Register      Login
Emu Emu Society
Journal of BirdLife Australia
EDITORIAL

A quantum leap in avian biology

Leo Joseph A D and Katherine L. Buchanan B C
+ Author Affiliations
- Author Affiliations

A Australian National Wildlife Collection, CSIRO National Research Collections Australia, GPO Box 1700, Canberra, ACT 2601, Australia.

B Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Locked Bag 20000, Geelong, Vic. 3217, Australia.

C Editor, EmuAustral Ornithology.

D Corresponding author. Email: Leo.Joseph@csiro.au

Emu 115(1) 1-5 https://doi.org/10.1071/MUv115n1_ED
Published: 9 February 2015


References

Aberer, A., Stamatakis, A., Mirarab, S., Warnow, T., and Faircloth, B. C. (2014). Species tree and gene tree inferences using maximum likelihood. Supplementary Material SM4 to ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. (Jarvis et al. 2014a, Science 346, 1320–1331). Available at http://www.sciencemag.org/content/346/6215/1320/suppl/DC1 [Verified 12 January 2015].

Benton, M. J. (2010). The origins of modern biodiversity on land. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 365, 3667–3679.
The origins of modern biodiversity on land.Crossref | GoogleScholarGoogle Scholar |

Burleigh, J. G., Kimball, R. T., and Braun, E. L. (2015). Building the avian tree of life using a large-scale, sparse supermatrix Molecular Phylogenetics and Evolution 84, 53–63.
Building the avian tree of life using a large-scale, sparse supermatrixCrossref | GoogleScholarGoogle Scholar |

Callicrate, T., Dikow, R., Thomas, J. W, Mullikin, J. C, Jarvis, E. D., Fleischer, R. C., NISC Comparative Sequencing Program (2014). Genomic resources for the endangered Hawaiian honeycreepers. BMC Genomics 15, 1098.
Genomic resources for the endangered Hawaiian honeycreepers.Crossref | GoogleScholarGoogle Scholar |

Crawford, N. G., Parham, J. F., Sellas, A. B., Faircloth, B. C., Glenn, T. C., Papenfuss, T. J., Henderson, J. B., Hansen, M. H., and Simison, W. B. (2015). A phylogenomic analysis of turtles. Molecular Phylogenetics and Evolution 83, 250–257.
A phylogenomic analysis of turtles.Crossref | GoogleScholarGoogle Scholar |

Cui, J., Zhao, W., Huang, Z., Jarvis, E. D., Gilbert, M. T. P., Walker, P. J., Holmes, E. C., and Zhang, G. (2014). Low frequency of paleoviral infiltration across the avian phylogeny. Genome Biology 15, 539.
Low frequency of paleoviral infiltration across the avian phylogeny.Crossref | GoogleScholarGoogle Scholar |

Ericson, P. (2012). Evolution of terrestrial birds in three continents: biogeography and parallel radiations. Journal of Biogeography 39, 813–824.
Evolution of terrestrial birds in three continents: biogeography and parallel radiations.Crossref | GoogleScholarGoogle Scholar |

Greenwold, M. J., Bao, W., Jarvis, E. D., Hu, H., Cai, L., Gilbert, M. T. P., Zhang, G., and Sawyer, R. H. (2014). Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evolutionary Biology 14, 249.
Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles.Crossref | GoogleScholarGoogle Scholar |

Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, W. A., et al (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768.
A phylogenomic study of birds reveals their evolutionary history.Crossref | GoogleScholarGoogle Scholar |

Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Ho, S. Y. W., Faircloth, B. C., Nabholz, B., et al (2014a). Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346, 1320–1331.
Whole-genome analyses resolve early branches in the tree of life of modern birds.Crossref | GoogleScholarGoogle Scholar |

Jarvis, E. D., Gilbert, M. T. P., Zhang, G., Howard, J., Fjeldså, J., Jønsson, K. A., Orlando, L., Bertelsen, M., et al (2014b). Rationale for selection of species, sex, tissue sources, and bird collection details. Supplementary Material SM1 to ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. (Jarvis et al. 2014a, Science 346, 1320–1331). Available at www.sciencemag.org/content/346/6215/1320/suppl/DC1 [Verified 12 January 2015]. , . [Verified 12 January 2015].&title=&date=2014&volume=&spage=&epage=&sid=csiro&aulast=Jarvis&aufirst=E. D." target="_blank" rel="nofollow noopener noreferrer" >open url image1

