Register      Login
Pacific Conservation Biology Pacific Conservation Biology Society
A journal dedicated to conservation and wildlife management in the Pacific region.
RESEARCH ARTICLE

Notes on the cultural value, biology and conservation status of the Data Deficient Tagula butcherbird (Cracticus louisiadensis Tristram, 1889)

W. Goulding https://orcid.org/0000-0003-1780-434X A B C , P. Moss A and C. A. McAlpine A
+ Author Affiliations
- Author Affiliations

A School of Earth and Environmental Sciences, University of Queensland, St Lucia, Qld 4072, Australia.

B Biodiversity Program, Queensland Museum, PO Box 3300, South Brisbane, Qld 4101, Australia.

C Corresponding author. Email: w.goulding@uq.edu.au

Pacific Conservation Biology 26(2) 150-160 https://doi.org/10.1071/PC19014
Submitted: 5 April 2019  Accepted: 14 July 2019   Published: 6 September 2019

Abstract

The Tagula butcherbird (Cracticus louisiadensis) is an endemic island species of butcherbird that has remained virtually unknown for over 130 years. The lack of information on the species has resulted in it being assigned to the Data Deficient category by BirdLife International and the IUCN, leaving its conservation status open to continuing speculation. This is an ongoing concern given the rapid environmental changes occurring in the region. Here, we describe the first observations of the habitat use, life history and ecology of the species. We also present information collected across the island distribution of the species, including density and population estimates. We found the Tagula butcherbird to be culturally important and relatively common in suitable habitats across four islands of the Louisiade Archipelago (Papua New Guinea). However, the species was absent from highly disturbed areas. We estimated this species’ extent of occurrence to be ~1200 km2 and area of occupancy to be less than 800 km2. Population densities were estimated via pre-dawn assessments of singing birds and line transects. Density estimates were found to be between 0.14 and 0.53 individuals per hectare, with the highest density observed on Sabara Island. These densities were combined with remote sensing data to estimate the amount of available habitat and the species’ population size, which was estimated to be between ~11 500 and 23 000 individuals. The species’ dependence on forest habitat with a relatively intact canopy, combined with the likely continuing destruction of habitat on Junet and Panawina Islands, remains a conservation concern.

Additional keywords: Artamidae, Cracticinae, Data Deficient, island birds, Louisiade Archipelago, Papua New Guinea.


References

Alldredge, M., Simons, T., and Pollock, K. (2007). A field evaluation of distance measurement error in auditory avian point count surveys. Journal of Wildlife Management 71, 2759–2766.
A field evaluation of distance measurement error in auditory avian point count surveys.Crossref | GoogleScholarGoogle Scholar |

Atkinson, C. T., Thomas, N. J., and Hunter, D. B. (2008). ‘Parasitic Diseases of Wild Birds.’ (John Wiley and Sons: IA, USA.)

Beehler, B. M., and Pratt, T. K. (2016). ‘Birds of New Guinea: Distribution, Taxonomy, and Systematics.’ (Princeton University Press: Princeton, NJ.)

Bennett, M. D., and Gillett, A. (2014). Butcherbird polyomavirus isolated from a grey butcherbird (Cracticus torquatus) in Queensland, Australia. Veterinary Microbiology 168, 302–311.
Butcherbird polyomavirus isolated from a grey butcherbird (Cracticus torquatus) in Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 24355535PubMed |

Beruldsen, G. (1980). ‘A Field Guide to the Nests and Eggs of Australian Birds.’ (Rigby Publishers Ltd: Australia.)

Bibby, C. J., Burgess, N. D., Hill, D. A., and Mustoe, S. H. (2000). ‘Bird Census Techniques.’ 2nd edn. (Academic Press: London.)

Bland, L. M., Bielby, J., Kearney, S., Orme, C. D., Watson, J. E., and Collen, B. (2017). Toward reassessing data‐deficient species. Conservation Biology 31, 531–539.
Toward reassessing data‐deficient species.Crossref | GoogleScholarGoogle Scholar | 27696559PubMed |

Brook, B. W., Sodhi, N. S., and Ng, P. K. L. (2003). Catastrophic extinctions follow deforestation in Singapore. Nature 424, 420–423.
Catastrophic extinctions follow deforestation in Singapore.Crossref | GoogleScholarGoogle Scholar | 12879068PubMed |

Buckland, S. T., Anderson, D. R., Burnham, K. P., Laake, J. L., Borchers, D. L., and Thomas, L. (2001). ‘Introduction to Distance Sampling: Estimating Abundance of Biological Populations.’ (Oxford University Press: Oxford.)

