Elevation and land use as drivers of macroinvertebrate functional composition in Afromontane headwater streams
Mourine J. Yegon A B D , Frank O. Masese A C , Augustine Sitati A and Wolfram Graf BA Department of Fisheries & Aquatic Sciences, School of Natural Resource Management, University of Eldoret, PO Box 1125-30100, Eldoret, Kenya.
B University of Natural Resource and Life Sciences (BOKU), Institute of Hydrobiology and Aquatic Ecosystem Management, Gregor-Mendel-Straße 33, AT-1180 Wien, Austria.
C Aquatic Science and Ecosystems Group, University of KwaZulu–Natal, Scottsville, Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
D Corresponding author. Email: mourineyegon@gmail.com
Marine and Freshwater Research - https://doi.org/10.1071/MF21048
Submitted: 10 February 2021 Accepted: 1 June 2021 Published online: 29 June 2021
Abstract
Macroinvertebrates play a unique role in aquatic ecosystems by acting as processors of nutrients and organic energy from allochthonous and autochthonous sources. Within East Africa, and especially Kenya, anthropogenic influences on streams and rivers as a result of deforestation and the expansion of agricultural lands are pervasive. This study investigated land use v. altitudinal shifts in the functional composition of macroinvertebrates within the Mount Elgon catchment in western Kenya. A total of 20 sampling sites in 12 streams, 10 sites each within forested and agricultural areas, located in 3 elevation categories were sampled for physicochemical water parameters and macroinvertebrates. Significant (P < 0.05) spatial variation was observed in total suspended solids, coarse particulate organic matter, temperature and electrical conductivity between forested and agricultural sites. Shredder biomass and abundance was higher in forested streams at higher elevations. There was a significant increase in the abundance (of shredders, predators, collector filterers and gatherers), taxon richness (of shredders, predators and scrapers) and biomass (of shredders, collector filterers and gatherers) of functional feeding groups with increasing elevation. Data of near-natural sites are urgently needed to disentangle altitude and land use influences on the diversity and composition of aquatic communities in high-elevation streams in the tropics.
Keywords: Afrotropical, altitude, benthic invertebrates, bioindication, functional feeding groups.
References
Allan, J. D. (1995). ‘Stream Ecology: Structure and Function of Running Waters.’ (Chapman and Hall: London, UK.)Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology, Evolution, and Systematics 35, 257–284.
| Landscapes and riverscapes: the influence of land use on stream ecosystems.Crossref | GoogleScholarGoogle Scholar |
American Public Health Association and Water Pollution Control Federation (2005). ‘Standard Methods for the Examination of Water and Wastewater’, 21st edn. (APHA Washington, DC, USA.)
AQEM Consortium (2002). Manual for the application of the AQEM system. A comprehensive method to assess European streams using benthic macroinvertebrates, developed for the purpose of the water framework directive. Version 1, February 2002. Available at http://www.eu-star.at/pdf/AqemMacroinvertebrateSamplingProtocol.pdf
Araújo, F. G., Pinto, B. C. T., and Teixeira, T. P. (2009). Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: evaluating environmental influences and some concepts in river ecology. Hydrobiologia 618, 89–107.
| Longitudinal patterns of fish assemblages in a large tropical river in southeastern Brazil: evaluating environmental influences and some concepts in river ecology.Crossref | GoogleScholarGoogle Scholar |
Barber-James, H. M., Zrelli, S., Yanai, Z., and Sartori, M. (2020). A reassessment of the genus Oligoneuriopsis Crass, 1947 (Ephemeroptera, Oligoneuriidae, Oligoneuriellini). ZooKeys 985, 15.
| 33223873PubMed |
Boyero, L., Pearson, R. G., Albariño, R. J., Callisto, M., Correa-Araneda, F., Encalada, A. C., Masese, F., Moretti, M. S., Ramírez, A., Sparkman, A. E., Swan, C. M., Yule, C. M., and Graça, M. A. S. (2020). Identifying stream invertebrates as plant litter consumers. In ‘Methods to Study Litter Decomposition’. pp. 455–464. (Springer: Cham, Switzerland.)
