Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

Relative brain size in Australian birds

Donald C. Franklin A E , Stephen T. Garnett A , Gary W. Luck B , Cristian Gutierrez-Ibanez C and Andrew N. Iwaniuk D
+ Author Affiliations
- Author Affiliations

A Research Institute for the Environment & Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

B Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia.

C Centre for Neuroscience, University of Alberta, Edmonton, AB, T6G 2E9, Canada.

D Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.

E Corresponding author. Email: don.franklin@cdu.edu.au

Emu 114(2) 160-170 https://doi.org/10.1071/MU13034
Submitted: 2 May 2013  Accepted: 9 September 2013   Published: 25 March 2014

Abstract

Among species, relative brain size (RBS) is correlated with aspects of ecology and behaviour. We analysed patterns of RBS in Australian birds based on 3164 measurements of brain size in 504 species, and provide species-level data for further analysis. Regression slopes calculated both with and without phylogenetic correction are provided for all species and for well-represented orders and passerine families. Patterns of brain-size allometry differ among orders but the evidence for variation among passerine families is equivocal, depending on the method of analysis. These differences are attributable both to absolute differences in RBS corresponding to different regression intercepts and to different regression slopes. Allometric patterns in Australian birds are virtually identical to those reported elsewhere, with large RBS in parrots, cockatoos and owls, and particularly small RBS in galliforms, dromaiids, grebes, swifts and swallows. Our data can be used to generate hypotheses about the drivers of RBS in particular avian groups. For example, small RBS in unrelated aerial foragers suggests that physical constraints may influence the evolution of RBS.


References

Barker, F. K., Cibois, A., Schikler, P., Feinstein, J., and Cracraft, J. (2004). Phylogeny and diversification of the largest avian radiation. Proceedings of the National Academy of Sciences of the United States of America 101, 11040–11045.
Phylogeny and diversification of the largest avian radiation.Crossref | GoogleScholarGoogle Scholar | 15263073PubMed |

Bennett, P. M., and Harvey, P. H. (1985). Relative brain size and ecology in birds. Journal of Zoology 207, 151–169.
Relative brain size and ecology in birds.Crossref | GoogleScholarGoogle Scholar |

Burish, M. J., Kueh, H. Y., and Wang, S. S.-H. (2004). Brain architecture and social complexity in modern and ancient birds. Brain, Behavior and Evolution 63, 107–124.
Brain architecture and social complexity in modern and ancient birds.Crossref | GoogleScholarGoogle Scholar | 14685004PubMed |

Carrete, M., and Tella, J. L. (2011). Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds. PLoS ONE 6, e18859.
Inter-individual variability in fear of humans and relative brain size of the species are related to contemporary urban invasion in birds.Crossref | GoogleScholarGoogle Scholar | 21526193PubMed |

Chesser, R. T., and ten Have, J. (2007). On the phylogenetic position of the scrub-birds (Passeriformes : Menuridae : Atrichornithidae) of Australia. Journal of Ornithology 148, 471–476.
On the phylogenetic position of the scrub-birds (Passeriformes : Menuridae : Atrichornithidae) of Australia.Crossref | GoogleScholarGoogle Scholar |

Christidis, L., and Boles, W. E. (2008). ‘Systematics and Taxonomy of Australian Birds.’ (CSIRO Publishing: Melbourne.)

Christidis, L., Irestedt, M., Rowe, D., Boles, W. E., and Norman, J. A. (2011). Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes : Petroicidae). Molecular Phylogenetics and Evolution 61, 726–738.
Mitochondrial and nuclear DNA phylogenies reveal a complex evolutionary history in the Australasian robins (Passeriformes : Petroicidae).Crossref | GoogleScholarGoogle Scholar | 21867765PubMed |

Cockburn, A. (2003). Cooperative breeding in oscine passerines: does sociality inhibit speciation? Proceedings of the Royal Society – B. Biological Sciences 270, 2207–2214.
Cooperative breeding in oscine passerines: does sociality inhibit speciation?Crossref | GoogleScholarGoogle Scholar |

Davey, C. M., Chamberlain, D. E., Newson, S. E., Noble, D. G., and Johnston, A. (2012). Rise of the generalists: evidence for climate driven homogenization in avian communities. Global Ecology and Biogeography 21, 568–578.
Rise of the generalists: evidence for climate driven homogenization in avian communities.Crossref | GoogleScholarGoogle Scholar |

