Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Emu Emu Society
Journal of BirdLife Australia
RESEARCH ARTICLE

The historical frequency of head-colour morphs in the Gouldian Finch (Erythrura gouldiae)

Amanda J. Gilby A , Sarah R. Pryke A and Simon C. Griffith A B
+ Author Affiliations
- Author Affiliations

A Department of Brain, Behaviour and Evolution, Macquarie University, NSW 2109, Australia.

B Corresponding author. Email: simon.griffith@mq.edu.au

Emu 109(3) 222-229 https://doi.org/10.1071/MU09013
Submitted: 18 February 2009  Accepted: 22 May 2009   Published: 17 August 2009

Abstract

The endangered Gouldian Finch (Erythura gouldiae) possesses a genetic colour polymorphism in the form of three genetically determined head-colours (yellow, black and red) that coexist in the same population. The spatial and temporal pattern of morph ratios within this species provides insight into the selective pressures acting on and maintaining the different forms. To investigate spatial and temporal patterns in the relative historical abundance of the different Gouldian Finch morphs, we surveyed museum collections around the world, identifying 614 wild-caught skins and obtaining accurate data on the morphs of 552 of these. The yellow morph was found at very low numbers (only 15 skins), consistent with its rarity in contemporary populations. Red- and black-morph individuals were found at relatively constant ratios across the geographical range over which they were sampled, and across the 140-year period during which these skins were collected, although this differed slightly for males and females (males: 62.6% black, 37.4% red; females: 79.1% black, 20.9% red). Spatial and temporal stability in the frequency of alternative morphs is extremely rare. These results suggest that the genetic architecture underlying the trait and selective pressures acting on the separate morphs of the Gouldian Finch differ between the sexes, but are fairly constant across highly variable environmental conditions.


Acknowledgements

We thank all of the collection curators who kindly provided the data on which the study is based, and Don Franklin for allowing us to reproduce his raw data in Fig. 4. We also thank two anonymous reviewers for their comments on a previous version of the manuscript. S. R. Pryke and S. C. Griffith are supported by the Australian Research Council (ARC), and A. J. Gilby is supported by a Macquarie University Research Excellence Scholarship.


References

Banks, R. C. , Clench, M. H. , and Barlow, J. C. (1973). Bird collections in the United States and Canada. Auk 90, 136–170.
Evans S. M. , and Fidler M. (1986). ‘The Gouldian Finch.’ (Blandford Press: London.)

Evans S. M. , and Fidler M. (2005). ‘The Gouldian Finch.’ (Indruss Productions: New Farm.)

Evans, S. M. , Collins, J. A. , Evans, R. , and Miller, S. (1985). Patterns of drinking behaviour of some Australian estrildine finches. Ibis 127, 348–354.
Crossref | GoogleScholarGoogle Scholar | Fisher R. A. (1930). ‘The Genetical Theory of Natural Selection.’ (Clarendon Press: Oxford, UK.)

Ford, E. B. (1945). Polymorphism. Biological Reviews and Biological Proceedings of the Cambridge Philosophical Society 20, 73–88.
Crossref | GoogleScholarGoogle Scholar |

Franklin, D. C. , and Dostine, P. L. (2000). A note on the frequency and genetics of head colour morhs in the gouldian finch. Emu 100, 236–239.
Crossref | GoogleScholarGoogle Scholar |

Galeotti, P. , Rubolini, D. , Dunn, P. O. , and Fasola, M. (2003). Colour polymorphism in birds: causes and functions. Journal of Evolutionary Biology 16, 635–646.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Gill, B. J. (2006). Birds in Australian and New Zealand museums – a major resource for ornithology. New Zealand Journal of Zoology 33, 299–315.


Gross, M. R. (1996). Alternative reproductive strategies and tactics: diversity within sexes. Trends in Ecology & Evolution 11, 92–98.
Crossref | GoogleScholarGoogle Scholar |

Hall, R. (1902). Notes on a collection of bird skins from the Fitzroy River, North-Western Australia. Emu 2, 49–68.


Hill, G. F. (1911). Field notes on the birds of Kimberley, NW Australia. Emu 10, 258–290.


Huxley, J. (1955). Morphism in birds. Proceedings of the International Ornithological Congress 11, 309–328.


Irestedt, M. , Ohilson, J. I. , Zuccon, D. , Kallersjo, M. , and Ericson, P. G. P. (2006). Nuclear DNA from old collections of avian study skins reveals the evolutionary history of the Old World suboscines. Zoologica Scripta 35, 567–580.
Crossref | GoogleScholarGoogle Scholar |

Jennings, W. B. , and Edwards, S. V. (2005). Speciational history of Australian grass finches inferred from thirty gene trees. Evolution 59, 2033–2047.
CAS | PubMed |

Keast, A. (1958). Infraspecific variation in the Australian finches. Emu 58, 219–246.


Keast, A. (1973). The role of the museum in ornithology. Emu 73, 242–247.


McCarthy, M. A. (1998). Identifying declining and threatened species with museum data. Biological Conservation 83, 9–17.
Crossref | GoogleScholarGoogle Scholar |

Mitchell, I. (1958). The taxonomic position of the Gouldian Finch. Emu 58, 395–411.


Murton, R. K. (1971). Why do some bird species feed in flocks? Ibis 113, 534–536.
Crossref | GoogleScholarGoogle Scholar |

Pryke, S. R. , and Griffith, S. C. (2006). Red dominates black: agonistic signalling among head morphs in the colour polymorphic Gouldian finch. Proceedings of the Royal Society of London. Series B. Biological Sciences 273, 949–957.
Crossref | GoogleScholarGoogle Scholar |

Pryke, S. R. , and Griffith, S. C. (2009a). Postzygotic genetic incompatibility between sympatric color morphs. Evolution 63, 793–798.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Pryke, S. R. , and Griffith, S. C. (2009b). Genetic incompatibility drives sex allocation and maternal investment in a polymorphic finch. Science 323, 1605–1607.
Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |

Pryke, S. R. , Astheimer, L. B. , Buttemer, W. A. , and Griffith, S. C. (2007). Frequency-dependent tradeoffs between competing colour morphs. Biology Letters 3, 494–497.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Rohwer, S. (1990). Foraging differences between white and dark morphs of the Pacific Reef Heron Egretta sacra. Ibis 132, 21–26.
Crossref | GoogleScholarGoogle Scholar |

Roulin, A. (2004). The evolution, maintenance and adaptive function of genetic colour polymorphism in birds. Biological Reviews 79, 815–848.
Crossref | GoogleScholarGoogle Scholar | PubMed |

Sinervo, B. , and Lively, C. M. (1996). The rock-paper-scissors game and the evolution of alternative male strategies. Nature 380, 240–243.
Crossref | GoogleScholarGoogle Scholar | CAS |

Southern, H. N. (1945). Polymorphism in Poephila gouldiae. Journal of Genetics 47, 51–57.
Crossref | GoogleScholarGoogle Scholar |

Southern, H. N. , and Serventy, D. L. (1947). The two phases of Astur novae-hollandiae (Gm.) in Australia. Emu 46, 331–347.