Brasil, L. S., Juen, L., Batista, J. D., Pavan, M. G., and Cabette, H. S. R. (2014). Longitudinal distribution of the functional feeding groups of aquatic insects in streams of the Brazilian Cerrado Savanna. Neotropical Entomology 43, 421–428.
| Longitudinal distribution of the functional feeding groups of aquatic insects in streams of the Brazilian Cerrado Savanna.Crossref | GoogleScholarGoogle Scholar | 27193952PubMed |
Bray, J. R., and Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27, 325–349.
| An ordination of the upland forest communities of southern Wisconsin.Crossref | GoogleScholarGoogle Scholar |
Bubb, P., May, I., Miles, L., and Sayer, J. (2004). ‘Cloud Forest Agenda,’ (UNEP-World Conservation Monitoring Centre: Cambridge, UK.)
Chapman, C. A., and Chapman, L. J. (2003). Deforestation in tropical Africa: impacts on aquatic ecosystems. In ‘Conservation, Ecology and Management of African Fresh Waters’. (Eds T. L. Crisman, L. J. Chapman, C. A. Chapman, and L. S. Kaufman.) pp. 229–246. (University Press of Florida: Gainesville, FL, USA.)
Chapman, L. J., Schneider, K. R., Apodaca, C., and Chapman, C. A. (2004). Respiratory ecology of macroinvertebrates in a swamp–river system of East Africa. Biotropica 36, 572–585.
| Respiratory ecology of macroinvertebrates in a swamp–river system of East Africa.Crossref | GoogleScholarGoogle Scholar |
Clarke, K. R., and Gorley, R. N. (2006). ‘PRIMER v6: User Manual/Tutorial,’ (PRIMER-e: Plymouth, UK.)
Cooper, S. D., Lake, P. S., Sabater, S., Melack, J. M., and Sabo, J. L. (2013). The effects of land use changes on streams and rivers in mediterranean climates. Hydrobiologia 719, 383–425.
| The effects of land use changes on streams and rivers in mediterranean climates.Crossref | GoogleScholarGoogle Scholar |
Cumberlidge, N., and Clark, P. F. (2010). Two new species of freshwater crabs from Mount Elgon, East Africa (Brachyura: Potamoidea: Potamonautidae) and a re-diagnosis of Potamonautes niloticus (H. Milne Edwards, 1837) with notes on their natural history and onchocerciasis. Journal of Natural History 44, 1807–1829.
| Two new species of freshwater crabs from Mount Elgon, East Africa (Brachyura: Potamoidea: Potamonautidae) and a re-diagnosis of Potamonautes niloticus (H. Milne Edwards, 1837) with notes on their natural history and onchocerciasis.Crossref | GoogleScholarGoogle Scholar |
Dalu, T., Wasserman, R. J., Tonkin, J. D., Alexander, M. E., Dalu, M. T., Motitsoe, S. N., Manungo, K. I., Bepe, O., and Dube, T. (2017). Assessing drivers of benthic macroinvertebrate community structure in African highland streams: an exploration using multivariate analysis. The Science of the Total Environment 601–602, 1340–1348.
| Assessing drivers of benthic macroinvertebrate community structure in African highland streams: an exploration using multivariate analysis.Crossref | GoogleScholarGoogle Scholar | 28605853PubMed |
Day, J. A., and de Moor, I. J. (2002a). Guides to the freshwater invertebrates of southern Africa. Volume 5: Non-arthropods (the protozoans, Porifera, Cnidaria, Platyhelminthes, Nemertea, Rotifera, Nematoda, Nematomorpha, Gastrotrichia, Bryozoa, Tardigrada, Polychaeta, Oligochaeta and Hirudinea). WRC Report number TT 167/02, Water Research Commission, Pretoria, South Africa.
Day, J. A., and de Moor, I. J. (2002b). Guides to the freshwater invertebrates of southern Africa. Volume 6: Arachnida and Mollusca (Araneae, Water Mites and Mollusca). WRC Report number TT 182/02, Water Research Commission, Pretoria, South Africa.
de Moor, I. J., Day, J. A., and De Moor, F. C. (2003a). Guides to the freshwater invertebrates of southern Africa. Volume 7: Insecta I: Ephemeroptera, Odonata and Plecoptera. WRC Report number TT 207/03, Water Research Commission, Pretoria, South Africa.
de Moor, I. J., Day, J. A., and de Moor, F. C. (2003b) Guides to the freshwater invertebrates of southern Africa. Volume 8: Insecta II. Report number TT 214/03, Water Research Commission, Pretoria, South Africa.
