Occurrence of emerging contaminants and analysis of oestrogenic activity in the water and sediments from two coastal lagoons in south-eastern Brazil
Danieli L. Cunha A D , Samuel Muylaert B , Marilia T. L. Nascimento A , Louise C. Felix C , Giselle Gomes C , Daniele M. Bila C and Estefan M. Fonseca AA Institute of Geosciences, Fluminense Federal University, Avenida Milton Tavares de Souza, s/n, Gragoatá, Niterói, RJ 24210-340, Brazil.
B State Institute of Environment, Avenida Venezuela 110, Saúde, Rio de Janeiro, RJ 20081-312, Brazil.
C Department of Sanitary Engineering and Environment, Rio de Janeiro State University, Rua João Lyra Filho, Campus Maracanã, Rio de Janeiro, RJ 20550-900, Brazil.
D Corresponding author. Email: danielicunha@hotmail.com
Marine and Freshwater Research 72(2) 213-227 https://doi.org/10.1071/MF19391
Submitted: 18 December 2019 Accepted: 21 April 2020 Published: 22 June 2020
Abstract
There is increasing concern in the scientific community regarding emerging contaminants in aquatic matrices because of the potential effects of these contaminants on aquatic biota. In recent decades, the Itaipu–Piratininga lagoon system has suffered a series of environmental impacts, among which water pollution stands out. In this context, the aim of this study was to analyse the occurrence of pharmaceuticals and endocrine disrupters in water (dissolved and particulate phases) and in surface sediments, and their potential oestrogenic effects. Contaminant concentrations were determined by gas chromatography–mass spectrometry, whereas oestrogenic activity was evaluated using the yeast oestrogen screen assay. Of the 12 compounds analysed, concentrations of gemfibrozil, acetaminophen and diclofenac were below the limit of detection. The compounds with the highest detection frequency in the water were bisphenol A > 4-octylphenol > naproxen > oestradiol, whereas in the sediment were bisphenol A > naproxen > oestradiol. Higher pharmaceutical concentrations and numbers of microcontaminants were observed in August 2017 (winter), which can be explained by the lower dilution and degradation capacity of these compounds during winter. Oestrogenic activity was observed in at least one of the three matrices (i.e. water (dissolved and particulate phases) and surface sediments) at all sampling stations and in both sampling campaigns (January and August 2017). Combined with data in the literature data, the results of this study indicate probable adverse effects of contaminants on aquatic organisms of this lagoon system.
Additional keywords: endocrine disruptors, water quality, yeast oestrogen screen.
References
Ahkola, H., Tuominen, S., Karlsson, S., Perkola, N., Huttula, T., Saraperä, S., Artimo, A., Korpiharju, T., Äystö, L., Fjäder, P., Assmuth, T., Rosendahl, K., and Nysten, T. (2017). Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production. Environmental Science and Pollution Research International 24, 26778–26791.| Presence of active pharmaceutical ingredients in the continuum of surface and ground water used in drinking water production.Crossref | GoogleScholarGoogle Scholar | 28963646PubMed |
American Public Health Association, American Water Works Association, and Water Environmental Federation (2012). ‘Standard Methods for the Examination of Water and Wastewater’, 22nd edn. (APHA, AWWA, WEF: Washington DC, USA.)
Andersen, H. R., Andersson, A. M., Arnold, S. F., Autrup, H., Barfoed, M., Beresford, N. A., Bjerregaard, P., Christiansen, L. B., Gissel, B., Hummel, R., Jørgensen, E. B., Korsgaard, B., Le Guevel, R., Leffers, H., McLachlan, J., Møller, A., Nielsen, J. B., Olea, N., Oles-Karasko, A., Pakdel, F., Pedersen, K. L., Perez, P., Skakkeboek, N. E., Sonnenschein, C., Soto, A. M., Sumpter, J. P., Thorpe, S. M., and Grandjean, P. (1999). Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals. Environmental Health Perspectives 107, 89–108.
| Comparison of short-term estrogenicity tests for identification of hormone-disrupting chemicals.Crossref | GoogleScholarGoogle Scholar | 10229711PubMed |
Aquino, S. F., Brandt, E. M. F., and Chernicharo, C. A. L. (2013). Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura. Engenharia Sanitaria e Ambiental 18, 187–204.
| Remoção de fármacos e desreguladores endócrinos em estações de tratamento de esgoto: revisão da literatura.Crossref | GoogleScholarGoogle Scholar |
Associação Brasileira de Normas Técnicas (1986). Amostras de Solo – preparação para ensaios de compactação e ensaios de caracterização. NBR 6457, ABNT, Rio de Janeiro, Brazil. Available at http://files.ilcoribeiro.webnode.com.br/200000081-91bdd92b8f/NBR%206457.pdf [Verified 29 April 2020].
Barceló, D., and Petrovic, M. (Eds) (2008). ‘Emerging Contaminants from Industrial and Municipal Waste: Occurrence, Analysis and Effects.’ (Springer-Verlag: New York, NY, USA.)
Beck, I. C., Bruhn, R., and Gandrass, J. (2006). Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen. Chemosphere 63, 1870–1878.
| Analysis of estrogenic activity in coastal surface waters of the Baltic Sea using the yeast estrogen screen.Crossref | GoogleScholarGoogle Scholar | 16330072PubMed |
Bergman, Å., Heindel, J. J., Jobling, S., Kidd, K. A., and Zoeller, R. T. (Eds) (2013). State of the science of endocrine disrupting chemicals – 2012. (United Nations Environment Programme and World Health Organization: Geneva, Switzerland.) Available at http://www.who.int/ceh/publications/endocrine/en/index.html [Verified 12 March 2019].
