Foundation (Grant B1–0028). The skilful technical assistance of Yuping Sun is greatly appreciated.


References

Asami-Miyagishi, R. , Iseki, S. , Usui, M. , Uchida, K. , Kubo, H. , and Morita, I. (2004). Expression and function of PPARgamma in rat placental development. Biochem. Biophys. Res. Commun. 315, 497–501.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ascoli, M. (1981). Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108, 88–95.
PubMed |  CAS |

Barak, Y. , Nelson, M. C. , Ong, E. S. , Jones, Y. Z. , Ruiz-Lozano, P. , Chien, K. R. , Koder, A. , and Evans, R. M. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell 4, 585–595.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Berger, J. , and Moller, D. E. (2002). The mechanisms of action of PPARs. Annu. Rev. Med. 53, 409–435.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Bernstein, L. R. , Ferris, D. K. , Colburn, N. H. , and Sobel, M. E. (1994). A family of mitogen-activated protein kinase-related proteins interacts in vivo with activator protein-1 transcription factor. J. Biol. Chem. 269, 9401–9404.
PubMed |  CAS |

Bose, H. S. , Whittal, R. M. , Baldwin, M. A. , and Miller, W. L. (1999). The active form of the steroidogenic acute regulatory protein, StAR, appears to be a molten globule. Proc. Natl Acad. Sci. USA 96, 7250–7255.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Braissant, O. , Foufelle, F. , Scotto, C. , Dauça, M. , and Wahli, W. (1996). Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, -beta, and -gamma in the adult rat. Endocrinology 137, 354–366.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Caron, K. M. , Ikeda, Y. , Soo, S. C. , Stocco, D. M. , Parker, K. L. , and Clark, B. J. (1997). Characterization of the promoter region of the mouse gene encoding the steroidogenic acute regulatory protein. Mol. Endocrinol. 11, 138–147.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Corton, J. C. , and Lapinskas, P. (2005). Peroxisome proliferator-activated receptors: mediators of phthalate ester-induced effects in the male reproductive tract? Toxicol. Sci. 83, 4–17.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Cui, Y. , Miyoshi, K. , Claudio, E. , Siebenlist, U. K. , Gonzalez, F. J. , Flaws, J. , Wagner, K. U. , and Hennighausen, L. (2002). Loss of the peroxisome proliferation-activated receptor gamma (PPARγ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J. Biol. Chem. 277, 17830–17835.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Delmas, V. , van der Hoorn, F. , Mellstrom, B. , Jegou, B. , and Sassone-Corsi, P. (1993). Induction of CREM activator proteins in spermatids: down-stream targets and implications for haploid germ cell differentiation. Mol. Endocrinol. 7, 1502–1514.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Fan, W. , Yanase, T. , Morinaga, H. , Mu, Y. M. , Nomura, M. , Okabe, T. , Goto, K. , Harada, N. , and Nawata, H. (2005). Activation of peroxisome proliferator-activated receptor-gamma and retinoid X receptor inhibits aromatase transcription via nuclear factor-kappaB. Endocrinology 146, 85–92.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Freeman, D. A. , and Romero, A. (2003). Effects of troglitazone on intracellular cholesterol distribution and cholesterol-dependent cell functions in MA-10 Leydig tumor cells. Biochem. Pharmacol. 66, 307–313.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Froment, P. , Fabre, S. , Dupont, J. , Pisselet, C. , Chesneau, D. , Staels, B. , and Monget, P. (2003). Expression and functional role of peroxisome proliferator-activated receptor-gamma in ovarian folliculogenesis in the sheep. Biol. Reprod. 69, 1665–1674.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Froment, P. , Gizard, F. , Defever, D. , Staels, B. , Dupont, J. , and Monget, P. (2006). Peroxisome proliferator-activated receptors in reproductive tissues: from gametogenesis to parturition. J. Endocrinol. 189, 199–209.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gazouli, M. , Yao, Z. X. , Boujrad, N. , Corton, J. C. , Culty, M. , and Papadopoulos, V. (2002). Effect of peroxisome proliferators on Leydig cell peripheral-type benzodiazepine receptor gene expression, hormone-stimulated cholesterol transport, and steroidogenesis: role of the peroxisome proliferator-activator receptor alpha. Endocrinology 143, 2571–2583.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Gyles, S. L. , Burns, C. J. , Whitehouse, B. J. , Sugden, D. , Marsh, P. J. , Persaud, S. J. , and Jones, P. M. (2001). ERKs regulate cyclic AMP-induced steroid synthesis through transcription of the steroidogenic acute regulatory (StAR) gene. J. Biol. Chem. 276, 34888–34895.