Dickens, C. W., and Graham, P. M. (2002). The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers. African Journal of Aquatic Science 27, 1–10.
| The South African Scoring System (SASS) version 5 rapid bioassessment method for rivers.Crossref | GoogleScholarGoogle Scholar |
Dobson, M., Magana, A., Mathooko, J. M., and Ndegwa, F. K. (2002). Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics? Freshwater Biology 47, 909–919.
| Detritivores in Kenyan highland streams: more evidence for the paucity of shredders in the tropics?Crossref | GoogleScholarGoogle Scholar |
Dobson, M., Magana, A. M., Mathooko, J. M., and Ndegwa, F. K. (2007). Distribution and abundance of freshwater crabs (Potamonautes spp.) in rivers draining Mt Kenya, East Africa. Fundamental and Applied Limnology 168, 271.
Dubois, N., Saulner-Talbot, E., and Mills, K. (2018). First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world. The Anthropocene Review 5, 28–68.
| First human impacts and responses of aquatic systems: a review of palaeolimnological records from around the world.Crossref | GoogleScholarGoogle Scholar |
Dudgeon, D. (2010). Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function. Current Opinion in Environmental Sustainability 2, 422–430.
| Prospects for sustaining freshwater biodiversity in the 21st century: linking ecosystem structure and function.Crossref | GoogleScholarGoogle Scholar |
Dudgeon, D., Arthington, A. H., Gessner, M. O., Kawabata, Z. I., Knowler, D. J., Lévêque, C., Naiman, R. J., Prieur-Richard, A.-H., Soto, D., Stiassny, M. L. J., and Sullivan, C. A. (2006). Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Reviews of the Cambridge Philosophical Society 81, 163–182.
| Freshwater biodiversity: importance, threats, status and conservation challenges.Crossref | GoogleScholarGoogle Scholar | 16336747PubMed |
Englmaier, G. K., Hayes, D. S., Meulenbroek, P., Terefe, Y., Lakew, A., Tesfaye, G., Waidbacher, H., Malicky, H., Wubie, A., Leitner, P., and Graf, W. (2020). Longitudinal river zonation in the tropics: Examples of fish and caddisflies from the endorheic Awash River, Ethiopia. Hydrobiologia 847, 4063–4090.
| Longitudinal river zonation in the tropics: Examples of fish and caddisflies from the endorheic Awash River, Ethiopia.Crossref | GoogleScholarGoogle Scholar |
Food and Agriculture Organization of the United Nations (2005). Global forest resources assessment (2005). Progress towards sustainable forest management. FAO Forestry Paper 147, FAO, Rome, Italy.
Food and Agriculture Organization of the United Nations (2015). Terms and definitions. Forest Resources Assessment Working Paper 180, FAO, Rome, Italy.
Frissell, C. A., Liss, W. J., Warren, C. E., and Hurley, M. D. (1986). A hierarchical framework for stream habitat classification. Journal of Environmental Management 10, 199–214.
| A hierarchical framework for stream habitat classification.Crossref | GoogleScholarGoogle Scholar |
Fugère, V., Jacobsen, D., Finestone, E. H., and Chapman, L. J. (2018). Ecosystem structure and function of afrotropical streams with contrasting land use. Freshwater Biology 63, 1498–1513.
| Ecosystem structure and function of afrotropical streams with contrasting land use.Crossref | GoogleScholarGoogle Scholar |
Gerber, A., and Gabriel, M. J. M. (2002). ‘Aquatic Invertebrates of South African Rivers Field Guide.’ (Institute for Water Quality Studies Department of Water Affairs and Forestry.)
Hammer, Ø., Harper, D. A., and Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 9.
Hastie, T. J., and Tibshirani, R. J. (1990). ‘Generalized Additive Models, Vol. 43.’ (CRC Press.)