Dawson, T. P., Jackson, S. T., House, J. I., Prentice, I. C., and Mace, G. M. (2011). Beyond predictions: biodiversity conservation in a changing climate. Science 332, 53–58.
Beyond predictions: biodiversity conservation in a changing climate.Crossref | GoogleScholarGoogle Scholar | 21454781PubMed |

Day, L. B., Westcott, D. A., and Olster, D. H. (2005). Evolution of bower complexity and cerebellum size in bowerbirds. Brain, Behavior and Evolution 66, 62–72.
Evolution of bower complexity and cerebellum size in bowerbirds.Crossref | GoogleScholarGoogle Scholar | 15855743PubMed |

Dunbar, R. I. M. (1992). Neocortex size as a constraint on group size in primates. Journal of Human Evolution 22, 469–493.
Neocortex size as a constraint on group size in primates.Crossref | GoogleScholarGoogle Scholar |

Edwards, S. V., and Naeem, S. (1993). The phylogenetic component of cooperative breeding in perching birds. American Naturalist 141, 754–789.
The phylogenetic component of cooperative breeding in perching birds.Crossref | GoogleScholarGoogle Scholar | 19426009PubMed |

Emery, N. J., and Clayton, N. S. (2004). The mentality of crows: convergent evolution of intelligence in corvids and apes. Science 306, 1903–1907.
The mentality of crows: convergent evolution of intelligence in corvids and apes.Crossref | GoogleScholarGoogle Scholar | 15591194PubMed |

Emery, N. J., Seed, A. M., von Bayern, A. M. P., and Clayton, N. S. (2007). Cognitive adaptations of social bonding in birds. Philosophical Transactions of the Royal Society – B. Biological Sciences 362, 489–505.
Cognitive adaptations of social bonding in birds.Crossref | GoogleScholarGoogle Scholar |

Fjeldså, J. (2004). ‘The Grebes.’ (Oxford University Press: Oxford, UK.)

Gardner, J. L., Trueman, J. W. H., Ebert, D., Joseph, L., and Magrath, R. D. (2010). Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds. Molecular Phylogenetics and Evolution 55, 1087–1102.
Phylogeny and evolution of the Meliphagoidea, the largest radiation of Australasian songbirds.Crossref | GoogleScholarGoogle Scholar | 20152917PubMed |

Garland, T., and Ives, A. R. (2000). Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods. American Naturalist 155, 346–364.
Using the past to predict the present: confidence intervals for regression equations in phylogenetic comparative methods.Crossref | GoogleScholarGoogle Scholar |

Garland, T., Harvey, P. H., and Ives, A. R. (1992). Procedures for the analysis of comparative data using phylogenetically independent contrasts. Systematic Biology 41, 18–32.

Garnett, S. T., and Franklin, D. C. (Eds) (In press). ‘Climate Change Adaptation Plan for Australian Birds.’ (CSIRO Publishing: Melbourne.)

Gonzalez, J., Duttmann, H., and Wink, M. (2009). Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae. Journal of Zoology 279, 310–318.
Phylogenetic relationships based on two mitochondrial genes and hybridization patterns in Anatidae.Crossref | GoogleScholarGoogle Scholar |

Graber, S., Van Schaik, C. P., and Isler, K. (2012). Cooperative breeding and hominin brain size evolution: evidence from a comparative study in birds. American Journal of Physical Anthropology 147, 154.

Hackett, S. J., Kimball, R. T., Reddy, S., Bowie, R. C. K., Braun, E. L., Braun, M. J., Chojnowski, J. L., Cox, A., Han, K.-L., Harshman, J., Huddleston, C. J., Marks, B. D., Miglia, K. J., Moore, W. S., Sheldon, F. H., Steadman, D. W., Witt, C. C., and Yuri, T. (2008). A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768.
| 18583609PubMed |

Harvey, P. H., and Pagel, M. D. (1991). ‘The Comparative Method in Evolutionary Biology.’ (Oxford University Press: Oxford, UK.)

Healy, S. D., and Rowe, C. (2007). A critique of comparative studies of brain size. Proceedings of the Royal Society – B. Biological Sciences 274, 453–464.
A critique of comparative studies of brain size.Crossref | GoogleScholarGoogle Scholar |

Higgins, P. J. (Ed.) (1999). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 4. Parrots to Dollarbird.’ (Oxford University Press: Melbourne.)

Higgins, P. J., and Davies, S. J. J. F. (Eds) (1996). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 3. Snipe to Pigeons.’ (Oxford University Press: Melbourne.)

