Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Science-based environmental conservation to answer the risk of pandemic, with a focus on the Republic of Korea

Amaël Borzée https://orcid.org/0000-0003-1093-677X
+ Author Affiliations
- Author Affiliations

A Laboratory of Animal Behaviour and Conservation, College of Biology and the Environment, Nanjing Forestry University, Nanjing, People’s Republic of China. Email: amaelborzee@gmail.com

Pacific Conservation Biology 28(3) 290-295 https://doi.org/10.1071/PC21014
Submitted: 11 March 2021  Accepted: 2 July 2021   Published: 27 July 2021

Abstract

The pandemic resulting from COVID-19 infections had short-term positive impacts on the environment such as improvement in air and water quality. However, long term changes still have disastrous effects in terms of loosening of conservation policies and an increase in ‘post-COVID-19’ development subsidies to boost the economy at the expense of the environment. The prevention of habitat loss and zoonoses will avert future pandemics and measures to protect the local environment should be taken. The Republic of Korea follows the global trend in the weakness of long-term environmental answer to the pandemic and other on-going zoonoses, such as the avian influenza and African swine fever. Some of the current activities may even increase the risks of pandemic as mass culling of animals is widespread despite known risks. Instead, environmental protection and decreased encroachment may be the only safe way to proactively prevent the emergence of further pandemics.

Keywords: COVID-19, environmental protection, Korea, pandemic, zoonosis.


References

Aguirre, A. A. (2017). Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization. ILAR Journal 58, 315–318.
Changing patterns of emerging zoonotic diseases in wildlife, domestic animals, and humans linked to biodiversity loss and globalization.Crossref | GoogleScholarGoogle Scholar | 29253148PubMed |

Allen, T., Murray, K. A., Zambrana-Torrelio, C., Morse, S. S., Rondinini, C., Di Marco, M., Breit, N., Olival, K. J., and Daszak, P. (2017). Global hotspots and correlates of emerging zoonotic diseases. Nature Communications 8, 1–10.
Global hotspots and correlates of emerging zoonotic diseases.Crossref | GoogleScholarGoogle Scholar |

Badola, S. (2020). ‘Indian wildlife amidst the COVID-19 crisis: An analysis of poaching and illegal wildlife trade.’ (TRAFFIC: New Delhi, India).

Bang, A., and Khadakkar, S. (2020). Biodiversity conservation during a global crisis: Consequences and the way forward. Proceedings of the National Academy of Sciences 117, 29995–29999.
Biodiversity conservation during a global crisis: Consequences and the way forward.Crossref | GoogleScholarGoogle Scholar |

Bishop, J. and Pagiola, S. (2012). ‘Selling forest environmental services: market-based mechanisms for conservation and development.’ (Taylor & Francis: London, UK).

Bloomfield, L. S., McIntosh, T. L., and Lambin, E. F. (2020). Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa. Landscape Ecology 35, 985–1000.
Habitat fragmentation, livelihood behaviors, and contact between people and nonhuman primates in Africa.Crossref | GoogleScholarGoogle Scholar |

Borzée, A., Andersen, D., and Jang, Y. (2018). Population trend inferred from aural surveys for calling anurans in Korea. PeerJ 6, e5568.
Population trend inferred from aural surveys for calling anurans in Korea.Crossref | GoogleScholarGoogle Scholar | 30258708PubMed |

Borzée, A., Struecker, M.-Y., Yi, Y., Kim, D., and Kim, H. (2019). Time for Korean wildlife conservation. Science 363, 1161–1162.
Time for Korean wildlife conservation.Crossref | GoogleScholarGoogle Scholar | 30872512PubMed |