Hecky, R. E., Mugidde, R., Ramlal, P. S., Talbot, M. R., and Kling, G. W. (2010). Multiple stressors cause rapid ecosystem change in Lake Victoria. Freshwater Biology 55, 19–42.
| Multiple stressors cause rapid ecosystem change in Lake Victoria.Crossref | GoogleScholarGoogle Scholar |
Hynes, H. B. N. (1975). The stream and its valley: with 4 figures and 2 tables in the text. Internationale Vereinigung für theoretische und angewandte Limnologie, Verhandlungen 19, 1–15.
| The stream and its valley: with 4 figures and 2 tables in the text.Crossref | GoogleScholarGoogle Scholar |
Jacobsen, D. (2008). Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates. Oecologia 154, 795–807.
| Low oxygen pressure as a driving factor for the altitudinal decline in taxon richness of stream macroinvertebrates.Crossref | GoogleScholarGoogle Scholar | 17960424PubMed |
Jacobsen, D., Rostgaard, S., and Vásconez, J. J. (2003). Are macroinvertebrates in high altitude streams affected by oxygen deficiency? Freshwater Biology 48, 2025–2032.
| Are macroinvertebrates in high altitude streams affected by oxygen deficiency?Crossref | GoogleScholarGoogle Scholar |
Jiang, B., Bamutaze, Y., and Pilesjö, P. (2014). Climate change and land degradation in Africa: a case study in the Mount Elgon region, Uganda. Geo-Spatial Information Science 17, 39–53.
| Climate change and land degradation in Africa: a case study in the Mount Elgon region, Uganda.Crossref | GoogleScholarGoogle Scholar |
Kasangaki, A., Babaasa, D., Efitre, J., McNeilage, A., and Bitariho, R. (2006). Links between anthropogenic perturbations and benthic macroinvertebrate assemblages in Afromontane forest streams in Uganda. Hydrobiologia 563, 231–245.
| Links between anthropogenic perturbations and benthic macroinvertebrate assemblages in Afromontane forest streams in Uganda.Crossref | GoogleScholarGoogle Scholar |
Kasangaki, A., Chapman, L. J., and Balirwa, J. (2008). Land use and the ecology of benthic macroinvertebrate assemblages of high‐altitude rainforest streams in Uganda. Freshwater Biology 53, 681–697.
| Land use and the ecology of benthic macroinvertebrate assemblages of high‐altitude rainforest streams in Uganda.Crossref | GoogleScholarGoogle Scholar |
Kashian, D. R., Zuellig, R. E., Mitchell, K. A., and Clements, W. H. (2007). The cost of tolerance: Sensitivity of stream benthic communities to UV‐B and metals. Ecological Applications 17, 365–375.
| The cost of tolerance: Sensitivity of stream benthic communities to UV‐B and metals.Crossref | GoogleScholarGoogle Scholar | 17489245PubMed |
Kaufmann, P. R., and Faustini, J. M. (2012). Simple measures of channel habitat complexity predict transient hydraulic storage in streams. Hydrobiologia 685, 69–95.
| Simple measures of channel habitat complexity predict transient hydraulic storage in streams.Crossref | GoogleScholarGoogle Scholar |
Kibichii, S., Shivoga, W. A., Muchiri, M., and Miller, S. N. (2007). Macroinvertebrate assemblages along a land‐use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya. Lakes and Reservoirs: Research and Management 12, 107–117.
| Macroinvertebrate assemblages along a land‐use gradient in the upper River Njoro watershed of Lake Nakuru drainage basin, Kenya.Crossref | GoogleScholarGoogle Scholar |
Kilonzo, F., Masese, F. O., Van Griensven, A., Bauwens, W., Obando, J., and Lens, P. N. (2014). Spatial–temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River basin, Kenya. Physics and Chemistry of the Earth Parts A/B/C 67–69, 93–104.
| Spatial–temporal variability in water quality and macro-invertebrate assemblages in the Upper Mara River basin, Kenya.Crossref | GoogleScholarGoogle Scholar |
Lakew, A., and Moog, O. (2015). A multimetric index based on benthic macroinvertebrates for assessing the ecological status of streams and rivers in central and southeast highlands of Ethiopia. Hydrobiologia 751, 229–242.
| A multimetric index based on benthic macroinvertebrates for assessing the ecological status of streams and rivers in central and southeast highlands of Ethiopia.Crossref | GoogleScholarGoogle Scholar |
Leal, C. G., Pompeu, P. S., Gardner, T. A., Leitão, R. P., Hughes, R. M., Kaufmann, P. R., Zuanon, J., de Paula, F. R., Ferraz, S. F. B., Thomson, J. R., Mac Nally, R., Ferreira, J., and Barlow, J. (2016). Multi-scale assessment of human-induced changes to Amazonian instream habitats. Landscape Ecology 31, 1725–1745.
| Multi-scale assessment of human-induced changes to Amazonian instream habitats.Crossref | GoogleScholarGoogle Scholar |
Mani, M. S. (1962). ‘Introduction to High Altitude Entomology – Insect Life Above the Timber-Line in the North-West Himalaya.’ (Methuen & Co., Ltd: London, UK.)