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Ishigaki, Y. , Li, X. , Serin, G. , and Maquat, L. E. (2001). Evidence for a pioneer round of mRNA translation: mRNAs subject to nonsense-mediated decay in mammalian cells are bound by CBP80 and CBP20. Cell 106, 607–617.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Itoh, T. , Fairall, L. , Amin, K. , Inaba, Y. , Szanto, A. , Balint, B. L. , Nagy, L. , Yamamoto, K. , and Schwabe, J. W. (2008). Structural basis for the activation of PPARgamma by oxidized fatty acids. Nat. Struct. Mol. Biol. 15, 924–931.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kim, J. , Sato, M. , Li, Q. , Lydon, J. P. , Demayo, F. J. , Bagchi, I. C. , and Bagchi, M. K. (2008). Peroxisome proliferator-activated receptor gamma is a target of progesterone regulation in the preovulatory follicles and controls ovulation in mice. Mol. Cell. Biol. 28, 1770–1782.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Komar, C. M. (2005). Peroxisome proliferator-activated receptors (PPARs) and ovarian function: implications for regulating steroidogenesis, differentiation, and tissue remodeling. Reprod. Biol. Endocrinol. 3, 41.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Komar, C. M. , and Curry, T. E. (2002). Localization and expression of mRNAs for the peroxisome proliferator-activated receptors in ovarian tissue from naturally cycling and pseudopregnant rats. Biol. Reprod. 66, 1531–1539.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Komar, C. M. , Braissant, O. , Wahli, W. , and Curry, T. E. (2001). Expression and localization of PPARs in the rat ovary during follicular development and the periovulatory period. Endocrinology 142, 4831–4838.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Kowalewski, M. P. , Schuler, G. , Taubert, A. , Engel, E. , and Hoffmann, B. (2006). Expression of cyclooxygenase 1 and 2 in the canine corpus luteum during diestrus. Theriogenology 66, 1423–1430.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Lambe, K. G. , and Tugwood, J. D. (1996). A human peroxisome-proliferator-activated receptor-γ is activated by inducers of adipogenesis, including thiazolidinedione drugs. Eur. J. Biochem. 239, 1–7.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Löhrke, B. , Viergutz, T. , Shahi, S. K. , Pöhland, R. , Wollenhaupt, K. , Goldammer, T. , Walzel, H. , and Kanitz, W. (1998). Detection and functional characterisation of the transcription factor peroxisome proliferator-activated receptor γ in lutein cells. J. Endocrinol. 159, 429–439.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Manna, P. R. , and Stocco, D. M. (2007). Crosstalk of CREB and Fos/Jun on a single cis-element: transcriptional repression of the steroidogenic acute regulatory protein gene. J. Mol. Endocrinol. 39, 261–277.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Manna, P. R. , Dyson, M. T. , Eubank, D. W. , Clark, B. J. , Lalli, E. , Sassone-Corsi, P. , Zeleznik, A. J. , and Stocco, D. M. (2002). Regulation of steroidogenesis and the steroidogenic acute regulatory protein by a member of the cAMP response-element binding protein family. Mol. Endocrinol. 16, 184–199.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Manna, P. R. , Wang, X. J. , and Stocco, D. M. (2003). Involvement of multiple transcription factors in the regulation of steroidogenic acute regulatory protein gene expression. Steroids 68, 1125–1134.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Manna, P. R. , Eubank, D. W. , and Stocco, D. M. (2004). Assessment of the role of activator protein-1 on transcription of the mouse steroidogenic acute regulatory protein gene. Mol. Endocrinol. 18, 558–573.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Manna, P. R. , Chandrala, S. P. , Jo, Y. , and Stocco, D. M. (2006). cAMP-independent signaling regulates steroidogenesis in mouse Leydig cells in the absence of StAR phosphorylation. J. Mol. Endocrinol. 37, 81–95.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Morohashi, K. , Zanger, U. M. , Honda, S. , Hara, M. , Waterman, M. R. , and Omura, T. (1993). Activation of CYP11A and CYP11B gene promoters by the steroidogenic cell-specific transcription factor, Ad4 BP. Mol. Endocrinol. 7, 1196–1204.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Nettles, K. W. (2008). Insights into PPARgamma from structures with endogenous and covalently bound ligands. Nat. Struct. Mol. Biol. 15, 893–895.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Resko, J. A. , Norman, R. L. , Niswender, G. D. , and Spies, H. G. (1974). The relationship between progestins and gonadotropins during the late luteal phase of the menstrual cycle in rhesus monkeys. Endocrinology 94, 128–135.
PubMed |  CAS |