Borzée, A., McNeely, J., Magellan, K., Miller, J. R. B., Porter, L., Dutta, T., Kadinjappalli, K. P., Sharma, S., Shahabuddin, G., Aprilinayati, F., Ryan, G. E., Hughes, A., Mutalib, A. H. A., Wahab, A. Z. A., Bista, D., Chavanich, S. A., Chong, J. L., Gale, G. A., Ghaffari, H., Ghimirey, Y., Jayaraj, V. K., Khatiwada, A. P., Khatiwada, M., Krishna, M., Lwin, N., Paudel, P. K., Sadykova, C., Savini, T., Shrestha, B. B., Strine, C. T., Sutthacheep, M., Wong, E. P., Yeemin, T., Zahirudin, N. Z., and Zhang, L. (2020). COVID-19 highlights the need for more effective wildlife trade legislation. Trends in Ecology & Evolution 35, 1052–1055.
COVID-19 highlights the need for more effective wildlife trade legislation.Crossref | GoogleScholarGoogle Scholar |

Borzée, A., Kielgast, J., Wren, S., Angulo, A., Chen, S., Magellan, K., Messenger, K. R., Hansen-Hendrikx, C. M., Baker, A., Santos, M. M. D., Kusrini, M., Jiang, J., Maslova, I. V., Das, I., Park, D., Bickford, D., Murphy, R. W., Che, J., Do, T. V., Nguyen, T. Q., Chuang, M.-F., and Bishop, P. J. (2021). Using the 2020 global pandemic as a springboard to highlight the need for amphibian conservation in eastern Asia. Biological Conservation 255, 08973.
Using the 2020 global pandemic as a springboard to highlight the need for amphibian conservation in eastern Asia.Crossref | GoogleScholarGoogle Scholar |

Cheng, Y., Yu, L., Xu, Y., Lu, H., Cracknell, A. P., Kanniah, K., and Gong, P. (2018). Mapping oil palm extent in Malaysia using ALOS-2 PALSAR-2 data. International Journal of Remote Sensing 39, 432–452.
Mapping oil palm extent in Malaysia using ALOS-2 PALSAR-2 data.Crossref | GoogleScholarGoogle Scholar |

Cheval, S., Adamescu, C. M., Georgiadis, T., Herrnegger, M., Piticar, A., and Legates, D. R. (2020). Observed and potential impacts of the COVID-19 pandemic on the environment. International Journal of Environmental Research and Public Health 17, 4140.
Observed and potential impacts of the COVID-19 pandemic on the environment.Crossref | GoogleScholarGoogle Scholar |

Clayton, S. and Myers, G. (2015). ‘Conservation psychology: Understanding and promoting human care for nature’. (John Wiley & Sons: Chichester, UK).

Corlett, R. T. (2007). The impact of hunting on the mammalian fauna of tropical Asian forests. Biotropica 39, 292–303.
The impact of hunting on the mammalian fauna of tropical Asian forests.Crossref | GoogleScholarGoogle Scholar |

Corlett, R. T., Primack, R. B., Devictor, V., Maas, B., Goswami, V. R., Bates, A. E., Koh, L. P., Regan, T. J., Loyola, R., Pakeman, R. J., Cumming, G. S., Pidgeon, A., Johns, D., and Rothp, R. (2020). Impacts of the coronavirus pandemic on biodiversity conservation. Biological Conservation 246, 108571.
Impacts of the coronavirus pandemic on biodiversity conservation.Crossref | GoogleScholarGoogle Scholar | 32292203PubMed |

Crist, E., Mora, C., and Engelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science 356, 260–264.
The interaction of human population, food production, and biodiversity protection.Crossref | GoogleScholarGoogle Scholar | 28428391PubMed |

Dinerstein, E., Joshi, A. R., Vynne, C., Lee, A. T. L., Pharand-Deschênes, F., França, M., Fernando, S., Birch, T., Burkart, K., Asner, G. P., and Olson, D. (2020). A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate. Science Advances 6, eabb2824.
A “Global Safety Net” to reverse biodiversity loss and stabilize Earth’s climate.Crossref | GoogleScholarGoogle Scholar | 32917614PubMed |