Marchant, R., Richer, S., Boles, O., Capitani, C., Courtney-Mustaphi, C. J., Lane, P., Prendergast, M. E., Stump, D., De Cort, G., Kaplan, J. O., Phelps, L., Kay, A., Olago, D., Petek, N., Platts, P. J., Punwong, P., Widgren, M., Wynne-Jones, S., Ferro-Vázquez, C., Benard, J., Boivin, N., Crowther, A., Cuní-Sanchez, A., Deere, N. J., Ekblom, A., Farmer, J., Finch, J., Fuller, D., Gaillard-Lemdahl, M.-J., Gillson, L., Githumbi, E., Kabora, T., Kariuki, R., Kinyanjui, R., Kyazike, E., Lang, C., Lejju, J., Morrison, K. D., Muiruri, V., Mumbi, C., Muthoni, R., Muzuka, A., Ndiema, E., Kabonyi Nzabandora, C., Onjala, I., Pas Schrijver, A., Rucina, S., Shoemaker, A., Thornton-Barnett, S., der Plas, G., Watson, E. E., Williamson, D., and Wright, D. (2018). Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present. Earth-Science Reviews 178, 322–378.
| Drivers and trajectories of land cover change in East Africa: Human and environmental interactions from 6000 years ago to present.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., and McClain, M. E. (2012). Trophic resources and emergent food web attributes in rivers of the Lake Victoria Basin: a review with reference to anthropogenic influences. Ecohydrology 5, 685–707.
| Trophic resources and emergent food web attributes in rivers of the Lake Victoria Basin: a review with reference to anthropogenic influences.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., Muchiri, M., and Raburu, P. O. (2009). Macroinvertebrate assemblages as biological indicators of water quality in the Moiben River, Kenya. African Journal of Aquatic Science 34, 15–26.
| Macroinvertebrate assemblages as biological indicators of water quality in the Moiben River, Kenya.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., Kitaka, N., Kipkemboi, J., Gettel, G. M., Irvine, K., and McClain, M. E. (2014). Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild. Freshwater Science 33, 435–450.
| Macroinvertebrate functional feeding groups in Kenyan highland streams: evidence for a diverse shredder guild.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., Salcedo-Borda, J. S., Gettel, G. M., Irvine, K., and McClain, M. E. (2017). Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river. Biogeochemistry 132, 1–22.
| Influence of catchment land use and seasonality on dissolved organic matter composition and ecosystem metabolism in headwater streams of a Kenyan river.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., Abrantes, K. G., Gettel, G. M., Irvine, K., Bouillon, S., and McClain, M. E. (2018). Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: a stable isotope approach. Freshwater Biology 63, 1365–1380.
| Trophic structure of an African savanna river and organic matter inputs by large terrestrial herbivores: a stable isotope approach.Crossref | GoogleScholarGoogle Scholar |
Masese, F. O., Achieng, A. O., O’Brien, G. C., and McClain, M. E. (2021). Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river. Hydrobiologia 848, 321–343.
| Macroinvertebrate taxa display increased fidelity to preferred biotopes among disturbed sites in a hydrologically variable tropical river.Crossref | GoogleScholarGoogle Scholar |
Mason, W. T., Lewis, P. A., and Weber, C. I. (1983). An evaluation of benthic macroinvertebrate biomass methodology. Environmental Monitoring and Assessment 3, 29–44.
| An evaluation of benthic macroinvertebrate biomass methodology.Crossref | GoogleScholarGoogle Scholar | 24258825PubMed |
Mati, B. M., Mutie, S., Gadain, H., Home, P., and Mtalo, F. (2008). Impacts of land‐use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania. Lake and Reservoir Management 13, 169–177.
| Impacts of land‐use/cover changes on the hydrology of the transboundary Mara River, Kenya/Tanzania.Crossref | GoogleScholarGoogle Scholar |
Mbaka, J. G., M’Erimba, C. M., and Mathooko, J. M. (2015). Impacts of benthic coarse particulate organic matter variations on macroinvertebrate density and diversity in the Njoro River, a Kenyan highland stream. Journal of East African Natural History 103, 39–48.