Higgins, P. J., and Peter, J. M. (Eds) (2002) ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 6. Pardalotes to shrike-thrushes.’ (Oxford University Press: South Melbourne.)

Higgins, P. J., Peter, J. M., and Steele, W. K. (Eds) (2001). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 5. Tyrant-flycatchers to Chats.’ (Oxford University Press: South Melbourne.)

Higgins, P. J., Peter, J. M., and Cowling, S. J. (Eds) (2006). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 7. Boatbill to Starlings.’ (Oxford University Press: South Melbourne.)

Irestedt, M., Jønsson, K. A., Fjeldså, J., Christidis, L., and Ericson, P. G. P. (2009). An unexpectedly long history of sexual selection in birds-of-paradise. BMC Evolutionary Biology 9, 235.
An unexpectedly long history of sexual selection in birds-of-paradise.Crossref | GoogleScholarGoogle Scholar | 19758445PubMed |

Isler, K., and van Schaik, C. P. (2009). The expensive brain: a framework for explaining evolutionary changes in brain size. Journal of Human Evolution 57, 392–400.
The expensive brain: a framework for explaining evolutionary changes in brain size.Crossref | GoogleScholarGoogle Scholar | 19732937PubMed |

Iwaniuk, A. N., and Arnold, K. E. (2004). Is cooperative breeding associated with bigger brains? A comparative test in the Corvida (Passeriformes). Ethology 110, 203–220.
Is cooperative breeding associated with bigger brains? A comparative test in the Corvida (Passeriformes).Crossref | GoogleScholarGoogle Scholar |

Iwaniuk, A. N., and Nelson, J. E. (2002). Can endocranial volumes be used as reliable estimates of brain size in birds? Canadian Journal of Zoology 80, 16–23.
Can endocranial volumes be used as reliable estimates of brain size in birds?Crossref | GoogleScholarGoogle Scholar |

Iwaniuk, A. N., and Nelson, J. E. (2003). Developmental differences are correlated with relative brain size in birds: a comparative analysis. Canadian Journal of Zoology 81, 1913–1928.
Developmental differences are correlated with relative brain size in birds: a comparative analysis.Crossref | GoogleScholarGoogle Scholar |

Iwaniuk, A. N., Dean, K. M., and Nelson, J. E. (2004a). A mosaic pattern characterizes the evolution of the avian brain. Proceedings of the Royal Society – B. Biological Sciences 271, S148–S151.
A mosaic pattern characterizes the evolution of the avian brain.Crossref | GoogleScholarGoogle Scholar |

Iwaniuk, A. N., Nelson, J. E., James, H. F., and Olson, S. L. (2004b). A comparative test of the correlated evolution of flightlessness and relative brain size in birds. Journal of Zoology 263, 317–327.
A comparative test of the correlated evolution of flightlessness and relative brain size in birds.Crossref | GoogleScholarGoogle Scholar |

Iwaniuk, A. N., Dean, K. M., and Nelson, J. E. (2005). Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates. Brain, Behavior and Evolution 65, 40–59.
Interspecific allometry of the brain and brain regions in parrots (Psittaciformes): comparisons with other birds and primates.Crossref | GoogleScholarGoogle Scholar | 15467290PubMed |

Jolicoeur, P. (1973). Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment. Journal of the American Statistical Association 68, 866–871.
Imaginary confidence limits of the slope of the major axis of a bivariate normal distribution: a sampling experiment.Crossref | GoogleScholarGoogle Scholar |

Jønsson, K. A., Bowie, R. C. K., Nylander, J. A. A., Christidis, L., Norman, J. A., and Fjeldså, J. (2010a). Biogeographical history of cuckoo-shrikes (Aves : Passeriformes): transoceanic colonization of Africa from Australo-Papua. Journal of Biogeography 37, 1767–1781.
Biogeographical history of cuckoo-shrikes (Aves : Passeriformes): transoceanic colonization of Africa from Australo-Papua.Crossref | GoogleScholarGoogle Scholar |

Jønsson, K. A., Bowie, R. C. K., Moyle, R. G., Christidis, L., Norman, J. A., Benz, B. W., and Fjeldså, J. (2010b). Historical biogeography of an Indo-Pacific passerine bird family (Pachycephalidae): different colonization patterns in the Indonesian and Melanesian archipelagos. Journal of Biogeography 37, 245–257.
Historical biogeography of an Indo-Pacific passerine bird family (Pachycephalidae): different colonization patterns in the Indonesian and Melanesian archipelagos.Crossref | GoogleScholarGoogle Scholar |