Butchart, S. H. M., Stattersfield, A. J., Bennun, L. A., Shutes, S. M., Akçakaya, H. R., Baillie, J. E. M., Stuart, S. N., Hilton-Taylor, C., and Mace, G. M. (2004). Measuring global trends in the status of biodiversity: Red List indices for birds. PLoS Biology 2, e383.
Measuring global trends in the status of biodiversity: Red List indices for birds.Crossref | GoogleScholarGoogle Scholar |

Butt, N., Seabrook, L., Maron, M., Law, B. S., Dawson, T. P., Syktus, J., and McAlpine, C. A. (2015). Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology. Global Change Biology 21, 3267–3277.
Cascading effects of climate extremes on vertebrate fauna through changes to low-latitude tree flowering and fruiting phenology.Crossref | GoogleScholarGoogle Scholar | 25605302PubMed |

Camp, R. J. (2007). Measurement error in Hawaiian forest bird surveys and their effect on density estimation. Hawai’i Cooperative Studies Unit Technical Report HCSU-005. University of Hawai’i at Hilo, Kīlauea Field Station, HI.

Coates, B. J. (1990). ‘The Birds of Papua New Guinea. Volume 2: Passerines.’ (Dove Publications: Queensland.)

Coates, B. J., and Peckover, W. S. (2001). ‘Birds of Guinea and the Bismarck Archipelago: A Photographic Guide.’ (Dove Publications: Queensland.)

Collar, N. J., Crosby, J., and Stattersfield, A. J. (1994). ‘Birds to Watch 2: the World List of Threatened Birds.’ (Birdlife International: Cambridge, UK.)

Covas, R. (2012). Evolution of reproductive life histories in island birds worldwide. Proceedings. Biological Sciences 279, 1531–1537.
Evolution of reproductive life histories in island birds worldwide.Crossref | GoogleScholarGoogle Scholar | 22072609PubMed |

Davies, T. E., Clarke, R. H., Ewen, J. G., Fazey, I. R. A., Pettorelli, N., and Cresswell, W. (2015). The effects of land-use change on the endemic avifauna of Makira, Solomon Islands: endemics avoid monoculture. Emu 115, 199–213.
The effects of land-use change on the endemic avifauna of Makira, Solomon Islands: endemics avoid monoculture.Crossref | GoogleScholarGoogle Scholar |

del Hoyo, J., and Collar, N. J. (2016). ‘HBW and BirdLife International Illustrated Checklist of the Birds of the World. Vol. 2: Passerines.’ (Lynx Editions & BirdLife International: Barcelona, Spain & Cambridge, UK.)

Dudaniec, R. Y., Kleindorfer, S., and Fessl, B. (2006). Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin’s small ground finch (Geospiza fuliginosa). Austral Ecology 31, 88–94.
Effects of the introduced ectoparasite Philornis downsi on haemoglobin level and nestling survival in Darwin’s small ground finch (Geospiza fuliginosa).Crossref | GoogleScholarGoogle Scholar |

Elbroch, M., Mwampamba, T. H., Santos, M. J., Zylberberg, M., Liebenberg, L., Minye, J., Mosser, C., and Reddy, E. (2011). The value, limitations, and challenges of employing local experts in conservation research. Conservation Biology 25, 1195–1202.
The value, limitations, and challenges of employing local experts in conservation research.Crossref | GoogleScholarGoogle Scholar | 21966985PubMed |

Fridolfsson, A.-K., and Ellegren, H. (1999). A simple and universal method for molecular sexing of non-ratite birds. Journal of Avian Biology 30, 116–121.
A simple and universal method for molecular sexing of non-ratite birds.Crossref | GoogleScholarGoogle Scholar |

Goulding, W., Adlard, R., Clegg, S., and Clark, N. (2016). Molecular and morphological description of Haemoproteus (Parahaemoproteus) bukaka (species nova), a haemosporidian associated with the strictly Australo-Papuan host subfamily Cracticinae. Parasitology Research 115, 3387–3400.
Molecular and morphological description of Haemoproteus (Parahaemoproteus) bukaka (species nova), a haemosporidian associated with the strictly Australo-Papuan host subfamily Cracticinae.Crossref | GoogleScholarGoogle Scholar | 27169863PubMed |