Kress, W. J. (2014). Valuing collections. Science 346, 1310.
Valuing collections.Crossref | GoogleScholarGoogle Scholar |

Li, B., Jarvis, E. D., Li, C., Zhang, G., Faircloth, B. C., and Mello, C. (2014). Identification and annotation of total evidence nucleotide and whole genome datasets. Supplementary Material SM2 to ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. (Jarvis et al. 2014a, Science 346, 1320–1331). Available at www.sciencemag.org/content/346/6215/1320/suppl/DC1 [Verified 12 January 2014].

Li, C., Zhang, Y., Li, J., Kong, L., Hu, H.,, Pan, H., Xu, L., Deng, Y., et al (2014). Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment. GigaScience 3, 27.
Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment.Crossref | GoogleScholarGoogle Scholar |

Li, S., Li, N., Cheng, C., Xiong, Z., Liu, Q., et al (2014). Genomic signatures of near-extinction and rebirth of the Crested Ibis and other endangered bird species. Genome Biology 15, 557.
Genomic signatures of near-extinction and rebirth of the Crested Ibis and other endangered bird species.Crossref | GoogleScholarGoogle Scholar |

Lovell, P. V., Wirthlin, M., Wilhelm, L., Minx, P., Lazar, N. H., Carbone, L., Warren, W. C., and Mello, C. V. (2014). Conserved syntenic clusters of protein coding genes are missing in birds. Genome Biology 15, 565.
Conserved syntenic clusters of protein coding genes are missing in birds.Crossref | GoogleScholarGoogle Scholar |

Mayr, G. (2008). Avian higher-level phylogeny: well-supported clades and what we can learn from a phylogenetic analysis of 2954 morphological characters. Journal of Zoological Systematics and Evolutionary Research 46, 63–72.

Meredith, R. W, Zhang, G, Gilbert, M. T. P, Jarvis, E. D., and Springer, M. S. (2014). Evidence for a single loss of mineralized teeth in the common avian ancestor Science 346, 1336.
Evidence for a single loss of mineralized teeth in the common avian ancestorCrossref | GoogleScholarGoogle Scholar |

Mirarab, S., Warnow, T., Shamsuzzoha Bayzid, Md., Boussau, B., Liu, L., and Edwards, S. (2014a). Species tree inference using multispecies coalescence. Supplementary Material SM5 to ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. (Jarvis et al. 2014a, Science 346, 1320–1331). Available at www.sciencemag.org/content/346/6215/1320/suppl/DC1 [Verified 12 January 2015].

Mirarab, S., Warnow, T., da Fonseca, R., Gilbert, M. T. P., Li, C., Zhang, G., Faircloth, B. C., and Jarvis, E. D. (2014b). Alignments and their filtering. Supplementary Material SM3 to ‘Whole-genome analyses resolve early branches in the tree of life of modern birds’. (Jarvis et al. 2014a, Science 346, 1320–1331). Available at www.sciencemag.org/content/346/6215/1320/suppl/DC1 [Verified 12 January 2015].

Mirarab, S, Shamsuzzoha Bayzid, Md, Boussau, B, and Warnow, T. (2014c). Statistical binning enables an accurate coalescent-based estimation of the avian tree Science 346, 1250463.
Statistical binning enables an accurate coalescent-based estimation of the avian treeCrossref | GoogleScholarGoogle Scholar |

Misof, B., Liu, S., Meusemann, K., Peters, R. S., Donath, A., Mayer, C., Frandsen, P. B., Ware, J., et al (2014). Phylogenomics resolves the timing and pattern of insect evolution Science 346, 763–767.
Phylogenomics resolves the timing and pattern of insect evolutionCrossref | GoogleScholarGoogle Scholar |