Kark, S., Iwaniuk, A., Schalimtzek, A., and Banker, E. (2007). Living in the city: can anyone become an ‘urban exploiter’? Journal of Biogeography 34, 638–651.
Living in the city: can anyone become an ‘urban exploiter’?Crossref | GoogleScholarGoogle Scholar |

Kearns, A. M., Joseph, L., and Cook, L. G. (2013). A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies. Molecular Phylogenetics and Evolution 66, 941–952.
A multilocus coalescent analysis of the speciational history of the Australo-Papuan butcherbirds and their allies.Crossref | GoogleScholarGoogle Scholar | 23219707PubMed |

Kennedy, M., and Page, R. D. M. (2002). Seabird supertrees: combining partial estimates of procellariiform phylogeny. Auk 119, 88–108.

Kennedy, M., Valle, C. A., and Spencer, H. G. (2009). The phylogenetic position of the Galapagos Cormorant. Molecular Phylogenetics and Evolution 53, 94–98.
The phylogenetic position of the Galapagos Cormorant.Crossref | GoogleScholarGoogle Scholar | 19523526PubMed |

Kusmierski, R., Borgia, G., Uy, A., and Crozier, R. H. (1997). Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint. Proceedings of the Royal Society – B. Biological Sciences 264, 307–313.
Labile evolution of display traits in bowerbirds indicates reduced effects of phylogenetic constraint.Crossref | GoogleScholarGoogle Scholar |

Lefebvre, L. (2011). Taxonomic counts of cognition in the wild. Biology Letters 7, 631–633.
Taxonomic counts of cognition in the wild.Crossref | GoogleScholarGoogle Scholar | 20719769PubMed |

Lerner, H. R. L., and Mindell, D. P. (2005). Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution 37, 327–346.
Phylogeny of eagles, Old World vultures, and other Accipitridae based on nuclear and mitochondrial DNA.Crossref | GoogleScholarGoogle Scholar |

Madden, J. (2001). Sex, bowers and brains. Proceedings of the Royal Society – B. Biological Sciences 268, 833–838.
Sex, bowers and brains.Crossref | GoogleScholarGoogle Scholar |

Maddison, W. P., and Maddison, D. R. (2011). Mesquite: A Modular System for Evolutionary Analysis. Version 2.75. Available at http://mesquiteproject.org [Verified 9 November 2013].

Maklakov, A. A., Immler, S., Gonzalez-Voyer, A., Ronn, J., and Kolm, N. (2011). Brains and the city: big-brained passerine birds succeed in urban environments. Biology Letters 7, 730–732.
Brains and the city: big-brained passerine birds succeed in urban environments.Crossref | GoogleScholarGoogle Scholar | 21525053PubMed |

Marchant, S., and Higgins, P. J. (Eds) (1990). ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 1. Ratites to Ducks.’ (Oxford University Press: Melbourne.)

Marchant, S., and Higgins, P. J. (Eds) (1993) ‘Handbook of Australian, New Zealand & Antarctic Birds. Vol. 2. Raptors to lapwings.’ (Oxford University Press: Melbourne.)

McCracken, K. G., and Sheldon, F. H. (1998). Molecular and osteological heron phylogenies: sources of incongruence. Auk 115, 127–141.
Molecular and osteological heron phylogenies: sources of incongruence.Crossref | GoogleScholarGoogle Scholar |

Midford, P. E., Garland, T. H., and Maddison, W. (2008). PDAP:PDTREE package for Mesquite, v1.12. Available at http://mesquiteproject.org/pdap_mesquite/ [Verified 10 April 2013].

Moussus, J.-P., Clavel, J., Jiguet, F., and Julliard, R. (2011). Which are the phenologically flexible species? A case study with common passerine birds. Oikos 120, 991–998.
Which are the phenologically flexible species? A case study with common passerine birds.Crossref | GoogleScholarGoogle Scholar |

Moyle, R. G. (2006). A molecular phylogeny of kingfishers (Alcedinidae) with insights into early biogeographic history. Auk 123, 487–499.
A molecular phylogeny of kingfishers (Alcedinidae) with insights into early biogeographic history.Crossref | GoogleScholarGoogle Scholar |

Nealen, P. M., and Ricklefs, R. E. (2001). Early diversification of the avian brain : body relationship. Journal of Zoology 253, 391–404.
Early diversification of the avian brain : body relationship.Crossref | GoogleScholarGoogle Scholar |

Nyári, A. S., and Joseph, L. (2011). Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and the historical development of Australo-Papuan bird communities. Emu 111, 202–211.
Systematic dismantlement of Lichenostomus improves the basis for understanding relationships within the honeyeaters (Meliphagidae) and the historical development of Australo-Papuan bird communities.Crossref | GoogleScholarGoogle Scholar |

Ovenden, J. R., Mackinlay, A. G., and Crozier, R. H. (1987). Systematics and mitochondrial genome evolution of Australian rosellas (Aves : Platycercidae). Molecular Biology and Evolution 4, 526–543.