Dobson, A. P., Pimm, S. L., Hannah, L., Kaufman, L., Ahumada, J. A., Ando, A. W., Bernstein, A., Busch, J., Daszak, P., Engelmann, J., Kinnaird, M. F., Li, B. V., Loch-Temzelides, T., Lovejoy, T., Nowak, K., Roehrdanz, P. R., and Vale, M. M. (2020). Ecology and economics for pandemic prevention. Science 369, 379–381.
Ecology and economics for pandemic prevention.Crossref | GoogleScholarGoogle Scholar | 32703868PubMed |

Enserink, M. (2020). Coronavirus rips through Dutch mink farms, triggering culls to prevent human infections. Science 368, 1169.
Coronavirus rips through Dutch mink farms, triggering culls to prevent human infections.Crossref | GoogleScholarGoogle Scholar | 32527808PubMed |

Everard, M., Johnston, P., Santillo, D., and Staddon, C. (2020). The role of ecosystems in mitigation and management of Covid-19 and other zoonoses. Environmental Science & Policy 111, 7–17.
The role of ecosystems in mitigation and management of Covid-19 and other zoonoses.Crossref | GoogleScholarGoogle Scholar |

Faith, D. P., and Walker, P. A. (1996). Integrating conservation and development: effective trade-offs between biodiversity and cost in the selection of protected areas. Biodiversity & Conservation 5, 431–446.
Integrating conservation and development: effective trade-offs between biodiversity and cost in the selection of protected areas.Crossref | GoogleScholarGoogle Scholar |

FAO. (2013). ‘Addressing avian influenza A(H7N9). Risk management along the food chain’. (Food and Agriculture Organisation of the United Nations: Rome, Italy). Available at wwwfaoorg/ag/empreshtml

Faria, N. R., Rambaut, A., Suchard, M. A., Baele, G., Bedford, T., Ward, M. J., Tatem, A. J., Sousa, J. D., Arinaminpathy, N., Pépin, J., Posada, D., Peeters, M., Pybus, O. G., and Lemey, P. (2014). The early spread and epidemic ignition of HIV-1 in human populations. Science 346, 56–61.
The early spread and epidemic ignition of HIV-1 in human populations.Crossref | GoogleScholarGoogle Scholar | 25278604PubMed |

Fernández, D., Giné-Vázquez, I., Liu, I., Yucel, R., Ruscone, M. N., Morena, M., García, V. G., Haro, J. M., Pan, W., and Tyrovolas, S. (2020). Are environmental pollution and biodiversity levels associated to the spread and mortality of COVID-19? A four-month global analysis. Environmental Pollution 271, 116326.
Are environmental pollution and biodiversity levels associated to the spread and mortality of COVID-19? A four-month global analysis.Crossref | GoogleScholarGoogle Scholar | 33412447PubMed |

Forster, P. M., Forster, H. I., Evans, M. J., Gidden, M. J., Jones, C. D., Keller, C. A., Lamboll, R. D., Quéré, C. L., Rogelj, J., Rosen, D., Schleussner, C.-F., Richardson, T. B., Smith, C. J., and Turnock, S. T. (2020). Current and future global climate impacts resulting from COVID-19. Nature Climate Change 10, 913–919.
Current and future global climate impacts resulting from COVID-19.Crossref | GoogleScholarGoogle Scholar |

Gibb, R., Redding, D. W., Chin, K. Q., Donnelly, C. A., Blackburn, T. M., Newbold, T., and Jones, K. E. (2020). Zoonotic host diversity increases in human-dominated ecosystems. Nature 584, 398–402.
Zoonotic host diversity increases in human-dominated ecosystems.Crossref | GoogleScholarGoogle Scholar | 32759999PubMed |

Global Consortium for H5N8 and Related Influenza Viruses, (2016). Role for migratory wild birds in the global spread of avian influenza H5N8. Science 354, 213–217.
Role for migratory wild birds in the global spread of avian influenza H5N8.Crossref | GoogleScholarGoogle Scholar |

GlobeScan (2020). Opinion survey on covid-19 and wildlife trade in 5 Asian markets: findings from survey in march 2020. In: W. W. F. F. Nature, editor. Available at https://d2ouvy59p0dg6k.cloudfront.net/downloads/en_opinion_survey_covid_19_full_report.pdf: GlobeScan.