| Impacts of benthic coarse particulate organic matter variations on macroinvertebrate density and diversity in the Njoro River, a Kenyan highland stream.Crossref | GoogleScholarGoogle Scholar |
McArdle, B. H., and Anderson, M. J. (2001). Fitting multivariate models to community data: a comment on distance based redundancy analysis. Ecology 82, 290–297.
| Fitting multivariate models to community data: a comment on distance based redundancy analysis.Crossref | GoogleScholarGoogle Scholar |
Merritt, R. W., Cummins, K. W., and Berg, M. B. (2008) ‘An Introduction to the Aquatic Insects of North America’, 4th edn. (Kendall Hunt Publishing: Dubuque, IA, USA.)
Merritt, R. W., Cummins, K. W., and Berg, M. B. (2017). Trophic relationships of macroinvertebrates. In ‘Methods in Stream Ecology’. Vol. 1, pp. 413–433. (Academic Press.)
Minaya, V., McClain, M. E., Moog, O., Omengo, F., and Singer, G. A. (2013). Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya. Ecological Indicators 32, 116–122.
| Scale-dependent effects of rural activities on benthic macroinvertebrates and physico-chemical characteristics in headwater streams of the Mara River, Kenya.Crossref | GoogleScholarGoogle Scholar |
Musau, J., Sang, J., Gathenya, J., and Luedeling, E. (2015). Hydrological responses to climate change in Mt Elgon watersheds. Journal of Hydrology. Regional Studies 3, 233–246.
| Hydrological responses to climate change in Mt Elgon watersheds.Crossref | GoogleScholarGoogle Scholar |
Musonge, P. S., Boets, P., Lock, K., and Goethals, P. L. (2020). Drivers of Benthic Macroinvertebrate Assemblages in Equatorial Alpine Rivers of the Rwenzoris (Uganda). Water 12, 1668–1689.
| Drivers of Benthic Macroinvertebrate Assemblages in Equatorial Alpine Rivers of the Rwenzoris (Uganda).Crossref | GoogleScholarGoogle Scholar |
Nebeker, A. V. (1971). Effect of temperature at different altitudes on the emergence of aquatic insects from a single stream. Journal of the Kansas Entomological Society 41, 413–418.
Nyadawa, M. O., and Mwangi, J. K. (2010). Geomorphologic characteritics of Nzoia river basin. Journal of Agriculture Science and Technology 12, 145–161.
Okeyo-Owuor, J. B., Masese, F. O., Mogaka, H., Okwuosa, E., Kairu, G., Nantongo, P., Agasha, A., and Biryahwaho, B. (2011). Status, challenges and new approaches for management of the trans-boundary Mt Elgon ecosystem: a review. In ‘Towards Implementation of Payment for Environmental Services (PES): a Collection of Findings Linked to the ASARECA Funded Research Activities’. pp. 60–82. (VDM Verlag: Saarbrücken, Germany.)
Petursson, J. G., Vedeld, P., and Sassen, M. (2013). An institutional analysis of deforestation processes in protected areas: The case of the transboundary Mt Elgon, Uganda and Kenya. Forest Policy and Economics 26, 22–33.
| An institutional analysis of deforestation processes in protected areas: The case of the transboundary Mt Elgon, Uganda and Kenya.Crossref | GoogleScholarGoogle Scholar |
Resh, V. H., and Rosenberg, D. M. (Eds) (1993). ‘Freshwater Biomonitoring and Benthic Macroinvertebrates’, number 504.4 FRE. (Chapman and Hall: New York, NY, USA.)
Richards, C., and Host, G. (1994). Examining land use influences on stream habitats and macroinvertebrates: A GIS APPROACH 1. Journal of the American Water Resources Association 30, 729–738.
| Examining land use influences on stream habitats and macroinvertebrates: A GIS APPROACH 1.Crossref | GoogleScholarGoogle Scholar |
Richardson, J. S., and Sato, T. (2015). Resource subsidy flows across freshwater–terrestrial boundaries and influence on processes linking adjacent ecosystems. Ecohydrology 8, 406–415.
| Resource subsidy flows across freshwater–terrestrial boundaries and influence on processes linking adjacent ecosystems.Crossref | GoogleScholarGoogle Scholar |
Richardson, J. S., Naiman, R. J., Swanson, F. J., and Hibbs, D. E. (2005). Riparian communities associated with pacific northwest headwater streams: assemblages, processes, and uniqueness 1. Journal of the American Water Resources Association 41, 935–947.