Pfenning, A. R., Hara, E., Whitney, O., Rivas, M. V., Wang, R., Roulhac, P. L., Howard, J. T., Wirthlin, M., et al (2014). Convergent transcriptional specializations in the brains of humans and song-learning birds Science 346, 1256846.
Convergent transcriptional specializations in the brains of humans and song-learning birdsCrossref | GoogleScholarGoogle Scholar |

Romanov, M. N., Farré, M., Lithgow, P. E., Fowler, K. E., Skinner, B. M., O’Connor, R., Fonseka, G., Backström, N., et al (2014). Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor. BMC Genomics 15, 1060.
Reconstruction of gross avian genome structure, organization and evolution suggests that the chicken lineage most closely resembles the dinosaur avian ancestor.Crossref | GoogleScholarGoogle Scholar |

Smith, B. T., Harvey, M. G., Faircloth, B. C., Glenn, T. C., and Brumfield, R. T. (2014). Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales. Systematic Biology 63, 83–95.
Target capture and massively parallel sequencing of ultraconserved elements for comparative studies at shallow evolutionary time scales.Crossref | GoogleScholarGoogle Scholar |

Weber, C. C., Boussau, B., Romiguier, J., Jarvis, E. D., and Ellegren, H. (2014a). Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition. Genome Biology 15, 549.
Evidence for GC-biased gene conversion as a driver of between-lineage differences in avian base composition.Crossref | GoogleScholarGoogle Scholar |

Weber, C. C., Nabholz, B., Romiguier, J., and Ellegren, H. (2014b). Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection. Genome Biology 15, 542.
Kr/Kc but not dN/dS correlates positively with body mass in birds, raising implications for inferring lineage-specific selection.Crossref | GoogleScholarGoogle Scholar |

Whitney, O., Pfenning, A. R., Howard, J. T., Blatti, C. A., Liu, F., Ward, J. W., Wang, R., Audet, J.-N., et al (2014). Core and region-enriched networks of behaviorally regulated genes and the singing genome. Science 346, 1256780.
Core and region-enriched networks of behaviorally regulated genes and the singing genome.Crossref | GoogleScholarGoogle Scholar |

Wirthlin, M., Lovell, P. V., Jarvis, E. D., and Mello, C. V. (2014). Comparative genomics reveals molecular features unique to the songbird lineage. BMC Genomics 15, 1082.
Comparative genomics reveals molecular features unique to the songbird lineage.Crossref | GoogleScholarGoogle Scholar |

Xu, X., Zhou, Z., Dudley, R., Mackem, S., Chuong, C.-M., Erickson, G. M., and Varricchio, D. J. (2014). An integrative approach to understanding bird origins. Science 346, 1253293.
An integrative approach to understanding bird origins.Crossref | GoogleScholarGoogle Scholar |

Zhang, G., Jarvis, E. D., and Gilbert, M. T. P. (2014a). A flock of genomes. Science 346, 1308–1309.
A flock of genomes.Crossref | GoogleScholarGoogle Scholar |

Zhang, G., Li, B., Li, C., Gilbert, M. T. P., Jarvis, E. D., Wang, J., The Avian Genome Consortium. (2014b). Comparative genomic data of the Avian Phylogenomics Project. GigaScience 3, 26.
Comparative genomic data of the Avian Phylogenomics Project.Crossref | GoogleScholarGoogle Scholar |

Zhang, G., Li, C., Li, Q., Li, B., Larkin, D. M., Lee, C., Storz, J. F., Antunes, A., et al (2014c). Comparative genomics reveals insights into avian genome evolution and adaptation. Science 346, 1311–1320.
Comparative genomics reveals insights into avian genome evolution and adaptation.Crossref | GoogleScholarGoogle Scholar |

Zhou, Q., Zhang, J., Bachtrog, D., An, N., Huang, Q., Jarvis, E. D., Gilbert, M. T. P., and Zhang, G. (2014). Complex evolutionary trajectories of sex chromosomes across bird taxa. Science 346, 1246338.
Complex evolutionary trajectories of sex chromosomes across bird taxa.Crossref | GoogleScholarGoogle Scholar |