Goldthau, A., and Hughes, L. (2020). Protect global supply chains for low-carbon technologies. Nature 585, 28–30.
Protect global supply chains for low-carbon technologies.Crossref | GoogleScholarGoogle Scholar | 32879495PubMed |

Han, B.-S., Park, K., Kwak, K.-H., Park, S.-B., Jin, H.-G., Moon, S., Kim, J.-W., and Baik, J.-J. (2020). Air Quality Change in Seoul, South Korea under COVID-19 Social Distancing: Focusing on PM2. 5. International Journal of Environmental Research and Public Health 17, 6208.
Air Quality Change in Seoul, South Korea under COVID-19 Social Distancing: Focusing on PM2. 5.Crossref | GoogleScholarGoogle Scholar |

Herlihy, D. (1997). ‘The Black Death and the Transformation of the West’. (Harvard University Press: Cambridge, USA).

Hockings, M., Dudley, N., Elliott, W., Ferreira, M. N., Mackinnon, K., Pasha, M. K. S., Phillips, A., Stolton, S., Woodley, S., Appleton, M., Chassot, O., Fitzsimons, J., Galliers, C., Kroner, R. G., Goodrich, J., Hopkins, J., Jackson, W., Jonas, H., Long, B., Mumba, M., Parrish, J., Paxton, M., Phua, C., Plowright, R., Rao, M., Redford, K., Robinson, J., Rodríguez, C. M., Sandwith, T., Spenceley, A., Stevens, C., Tabor, G., Troëng, S., Willmore, S., and Yang, A. (2020). Editorial Essay: COVID-19 and Protected and Conserved Areas. Parks 26, 7–23.
Editorial Essay: COVID-19 and Protected and Conserved Areas.Crossref | GoogleScholarGoogle Scholar |

Hong, J.-S., Yamashita, H., and Sato, S. I. (2007). The Saemangeum Reclamation Project in South Korea threatens to extinguish an unique mollusk, ectosymbiotic bivalve species attached to the shell of Lingula anatina. Plankton and Benthos Research 2, 70–75.
The Saemangeum Reclamation Project in South Korea threatens to extinguish an unique mollusk, ectosymbiotic bivalve species attached to the shell of Lingula anatina.Crossref | GoogleScholarGoogle Scholar |

Jang, H.-C., Park, W. B., Kim, U. J., Chun, J. Y., Choi, S.-J., Choe, P. G., Jung, S.-I., Jee, Y., Kim, N.-J., Choi, E. H., and Oh, M.-D. (2016). First imported case of Zika virus infection into Korea. Journal of Korean Medical Science 31, 1173–1177.
First imported case of Zika virus infection into Korea.Crossref | GoogleScholarGoogle Scholar | 27366020PubMed |

Jeong, J., Kang, H.-M., Lee, E.-K., Song, B.-M., Kwon, Y.-K., Kim, H.-R., Choi, K.-S., Kim, J.-Y., Lee, H.-J., Moon, O.-K., Jeong, W., Choi, J., Baek, J.-H., Joo, Y.-S., Park, Y. H., Lee, H.-S., and Lee, Y.-J. (2014). Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014. Veterinary Microbiology 173, 249–257.
Highly pathogenic avian influenza virus (H5N8) in domestic poultry and its relationship with migratory birds in South Korea during 2014.Crossref | GoogleScholarGoogle Scholar | 25192767PubMed |

Jo, Y. S., and Gortázar, C. (2020). African swine fever in wild boar, South Korea, 2019. Transboundary and Emerging Diseases 67, 1776–1780.
African swine fever in wild boar, South Korea, 2019.Crossref | GoogleScholarGoogle Scholar |

