Electron Momentum Spectroscopy
IE McCarthy
Australian Journal of Physics
39(5) 587 - 600
Published: 1986
Abstract
For sufficiently high electron energies (greater than a few hundred eV) and sufficiently low recoil momenta Oess than a few atomic units) the differential cross section for the non-coplanar symmetric (e,2e) reaction on an atom or molecule depends on the target and ion structure only through the target-ion overlap. Experimental criteria for the energy and momentum are that the apparent structure information does not change when the energy and momentum are varied. The plane-wave impulse approximation is a sufficient description of the reaction mechanism for determining spherically averaged squares of momentum-space orbitals for atoms and molecules and for coefficients describing initial- and final-state correlations. For mainly uncorrelated initial states, spectroscopic factors for final states belonging to the same manifold are uniquely determined. For molecules, summed spectroscopic factors can be compared for different ion manifolds. For atoms, summed spectroscopic factors and higher-momentum profiles require the dist~rted-wave impulse approximation.https://doi.org/10.1071/PH860587
© CSIRO 1986