Goulding, W., Perez, A. S., Moss, P., and McAlpine, C. (2019). Subsistence lifestyles and insular forest loss in the Louisiade Archipelago of Papua New Guinea: an endemic hotspot. Pacific Conservation Biology 25, 151–163.
Subsistence lifestyles and insular forest loss in the Louisiade Archipelago of Papua New Guinea: an endemic hotspot.Crossref | GoogleScholarGoogle Scholar |

Hansen, M., Potapov, P., Moore, R., Hancher, M., Turubanova, S., Tyukavina, A., Thau, D., Stehman, S., Goetz, S., and Loveland, T. (2013). High-resolution global maps of 21st-century forest cover change. Science 342, 850–853.
High-resolution global maps of 21st-century forest cover change.Crossref | GoogleScholarGoogle Scholar | 24233722PubMed |

Higgins, P. J., Peter, J. M., and Steele, W. K. E. (2006). ‘Handbook of Australian, New Zealand and Antarctic Birds. Vol. 7. Boatbill to Starlings. Part A. Boatbill to Larks.’ (Oxford University Press: Melbourne.)

IUCN (2012). IUCN Red List Categories and Criteria: Version 3.1. 2nd edn. Available at: https://www.iucnredlist.org/resources/categories-and-criteria [accessed 6 June 2019].

IUCN (2019). The IUCN Red List of Threatened Species – Data Deficient birds of the world. Version 2019-1. Available at: http://www.iucnredlist.org [accessed 6 June 2019].

IUCN Standards and Petitions Subcommittee (2017). Guidelines for using the IUCN Red List categories and criteria (Version 13). Available at: https://www.iucnredlist.org/resources/redlistguidelines [accessed 6 June 2019].

Kearns, A. M., Joseph, L., and Cook, L. G. (2013). A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies. Molecular Phylogenetics and Evolution 66, 941–952.
A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies.Crossref | GoogleScholarGoogle Scholar | 23219707PubMed |

Lowe, K. W. (1989). ‘The Australian Bird Bander’s Manual.’ (Australian National Parks and Wildlife Service: Canberra.)

Maron, M., McAlpine, C. A., Watson, J. E. M., Maxwell, S., and Barnard, P. (2015). Climate-induced resource bottlenecks exacerbate species vulnerability: a review. Diversity & Distributions 21, 731–743.
Climate-induced resource bottlenecks exacerbate species vulnerability: a review.Crossref | GoogleScholarGoogle Scholar |

Marsden, S. J. (1999). Estimation of parrot and hornbill densities using a point count distance sampling method. The Ibis 141, 377–390.

McPherson, J. M., Sammy, J., Sheppard, D. J., Mason, J. J., Brichieri-Colombi, T. A., and Moehrenschlager, A. (2016). Integrating traditional knowledge when it appears to conflict with conservation: lessons from the discovery and protection of sitatunga in Ghana. Ecology and Society 21, 24.
Integrating traditional knowledge when it appears to conflict with conservation: lessons from the discovery and protection of sitatunga in Ghana.Crossref | GoogleScholarGoogle Scholar |

Miller, B. W., Caplow, S. C., and Leslie, P. W. (2012). Feedbacks between conservation and social-ecological systems. Conservation Biology 26, 218–227.
Feedbacks between conservation and social-ecological systems.Crossref | GoogleScholarGoogle Scholar | 22443128PubMed |

Novotny, V., Basset, Y., Miller, S., Allison, A., Samuelson, G., and Orsak, L. (1997). The diversity of tropical insect herbivores: an approach to collaborative international research in Papua New Guinea. In ‘Proceedings of the International Conference on Taxonomy and Biodiversity Conservation in East Asia’. (Eds B. H. Lee, J. C. Choe, H. Y. Han) pp. 112–125. (Korean Institute for Biodiversity Research of Chonbuk National University: Jeonju, Korea.)

Owen, J. C. (2011). Collecting, processing, and storing avian blood: a review. Journal of Field Ornithology 82, 339–354.
Collecting, processing, and storing avian blood: a review.Crossref | GoogleScholarGoogle Scholar |

Peirce, M. A., Adlard, R. D., and Lederer, R. (2005). A new species of Leucocytozoon Berestneff, 1904 (Apicomplexa: Leucocytozoidae) from the avian family Artamidae. Systematic Parasitology 60, 151–154.
A new species of Leucocytozoon Berestneff, 1904 (Apicomplexa: Leucocytozoidae) from the avian family Artamidae.Crossref | GoogleScholarGoogle Scholar | 15841351PubMed |

Pratt, T. K., and Beehler, B. M. (2014). ‘Birds of New Guinea.’ (Princeton University Press: Princeton, NJ.)