Jo, Y.-S., and Gortázar, C. (2021). African Swine Fever in wild boar: Assessing interventions in South Korea. Transboundary and Emerging Diseases , .
African Swine Fever in wild boar: Assessing interventions in South Korea.Crossref | GoogleScholarGoogle Scholar | 33844467PubMed |

Jones, K. E., Patel, N. G., Levy, M. A., Storeygard, A., Balk, D., Gittleman, J. L., and Daszak, P. (2008). Global trends in emerging infectious diseases. Nature 451, 990–993.
Global trends in emerging infectious diseases.Crossref | GoogleScholarGoogle Scholar | 18288193PubMed |

Ju, M. J., Oh, J., and Choi, Y. H. (2020). Changes in air pollution levels after COVID-19 outbreak in Korea. Science of the Total Environment 750, 141521.
Changes in air pollution levels after COVID-19 outbreak in Korea.Crossref | GoogleScholarGoogle Scholar |

Kim, D., Conway, K. W., Jeon, H.-B., Kwon, Y.-S., and Won, Y.-J. (2013). High genetic diversity within the morphologically conservative dwarf loach, Kichulchoia brevifasciata (Teleostei: Cobitidae), an endangered freshwater fish from South Korea. Conservation Genetics 14, 757–769.
High genetic diversity within the morphologically conservative dwarf loach, Kichulchoia brevifasciata (Teleostei: Cobitidae), an endangered freshwater fish from South Korea.Crossref | GoogleScholarGoogle Scholar |

Kim, K. H., Tandi, T. E., Choi, J. W., Moon, J. M., and Kim, M. S. (2017). Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications. Journal of Hospital Infection 95, 207–213.
Middle East respiratory syndrome coronavirus (MERS-CoV) outbreak in South Korea, 2015: epidemiology, characteristics and public health implications.Crossref | GoogleScholarGoogle Scholar |

Kim, H.-J., Jin, S.-J., and Yoo, S.-H. (2018). Public assessment of releasing a captive indo-pacific bottlenose dolphin into the wild in South Korea. Sustainability 10, 3199.
Public assessment of releasing a captive indo-pacific bottlenose dolphin into the wild in South Korea.Crossref | GoogleScholarGoogle Scholar |

Kim, H.-J., Lee, M.-J., Lee, S.-K., Kim, D.-Y., Seo, S.-J., Kang, H.-E., and Nam, H.-M. (2019). African swine fever virus in pork brought into South Korea by travelers from China, August 2018. Emerging Infectious Diseases 25, 1231–1233.
African swine fever virus in pork brought into South Korea by travelers from China, August 2018.Crossref | GoogleScholarGoogle Scholar | 30844357PubMed |

Kim, H.-J., Cho, K.-H., Lee, S.-K., Kim, D.-Y., Nah, J.-J., Kim, H.-J., Kim, H.-J., Hwang, J.-Y., Sohn, H.-J., Choi, J.-G., Kang, H.-E., and Kim, Y.-J. (2020a). Outbreak of African swine fever in South Korea, 2019. Transboundary and Emerging Diseases 67, 473–475.
Outbreak of African swine fever in South Korea, 2019.Crossref | GoogleScholarGoogle Scholar | 31955520PubMed |

Kim, S.-H., Kim, J., Son, K., Choi, Y., Jeong, H.-S., Kim, Y., Park, J.-E., Hong, Y.-J., Lee, S.-I., Wang, S.-J., Lee, H.-S., Kim, W.-M., and Jheong, W.-H. (2020b). Wild boar harbouring African swine fever virus in the demilitarized zone in South Korea, 2019. Emerging Microbes & Infections 9, 628–630.
Wild boar harbouring African swine fever virus in the demilitarized zone in South Korea, 2019.Crossref | GoogleScholarGoogle Scholar |

Koo, K. S., Park, H. R., Choi, J. H., and Sung, H. C. (2020). Present status of non-native amphibians and reptiles traded in Korean online pet shops. Korean Journal of Environment and Ecology 3, 106–114.
Present status of non-native amphibians and reptiles traded in Korean online pet shops.Crossref | GoogleScholarGoogle Scholar |

