Genetic structure of Greater Rhea (Rhea americana) populations in two regions with different land-uses in central Argentina
Virginia Alonso Roldán A C , Hernán Rossi Fraire B , Joaquín Luis Navarro A , Cristina Noemí Gardenal B and Mónica Beatriz Martella A DA Centro de Zoología Aplicada, Universidad Nacional de Córdoba, CC 122, CP: 5000, Córdoba, Argentina.
B Cátedra de Genética de Poblaciones y Evolución, Facultad de Ciencias Exactas Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 299, CP: 5000, Córdoba, Argentina.
C Present address: Centro Nacional Patagónico – CONICET, Bv. Brown 2825, U9120ACF, Puerto Madryn, Argentina.
D Corresponding author. Email: martemo@efn.uncor.edu
Emu 109(3) 214-221 https://doi.org/10.1071/MU08073
Submitted: 20 December 2008 Accepted: 18 May 2009 Published: 17 August 2009
Abstract
The distribution of populations of Greater Rhea (Rhea americana) are fragmented, probably owing to the conversion of grasslands to croplands. This study analyses the genetic structure of populations of Greater Rhea in areas with different degrees of anthropogenic alteration. Molecular variation was evaluated using Inter Simple Sequence Repeats (ISSR) markers in five wild populations that inhabit an agroecosystem and an area of semi-natural grassland. The populations were polymorphic for 23.33% of loci, with an average genetic diversity of 0.0822, and the populations of the two regions showed similar levels of variability. This low level of polymorphism may have be a result of historical bottlenecks and the long generation time of this species. The analysis of molecular variance showed highly significant differences among populations and non-significant differences between regions. The effects of habitat changes might not be the most important factor determining the genetic differentiation among populations currently. However, as modification of landscape structure of the Pampas grasslands could be more severe in the future, conservation of the Greater Rhea requires careful land-use planning.
Additional keywords: conservation, gene flow, grassland, habitat loss, ISSR.
Acknowledgements
We are grateful to the owners of the ranches La Panchita, El Toro, Los Guaicos, La Colina, El Águila and Campo Grande, for allowing us to conduct the sampling on their properties. V. A. R. was supported by a fellowship from the Maestría en Manejo de Vida Silvestre, Universidad Nacional de Córdoba. Funding for this work was provided by the Fondo para la Investigación Científica y Tecnológica, the Secretaría de Ciencia y Técnica of the Universidad Nacional de Córdoba, and the Consejo Nacional de Investigaciones Científicas y Técnicas – CONICET (C. N. G., M. B. M. and J. L. N. are researchers of CONICET). The study met Argentine legal requirements.
Anderson, D. L. (1973). La distribución de Sorgastrum pellitum (Poaceae) en la provincia de San Luis y su significado ecológico. Kurtziana 12–13, 37–45.
Bornet, B. , and Branchard, M. (2001). Nonanchored Inter Simple Sequence Repeat (ISSR) markers: reproducible and specific tools for genome fingerprinting. Plant Molecular Biology Reporter 19, 209–215.
| Crossref | GoogleScholarGoogle Scholar | CAS |
Bruning, D. F. (1974). Social structure and reproductive behaviour in the Greater Rhea. Living Bird 13, 251–294.
Demaría, M. R. , McShea, W. J. , Koy, K. , and Maceira, N. O. (2004). Pampas deer conservation with respect to habitat loss and protected area considerations in San Luis, Argentina. Biological Conservation 115, 121–130.
| Crossref | GoogleScholarGoogle Scholar |
Galbusera, P. , Lens, L. , Schenck, T. , Waiyaki, E. , and Matthysen, E. (2000). Genetic variability and gene flow in the globally, critically-endangered Taita thrush. Conservation Genetics 1, 45–55.
| Crossref | GoogleScholarGoogle Scholar | CAS |
Giordano, P. , Bellis, L. M. , Navarro, J. L. , and Martella, M. B. (2008a). Abundance and spatial distribution of Greater Rhea Rhea americana in two sites on the pampas grasslands with different land use. Bird Conservation International 18, 63–70.