| Riparian communities associated with pacific northwest headwater streams: assemblages, processes, and uniqueness 1.Crossref | GoogleScholarGoogle Scholar |
Suren, A. M. (1994). Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use. Freshwater Biology 32, 323–336.
| Macroinvertebrate communities of streams in western Nepal: effects of altitude and land use.Crossref | GoogleScholarGoogle Scholar |
Sweeney, B. W., Bott, T. L., Jackson, J. K., Kaplan, L. A., Newbold, J. D., Standley, L. J., Hession, W. C., and Horwitz, R. J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Sciences of the United States of America 101, 14132–14137.
| Riparian deforestation, stream narrowing, and loss of stream ecosystem services.Crossref | GoogleScholarGoogle Scholar | 15381768PubMed |
Tanaka, M. O., and Dos Santos, B. G. (2017). Influence of discharge patterns on temporal variation of macroinvertebrate communities in forested and deforested streams in a tropical agricultural landscape. Hydrobiologia 797, 103–114.
| Influence of discharge patterns on temporal variation of macroinvertebrate communities in forested and deforested streams in a tropical agricultural landscape.Crossref | GoogleScholarGoogle Scholar |
Ter Braak, C. J. F., and Smilauer, P. (1998). ‘CANOCO Reference Manual and User’s Guide to Canoco for Windows: Software for Canonical Community Ordination, Version 4.’ (Microcomputer Power: Ithaca, NY, USA.)
Tittonell, P., Muriuki, A., Klapwijk, C. J., Shepherd, K. D., Coe, R., and Vanlauwe, B. (2013). Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands. Soil Science Society of America Journal 77, 525–538.
| Soil heterogeneity and soil fertility gradients in smallholder farms of the East African highlands.Crossref | GoogleScholarGoogle Scholar |
Tomanova, S., Goitia, E., and Helešic, J. (2006). Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams. Hydrobiologia 556, 251–264.
| Trophic levels and functional feeding groups of macroinvertebrates in Neotropical streams.Crossref | GoogleScholarGoogle Scholar |
Tomanova, S., Tedesco, P. A., Campero, M., Van Damme, P. A., Moya, N., and Oberdorff, T. (2007). Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept. Fundamental and Applied Limnology 170, 233–241.
| Longitudinal and altitudinal changes of macroinvertebrate functional feeding groups in neotropical streams: a test of the River Continuum Concept.Crossref | GoogleScholarGoogle Scholar |
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
| The river continuum concept.Crossref | GoogleScholarGoogle Scholar |
Wetzel, R. G., and Likens, G. E. (2000). ‘Limnological Analysis’, 3rd edn. (Springer-Verlag: New York, NY, USA.)
White, A., and Martin, A. (2002). Who owns the world’s forests: forest tenure and public forests in transition. (Forest Trends: Washington, DC, USA.) Available at https://www.cifor.org/publications/pdf_files/reports/tenurereport_whoowns.pdf
Williams, T. R. (1991). Freshwater crabs and Simulium neavei in East Africa. III. Morphological variation in Potamonautes loveni (Decapoda: Potamidae). Annals of Tropical Medicine and Parasitology 85, 181–188.
| Freshwater crabs and Simulium neavei in East Africa. III. Morphological variation in Potamonautes loveni (Decapoda: Potamidae).Crossref | GoogleScholarGoogle Scholar | 1888214PubMed |
Williams, T. R., and Hynes, H. B. N. (1971). A survey of the fauna of streams on Mount Elgon, East Africa, with special reference to the Simuliidae (Diptera). Freshwater Biology 1, 227–248.
| A survey of the fauna of streams on Mount Elgon, East Africa, with special reference to the Simuliidae (Diptera).Crossref | GoogleScholarGoogle Scholar |
Wood, S. N. (2017). ‘Generalized Additive Models: an Introduction with R.’ (CRC Press: Boca Raton, FL, USA.)
Wood, P. J., Toone, J., Greenwood, M. T., and Armitage, P. D. (2005). The response of four lotic macroinvertebrate taxa to burial by sediments. Archiv für Hydrobiologie 163, 145–162.
| The response of four lotic macroinvertebrate taxa to burial by sediments.Crossref | GoogleScholarGoogle Scholar |