Lee, S.-D., and Miller-Rushing, A. J. (2014). Degradation, urbanization, and restoration: a review of the challenges and future of conservation on the Korean Peninsula. Biological Conservation 176, 262–276.
Degradation, urbanization, and restoration: a review of the challenges and future of conservation on the Korean Peninsula.Crossref | GoogleScholarGoogle Scholar |

Lim, S., Choi, H. S., Shin, H. J., Ahn, J. H., Baik, J. J., Choi, Y. H., and Lee, J. K. (2004). Three cases of severe acute respiratory syndrome imported into South Korea. The Korean Journal of Medicine 67, 655–661.

Macdonald, D. W., and Laurenson, M. K. (2006). Infectious disease: inextricable linkages between human and ecosystem health. Biological Conservation 2, 143–150.
Infectious disease: inextricable linkages between human and ecosystem health.Crossref | GoogleScholarGoogle Scholar |

Mahato, S., Pal, S., and Ghosh, K. G. (2020). Effect of lockdown amid COVID-19 pandemic on airquality of the megacity Delhi, India. Science of the Total Environment 730, 139086.
Effect of lockdown amid COVID-19 pandemic on airquality of the megacity Delhi, India.Crossref | GoogleScholarGoogle Scholar |

Mandal, I., and Pal, S. (2020). COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas. Science of the Total Environment 732, 139281.
COVID-19 pandemic persuaded lockdown effects on environment over stone quarrying and crushing areas.Crossref | GoogleScholarGoogle Scholar |

Marco, M. D., Baker, M. L., Daszak, P., Barro, P. D., Eskew, E. A., Godde, C. M., Harwood, T. D., Herrero, M., Hoskins, A. J., Johnson, E., Karesh, W. B., Machalaba, C., Garcia, J. N., Paini, D., Pirzl, R., Smith, M. S., Zambrana-Torrelio, C., and Ferrier, S. (2020). Opinion: Sustainable development must account for pandemic risk. Proceedings of the National Academy of Sciences 117, 3888–3892.
Opinion: Sustainable development must account for pandemic risk.Crossref | GoogleScholarGoogle Scholar |

McNeely, J. A. (2020). Today’s protected areas: supporting a more sustainable future for humanity. Integrative Zoology 15, 603–616.
Today’s protected areas: supporting a more sustainable future for humanity.Crossref | GoogleScholarGoogle Scholar | 32359189PubMed |

McNeely, J. A. (2021). Nature and covid-19: the pandemic, the environment, and the way ahead. Ambio 50, 767–781.
Nature and covid-19: the pandemic, the environment, and the way ahead.Crossref | GoogleScholarGoogle Scholar | 33454883PubMed |

Ministry of Environment (2020). Ecosystem disturbance organism designation notice 2020-61 in Biodiversity Conservation and Use Act (21-2). 30 Mar 2020 Sejong, Republic of Korea: Ministry of Environment.

Murray, K. A., Allen, T., Loh, E., Machalaba, C. and Daszak, P. (2016). ‘Emerging viral zoonoses from wildlife associated with animal-based food systems: risks and opportunities.’ Food safety risks from wildlife. (Springer: Cham, Switzerland).

NIBR. (2014). ‘Korean Red List of Threatened Species’. (National Institude of Biological Research: Incheon, Republic of Korea).

Nyström, M., Jouffray, J., Norström, A. V., Crona, B., Jørgensen, P. S., Carpenter, S. R., Bodin, Ö., Galaz, V., and Folke, C. (2019). Anatomy and resilience of the global production ecosystem. Nature 575, 98–108.
Anatomy and resilience of the global production ecosystem.Crossref | GoogleScholarGoogle Scholar | 31695208PubMed |