Pagel, M. (1999). Inferring the historical patterns of biological evolution. Nature 401, 877–884.
Inferring the historical patterns of biological evolution.Crossref | GoogleScholarGoogle Scholar | 10553904PubMed |

Pagel, M. D., and Harvey, P. H. (1988). The taxon-level problem in the evolution of mammalian brain size: facts and artifacts. American Naturalist 132, 344–359.
The taxon-level problem in the evolution of mammalian brain size: facts and artifacts.Crossref | GoogleScholarGoogle Scholar |

Paradis, E., Claude, J., and Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290.
APE: analyses of phylogenetics and evolution in R language.Crossref | GoogleScholarGoogle Scholar | 14734327PubMed |

Pereira, S. L., Johnson, K. P., Clayton, D. H., and Baker, A. J. (2007). Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene. Systematic Biology 56, 656–672.
Mitochondrial and nuclear DNA sequences support a Cretaceous origin of Columbiformes and a dispersal-driven radiation in the Paleogene.Crossref | GoogleScholarGoogle Scholar | 17661233PubMed |

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., and R Development Core Team (2013). nlme: Linear and Nonlinear Mixed Effects Models. R package Version 3.1–109. (The R Project for Statistical Computing: Vienna, Austria.) Available at http://www.r-project.org/ [Verified 8 February 2013].

Pravosudov, V. V., Sanford, K., and Hahn, T. P. (2007). On the evolution of brain size in relation to migratory behaviour in birds. Animal Behaviour 73, 535–539.
On the evolution of brain size in relation to migratory behaviour in birds.Crossref | GoogleScholarGoogle Scholar | 18311316PubMed |

Raerinne, J. P. (2013). Explanatory, predictive, and heuristic roles of allometries and scaling relationships. Bioscience 63, 191–198.
Explanatory, predictive, and heuristic roles of allometries and scaling relationships.Crossref | GoogleScholarGoogle Scholar |

Reif, J., Böhning-Gaese, K., Flade, M., Schwarz, J., and Schwager, M. (2011). Population trends of birds across the iron curtain: brain matters. Biological Conservation 144, 2524–2533.

Revell, L. J. (2012). phytools: an R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217–223.
phytools: an R package for phylogenetic comparative biology (and other things).Crossref | GoogleScholarGoogle Scholar |

Ricklefs, R. E. (2004). The cognitive face of avian life histories – the 2003 Margaret Morse Nice Lecture. Wilson Bulletin 116, 119–133.
The cognitive face of avian life histories – the 2003 Margaret Morse Nice Lecture.Crossref | GoogleScholarGoogle Scholar |

Schuck-Paim, C., Alonso, W. J., and Ottoni, E. B. (2008). Cognition in an ever-changing world: climatic variability is associated with brain size in Neotropical parrots. Brain, Behavior and Evolution 71, 200–215.
Cognition in an ever-changing world: climatic variability is associated with brain size in Neotropical parrots.Crossref | GoogleScholarGoogle Scholar | 18322361PubMed |

Sol, D., Timmermans, S., and Lefebvre, L. (2002). Behavioural flexibility and invasion success in birds. Animal Behaviour 63, 495–502.
Behavioural flexibility and invasion success in birds.Crossref | GoogleScholarGoogle Scholar |

Sol, D., Duncan, R. P., Blackburn, T. M., Cassey, P., and Lefebvre, L. (2005a). Big brains, enhanced cognition, and response of birds to novel environments. Proceedings of the National Academy of Sciences of the United States of America 102, 5460–5465.
Big brains, enhanced cognition, and response of birds to novel environments.Crossref | GoogleScholarGoogle Scholar | 15784743PubMed |

Sol, D., Lefebvre, K., and Rodriguez-Teijeiro, J. D. (2005b). Brain size, innovative propensity and migratory behaviour in temperate Palearctic birds. Proceedings of the Royal Society – B. Biological Sciences 272, 1433–1441.
Brain size, innovative propensity and migratory behaviour in temperate Palearctic birds.Crossref | GoogleScholarGoogle Scholar |