| Crossref | GoogleScholarGoogle Scholar |
Guerschman, J. P. , and Paruelo, J. M. (2005). Agricultural impacts on ecosystem functioning in temperate areas of North and South America. Global and Planetary Change 47, 170–180.
| Crossref | GoogleScholarGoogle Scholar |
Holsinger, K. E. , Lewis, P. O. , and Dey, D. K. (2002). A Bayesian approach to inferring population structure from dominant markers. Molecular Ecology 11, 1157–1164.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Kawka, M. , Horbanczuk, J. O. , Sacharczuk, M. , Zieba, G. , Lukaszewicz, M. , Jaszczak, K. , and Parada, R. (2007). Genetic characteristics of the Ostrich population using molecular methods. Poultry Science 86, 277–281.
| CAS | PubMed |
Lábaque, M. C. , Navarro, J. L. , and Martella, M. B. (1999). A note on chick adoption: a complementary strategy of rearing rheas. Applied Animal Behaviour Science 63, 165–170.
| Crossref | GoogleScholarGoogle Scholar |
Martella, M. B. , Renison, D. , and Navarro, J. L. (1995). Vigilance in the Greater Rhea: effects of vegetation height and group size. Journal of Field Ornithology 66, 215–220.
Navarro, J. L. , and Martella, M. B. (2002). Reproductivity and raising of Greater Rhea (Rhea americana) and Lesser Rhea (Pterocnemia pennata) – a review. Archiv für Geflügelkunde 66, 124–132.
Nusser, J. A. , Goto, R. M. , Ledig, D. B. , Fleischer, R. C. , and Miller, M. M. (1996). RAPD analysis reveals low genetic variability in the endangered light-footed claper rail. Molecular Ecology 5, 463–472.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Segelbacher, G. , Höglund, J. , and Storch, I. (2003). From connectivity to isolation: genetic consequences of population fragmentation in capercallie across Europe. Molecular Ecology 12, 1773–1780.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |
Slatkin, M. , and Barton, N. H. (1989). A comparison of three indirect methods for estimating average levels of gene flow. Evolution 43, 1349–1368.
| Crossref | GoogleScholarGoogle Scholar |
Spiegelhalter, D. J. , Best, N. G. , Carlin, B. P. , and van der Linde, A. (2002). Bayesian measures of model complexity and fit. Journal of the Royal Statistical Society. Series B. Methodological 64, 583–639.
| Crossref | GoogleScholarGoogle Scholar |
Stephens, S. E. , Koons, D. N. , Rotella, J. J. , and Willey, D. W. (2004). Effects of habitat fragmentation on avian nesting success: a review of the evidence at multiple spatial scales. Biological Conservation 115, 101–110.
| Crossref | GoogleScholarGoogle Scholar |
Vickery, P. D. , and Herkert, J. R. (2001). Recent advances in grassland bird research: where do we go from here? Auk 118, 11–15.
| Crossref | GoogleScholarGoogle Scholar |
Viglizzo, E. F. , Lértora, F. , Pordomingo, A. J. , Bernardos, J. N. , Roberto, Z. E. , and Del Valle, H. (2001). Ecological lessons and applications from one century of low external-input farming in the pampas of Argentina. Agriculture Ecosystems & Environment 83, 65–81.
| Crossref | GoogleScholarGoogle Scholar |
Yeh, F. C. , and Boyle, T. J. B. (1997). Population genetic analysis of co-dominant and dominant markers and quantitative traits. Belgian Journal of Botany 129, 157.
Zietkiewicz, E. , Rafalski, A. , and Labuda, D. (1994). Genome fingerprinting by Simple Sequence Repeat (SSR)-anchored polymerase chain reaction amplification. Genomics 20, 176–183.
| Crossref | GoogleScholarGoogle Scholar | CAS | PubMed |