Oreshkova, N., Molenaar, R. J., Vreman, S., Harders, F., Munnink, B. B. O., Honing, R. W. H.-V. D., Gerhards, N., Tolsma, P., Bouwstra, R., Sikkema, R. S., Tacken, M. G., Rooij, M. M. D., Weesendorp, E., Engelsma, M. Y., Bruschke, C. J., Smit, L. A., Koopmans, M., Poel, W. H. V. D., and Stegeman, A. (2020). SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020 separator commenting unavailable. Eurosurveillance 25, 2001005.
SARS-CoV-2 infection in farmed minks, the Netherlands, April and May 2020 separator commenting unavailable.Crossref | GoogleScholarGoogle Scholar |

Ray, D., Salvatore, M., Bhattacharyya, R., Wang, L., Du, J., Mohammed, S., Purkayastha, S., Halder, A., Rix, A., Barker, D., Kleinsasser, M., Zhou, Y., Bose, D., Song, P., Banerjee, M., Baladandayuthapani, V., Ghosh, P., and Mukherjee, B. (2020). Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms. Harvard Data Science Review S1, .
Predictions, role of interventions and effects of a historic national lockdown in India’s response to the COVID-19 pandemic: data science call to arms.Crossref | GoogleScholarGoogle Scholar |

Rhee, S. W. (2020). Management of used personal protective equipment and wastes related to COVID-19 in South Korea. Waste Management & Research 38, 820–824.
Management of used personal protective equipment and wastes related to COVID-19 in South Korea.Crossref | GoogleScholarGoogle Scholar |

Rouquet, P., Froment, J.-M., Bermejo, M., Kilbourn, A., Karesh, W., Reed, P., Kumulungui, B., Yaba, P., Délicat, A., Rollin, P. E., and Leroy, E. M. (2005). Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerging Infectious Diseases 11, 283–290.
Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003.Crossref | GoogleScholarGoogle Scholar | 15752448PubMed |

Rulli, M. C., Santini, M., Hayman, D. T. S., and D’Odorico, P. (2017). The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Scientific Reports 7, 41613.
The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks.Crossref | GoogleScholarGoogle Scholar | 28195145PubMed |

Sala, E., and Giakoumi, S. (2018). No-take marine reserves are the most effective protected areas in the ocean. ICES Journal of Marine Science 75, 1166–1168.
No-take marine reserves are the most effective protected areas in the ocean.Crossref | GoogleScholarGoogle Scholar |

SCBD. (2018). ‘Protected areas and other effective area-based conservation measures’. (Secretariat of the Convention on Biological Diversity: Montreal, Canada).

Scheele, B. C., Pasmans, F., Skerratt, L. F., Berger, L., Martel, A., Beukema, W., Acevedo, A. A., Burrowes, P. A., Carvalho, T., Catenazzi, A., Riva, I. D. l., Fisher, M. C., Flechas, S. V., Foster, C. N., Frías-Álvarez, P., Garner, T. W. J., Gratwicke, B., Guayasamin, J. M., Hirschfeld, M., Kolby, J. E., Kosch, T. A., Marca, E. L., Lindenmayer, D. B., Lips, K. R., Longo, A. V., Maneyro, R., McDonald, C. A., III, J. M., Palacios-Rodriguez, P., Parra-Olea, G., Richards-Zawacki, C. L., Rödel, M.-O., Rovito, S. M., Soto-Azat, C., Toledo, L. F., Voyles, J., Weldon, C., Whitfield, S. M., Wilkinson, M., Zamudio, K. R., and Canessa, S. (2019). Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity. Science 363, 1459–1463.
Amphibian fungal panzootic causes catastrophic and ongoing loss of biodiversity.Crossref | GoogleScholarGoogle Scholar | 30923224PubMed |

Shanshui Nature Conservation Center (2020). Survey on the revision of laws on wildlife: 22 days, 100,000 responses, voices from the public. Available at http://www.shanshui.org/information/1926/: Shanshui Nature Conservation Center.

Somerville, K. (2020). ‘COVID-19 increases the pressure: Botswana’s Rhino-Poaching Crisis’. (Conservation Frontlines Foundation: Middleburg, USA).