Schaiff, W. T. , Carlson, M. G. , Smith, S. D. , Levy, R. , Nelson, D. M. , and Sadovsky, Y. (2000). Peroxisome proliferator-activated receptor-gamma modulates differentiation of human trophoblast in a ligand-specific manner. J. Clin. Endocrinol. Metab. 85, 3874–3881.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Schoppee, P. D. , Garmey, J. C. , and Veldhuis, J. D. (2002). Putative activation of the peroxisome proliferator-activated receptor γ impairs androgen and enhances progesterone biosynthesis in primary cultures of porcine theca cells. Biol. Reprod. 66, 190–198.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Seger, R. , Hanoch, T. , Rosenberg, R. , Dantes, A. , Merz, W. E. , Strauss, J. F. , and Amsterdam, A. (2001). The ERK signaling cascade inhibits gonadotropin stimulated steroidogenesis. J. Biol. Chem. 276, 13957–13964.
PubMed |  CAS |

Seto-Young, D. , Avtanski, D. , Strizhevsky, M. , Parikh, G. , Patel, P. , Kaplun, J. , Holcomb, K. , Rosenwaks, Z. , and Poretsky, L. (2007). Interactions among peroxisome proliferator activated receptor-gamma, insulin signaling pathways, and steroidogenic acute regulatory protein in human ovarian cells. J. Clin. Endocrinol. Metab. 92, 2232–2239.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Tontonoz, P. , Hu, E. , Graves, R. A. , Budavari, A. I. , and Spiegelman, B. M. (1994). mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev. 8, 1224–1234.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, Q. , Fujii, H. , and Knipp, G. T. (2002a). Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta 23, 661–671.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, X. J. , Dyson, M. T. , Mondillo, C. , Patrignani, Z. , Pignataro, O. , and Stocco, D. M. (2002b). Interaction between arachidonic acid and cAMP signaling pathways enhances steroidogenesis and StAR gene expression in MA-10 Leydig tumor cells. Mol. Cell. Endocrinol. 188, 55–63.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, X. J. , Dyson, M. T. , Jo, Y. , Eubank, D. W. , and Stocco, D. M. (2003). Involvement of 5-lipoxygenase metabolites of arachidonic acid in cyclic AMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J. Steroid Biochem. Mol. Biol. 85, 159–166.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |

Wang, X. , Shen, C. L. , Dyson, M. T. , Yin, X. , Schiffer, R. B. , Grammas, P. , and Stocco, D. M. (2006). The involvement of epoxygenase metabolites of arachidonic acid in cAMP-stimulated steroidogenesis and steroidogenic acute regulatory protein gene expression. J. Endocrinol. 190, 871–878.
Crossref | GoogleScholarGoogle Scholar | PubMed | CAS |