Sol, D., Székely, T., Liker, A., and Lefebvre, L. (2007). Big-brained birds survive better in nature. Proceedings of the Royal Society – B. Biological Sciences 274, 763–769.
Big-brained birds survive better in nature.Crossref | GoogleScholarGoogle Scholar |

Sol, D., Bacher, S., Reader, S. M., and Lefebvre, L. (2008). Brain size predicts the success of mammal species introduced into novel environments. American Naturalist 172, S63–S71.
Brain size predicts the success of mammal species introduced into novel environments.Crossref | GoogleScholarGoogle Scholar | 18554145PubMed |

Sol, D., Garcia, N., Iwaniuk, A., Davis, K., Meade, A., Boyle, W. A., and Székely, T. (2010). Evolutionary divergence in brain size between migratory and resident birds. PLoS ONE 5, e9617.
Evolutionary divergence in brain size between migratory and resident birds.Crossref | GoogleScholarGoogle Scholar | 20224776PubMed |

Sorenson, M. D., and Payne, R. B. (2005). A molecular genetic analysis of cuckoo phylogeny. In ‘The Cuckoos’. (Ed. R. B. Payne.) pp. 68–94. (Oxford University Press: Oxford, UK.)

Sorenson, M. D., Balakrishnan, C. N., and Payne, R. B. (2004). Clade-limited colonization in brood-parasitic finches (Vidua spp.). Systematic Biology 53, 140–153.
Clade-limited colonization in brood-parasitic finches (Vidua spp.).Crossref | GoogleScholarGoogle Scholar | 14965909PubMed |

StatSoft Inc. (2012‘Statistica 11.’ (StatSoft Inc.: Tulsa.)). , .
| 24652954PubMed |

Thomas, G. H., Wills, M. A., and Szekely, T. (2004). A supertree approach to shorebird phylogeny. BMC Evolutionary Biology 4, 28.
A supertree approach to shorebird phylogeny.Crossref | GoogleScholarGoogle Scholar | 15329156PubMed |

Vall-llosera, M., and Sol, D. (2009). A global risk assessment for the success of bird introductions. Journal of Applied Ecology 46, 787–795.
A global risk assessment for the success of bird introductions.Crossref | GoogleScholarGoogle Scholar |

White, N. E., Phillips, M. J., Gilbert, M. T. P., Alfaro-Nunez, A., Willerslev, E., Mawson, P. R., Spencer, P. B. S., and Bunce, M. (2011). The evolutionary history of cockatoos (Aves : Psittaciformes : Cacatuidae). Molecular Phylogenetics and Evolution 59, 615–622.
The evolutionary history of cockatoos (Aves : Psittaciformes : Cacatuidae).Crossref | GoogleScholarGoogle Scholar | 21419232PubMed |

Williams, S. E., Shoo, L. P., Isaac, J. L., Hoffmann, A. A., and Langham, G. (2008). Towards an integrated framework for assessing the vulnerability of species to climate change. PLoS Biology 6, e325.
Towards an integrated framework for assessing the vulnerability of species to climate change.Crossref | GoogleScholarGoogle Scholar |

Wink, M., El-Sayed, A.-A., Sauer-Gürth, H., and Gonzalez, J. (2009). Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome b and the nuclear RAG-1 gene. Ardea 97, 581–591.
Molecular phylogeny of owls (Strigiformes) inferred from DNA sequences of the mitochondrial cytochrome b and the nuclear RAG-1 gene.Crossref | GoogleScholarGoogle Scholar |

Winkler, H., Leisler, B., and Bernroider, G. (2004). Ecological constraints on the evolution of avian brains. Journal of Ornithology 145, 238–244.
Ecological constraints on the evolution of avian brains.Crossref | GoogleScholarGoogle Scholar |

Wright, T. F., Schirtzinger, E. E., Matsumoto, T., Eberhard, J. R., Graves, G. R., Sanchez, J. J., Capelli, S., Muller, H., Scharpegge, J., Chambers, G. K., and Fleischer, R. C. (2008). A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous. Molecular Biology and Evolution 25, 2141–2156.
A multilocus molecular phylogeny of the parrots (Psittaciformes): support for a Gondwanan origin during the Cretaceous.Crossref | GoogleScholarGoogle Scholar | 18653733PubMed |