Pratt, T. K., Moore, M. P., Mitchell, D., and Viula, M. (2005). A bird survey of the Louisiade Islands, Milne Bay Province, Papua New Guinea, 24 October to 23 November 2004: report to The National Geographic Society. Grant 7624-04.

Reynolds, R. T., Scott, J. M., and Nussbaum, R. A. (1980). A variable circular-plot method for estimating bird numbers. The Condor 82, 309–313.
A variable circular-plot method for estimating bird numbers.Crossref | GoogleScholarGoogle Scholar |

Rinehart, J. B., and Kunz, T. H. (2001). Preparation and deployment of canopy mist nets made by Avinet. Bat Research News 42, 85–88.

Rothschild, L., and Hartert, E. (1918). Further notes on the birds of Sudest Island, or Tagula, in the Louisiade Group. Novitates Zoologicae 25, 313–326.
Further notes on the birds of Sudest Island, or Tagula, in the Louisiade Group.Crossref | GoogleScholarGoogle Scholar |

Russell, E., and Rowley, I. (2017). Hooded butcherbird (Cracticus cassicus). In ‘Handbook of the Birds of the World Alive’. (Eds J. Del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. De Juana.) Available at: https://www.hbw.com/species/hooded-butcherbird-cracticus-cassicus [accessed 14 June 2019].

Russell, E., Rowley, I., and Bonan, A. (2019). Butcherbirds (Cracticidae). In ‘Handbook of the Birds of the World Alive.’ (Eds J. Del Hoyo, A. Elliott, J. Sargatal, D. A. Christie, and E. De Juana.) Available at: https://www.hbw.com/node/52366 [accessed 14 June 2019].

Sæther, B. E., Engen, S., Moller, A. P., Visser, M. E., Matthysen, E., Fiedler, W., Lambrechts, M. M., Becker, P. H., Brommer, J. E., Dickinson, J., Du Feu, C., Gehlbach, F. R., Merila, J., Rendell, W., Robertson, R. J., Thomson, D., and Torok, J. (2005). Time to extinction of bird populations. Ecology 86, 693–700.
Time to extinction of bird populations.Crossref | GoogleScholarGoogle Scholar |

Sam, K., Koane, B., Jeppy, S., and Novotny, V. (2014). Effect of forest fragmentation on bird species richness in Papua New Guinea. Journal of Field Ornithology 85, 152–167.
Effect of forest fragmentation on bird species richness in Papua New Guinea.Crossref | GoogleScholarGoogle Scholar |

Sodhi, N. S., Liow, L. H., and Bazzaz, F. A. (2004). Avian extinctions from tropical and subtropical forests. Annual Review of Ecology Evolution and Systematics 35, 323–345.
Avian extinctions from tropical and subtropical forests.Crossref | GoogleScholarGoogle Scholar |

Thompson, W. L. (2002). Towards reliable bird surveys: accounting for individuals present but not detected. The Auk 119, 18–25.
Towards reliable bird surveys: accounting for individuals present but not detected.Crossref | GoogleScholarGoogle Scholar |

Tilman, D., May, R. M., Lehman, C. L., and Nowak, M. A. (1994). Habitat destruction and the extinction debt. Nature 371, 65–66.
Habitat destruction and the extinction debt.Crossref | GoogleScholarGoogle Scholar |

Tristram, H. B. (1889). On a small collection of birds from the Louisiade and d’Entrecasteaux Islands. The Ibis 31, 553–558.
On a small collection of birds from the Louisiade and d’Entrecasteaux Islands.Crossref | GoogleScholarGoogle Scholar |

van Riper, C., van Riper, S. G., Goff, M. L., and Laird, M. (1986). The epizootiology and ecological significance of malaria in Hawaiian land birds. Ecological Monographs 56, 327–344.
The epizootiology and ecological significance of malaria in Hawaiian land birds.Crossref | GoogleScholarGoogle Scholar |

van Schaik, C. P., Terborgh, J. W., and Wright, S. J. (1993). The phenology of tropical forests: adaptive significance and consequences for primary consumers. Annual Review of Ecology and Systematics 24, 353–377.
The phenology of tropical forests: adaptive significance and consequences for primary consumers.Crossref | GoogleScholarGoogle Scholar |

Williams, S. E., and Middleton, J. (2008). Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change. Diversity & Distributions 14, 69–77.
Climatic seasonality, resource bottlenecks, and abundance of rainforest birds: implications for global climate change.Crossref | GoogleScholarGoogle Scholar |