Song, M.-S., Lee, J. H., Pascua, P. N. Q., Baek, Y. H., Kwon, H.-I., Park, K. J., Choi, H.-W., Shin, Y.-K., Song, J.-Y., Kim, C.-J., and Choi, Y.-K. (2010). Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea. Journal of Clinical Microbiology 48, 3204–3211.
Evidence of human-to-swine transmission of the pandemic (H1N1) 2009 influenza virus in South Korea.Crossref | GoogleScholarGoogle Scholar | 20610681PubMed |

Sutherlin, L. (2021). Banking on climate chaos. San Francisco, USA: Rainforest Action Network.

Taylor, L., Latham, S., and Woolhouse, M. (2001). Risk factors for human disease emergence. Philosophical Transactions of the Royal Society B 356, 983–989.
Risk factors for human disease emergence.Crossref | GoogleScholarGoogle Scholar |

Thomson, D. J., and Barclay, D. R. (2020). Real-time observations of the impact of COVID-19 on underwater noise. The Journal of the Acoustical Society of America 147, 3390–3396.
Real-time observations of the impact of COVID-19 on underwater noise.Crossref | GoogleScholarGoogle Scholar | 32486811PubMed |

Tu, C., Crameri, G., Kong, X., Chen, J., Sun, Y., Yu, M., Xiang, H., Xia, X., Liu, S., Ren, T., Yu, Y., Eaton, B. T., Xuan, H., and Wang, L.-F. (2004). Antibodies to SARS coronavirus in civets. Emerging Infectious Diseases 10, 2244–2248.
Antibodies to SARS coronavirus in civets.Crossref | GoogleScholarGoogle Scholar | 15663874PubMed |

UNEP-WCMC IUCN and NGS. (2020). ‘Protected Planet Live Report 2020’. (UNEP-WCMC, IUCN and NGS: Cambridge UK; Gland, Switzerland; Washington, USA.).

Wilson, E. O. (2016). ‘Half-Earth: Our Planet’s Fight for Survival’. (W.W. Norton: New York, USA).

Wilson, E. O. (2017). ‘Biophilia and the conservation ethic’. In: D. J. Penn, I. Mysterud, editors. Evolutionary perspectives on environmental problems. (Routledge: New York, USA).

Wynes, S., and Nicholas, K. A. (2017). The climate mitigation gap: education and government recommendations miss the most effective individual actions. Environmental Research Letters 12, 074024.
The climate mitigation gap: education and government recommendations miss the most effective individual actions.Crossref | GoogleScholarGoogle Scholar |

Yang, N., Liu, P., Li, W., and Zhang, L. (2020). Permanently ban wildlife consumption. Science 367, 1434–1435.
Permanently ban wildlife consumption.Crossref | GoogleScholarGoogle Scholar | 32217717PubMed |

Yi, Y., and Borzée, A. (2021). Human population and efficient conservation: are humans playing ostriches and rabbits? Journal of Asia-Pacific Biodiversity 14, 144–145.
Human population and efficient conservation: are humans playing ostriches and rabbits?Crossref | GoogleScholarGoogle Scholar |

Yoon, H., Hong, S. K., Lee, I., Yoo, D. S., Jung, C. S., Lee, E., and Wee, S. H. (2020). Clinical symptoms of African swine fever in domestic pig farms in the Republic of Korea, 2019. Transboundary and Emerging Diseases 67, 2245–2248.
Clinical symptoms of African swine fever in domestic pig farms in the Republic of Korea, 2019.Crossref | GoogleScholarGoogle Scholar |

Zoeckler, C., Syroechkovskiy, E. E., and Atkinson, P. W. (2010). Rapid and continued population decline in the Spoon-billed Sandpiper Eurynorhynchus pygmeus indicates imminent extinction unless conservation action is taken. Bird Conservation International 20, 95–111.
Rapid and continued population decline in the Spoon-billed Sandpiper Eurynorhynchus pygmeus indicates imminent extinction unless conservation action is taken.Crossref | GoogleScholarGoogle Scholar |