Beserra, M. R., Schiavini, J. A., Rodrigues, W. C., and Pereira, C. D. S. S. (2012). O bisfenol A: sua utilização e a atual polêmica em relação aos possíveis danos à saúde humana. Revista Eletrônica TECCEN 5, 37–46.
| O bisfenol A: sua utilização e a atual polêmica em relação aos possíveis danos à saúde humana.Crossref | GoogleScholarGoogle Scholar |
Bila, D. M., and Dezotti, M. (2007). Endocrine disrupters in the enviroment: part 1 – effects and consequences. Quimica Nova 30, 651–666.
| Endocrine disrupters in the enviroment: part 1 – effects and consequences.Crossref | GoogleScholarGoogle Scholar |
Brandt, E. M. F., Queiroz, F. B., Afonso, R. J. C. F., Aquino, S. F., and Chernicharo, C. A. L. (2013). Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems. Journal of Environmental Management 128, 718–726.
| Behaviour of pharmaceuticals and endocrine disrupting chemicals in simplified sewage treatment systems.Crossref | GoogleScholarGoogle Scholar |
Capaldo, A., Gay, F., Valiante, S., Falco, M., Sciarrillo, R., Maddaloni, M., and Laforgia, V. (2012). Endocrine-disrupting effects of nonylphenol in the newt, Triturus carnifex (Amphibia, Urodela). Comparative Biochemistry and Physiology. Toxicology & Pharmacology: CBP 155, 352–358.
| Endocrine-disrupting effects of nonylphenol in the newt, Triturus carnifex (Amphibia, Urodela).Crossref | GoogleScholarGoogle Scholar |
Carballa, M., Fink, G., Omil, F., Lema, J. M., and Ternes, T. (2008). Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge. Water Research 42, 287–295.
| Determination of the solid–water distribution coefficient (Kd) for pharmaceuticals, estrogens and musk fragrances in digested sludge.Crossref | GoogleScholarGoogle Scholar | 17675136PubMed |
Carvalho, R. N., Ceriani, L., Ippolito, A., and Lettieri, T. (2015). Development of the first Watch List under the Environmental Quality Standards Directive. Available at http://publications.jrc.ec.europa.eu/repository/bitstream/JRC95018/lbna27142enn.pdf [Verified 10 October 2018].
Casals-Casas, C., and Desvergne, B. (2011). Endocrine disruptors: from endocrine to metabolic disruption. Annual Review of Physiology 73, 135–162.
| Endocrine disruptors: from endocrine to metabolic disruption.Crossref | GoogleScholarGoogle Scholar | 21054169PubMed |
Casatta, N., Mascolo, G., Roscioli, C., and Viganò, L. (2015). Tracing endocrine disrupting chemicals in a coastal lagoon (Sacca di Goro, Italy): sediment contamination and bioaccumulation in Manila clams. The Science of the Total Environment 511, 214–222.
| Tracing endocrine disrupting chemicals in a coastal lagoon (Sacca di Goro, Italy): sediment contamination and bioaccumulation in Manila clams.Crossref | GoogleScholarGoogle Scholar | 25546459PubMed |
Cerda, M., Barboza, C. D. N., Carvalho, C. N., Jandre, K. A., and Marques, A. N. (2013). Nutrient budgets in the Piratininga–Itaipu lagoon system (southeastern Brazil): effects of sea-exchange management. Latin American Journal of Aquatic Research 41, 226–238.
Chandra, K., Bosker, T., Hogan, N., Lister, A., MacLatchy, D., and Currie, S. (2012). Sustained high temperature increases the vitellogenin response to 17α-ethynylestradiol in mummichog (Fundulus heteroclitus). Aquatic Toxicology 118–119, 130–140.
| Sustained high temperature increases the vitellogenin response to 17α-ethynylestradiol in mummichog (Fundulus heteroclitus).Crossref | GoogleScholarGoogle Scholar | 22561700PubMed |
Chandrasekar, G., Arner, A., Kitambi, S. S., Dahlman-Wright, K., and Lendahl, M. A. (2011). Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish. Neurotoxicology and Teratology 33, 752–764.
| Developmental toxicity of the environmental pollutant 4-nonylphenol in zebrafish.Crossref | GoogleScholarGoogle Scholar | 22002180PubMed |
Corrales, J., Kristorfco, L. A., Steele, W. B., Yates, B. S., Breed, C. S., Williams, E. S., and Brooks, B. W. (2015). Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation. Dose-Response 13, 1–29.
| Global assessment of bisphenol a in the environment: review and analysis of its occurrence and bioaccumulation.Crossref | GoogleScholarGoogle Scholar |
Cunha, D. L., Silva, S. M. C., Bila, D. M., Oliveira, J. L. M., Sarcinelli, P. N., and Larentis, A. L. (2016). Regulation of the synthetic estrogen 17α-ethinylestradiol in water bodies in Europe, the United States, and Brazil. Cadernos de Saude Publica 32, e00056715.
| 27027456PubMed |
Cunha, D. L., Paula, L. M., Silva, S. M. C., Bila, D. M., Fonseca, E. M., and Oliveira, J. L. M. (2017). Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos. Revista Ambiente & Água 12, 249–262.
| Ocorrência e remoção de estrogênios por processos de tratamento biológico de esgotos.Crossref | GoogleScholarGoogle Scholar |
Dezotti, M. (2008). ‘Processos e técnicas para o controle ambiental de efluentes líquidos. Volume 5 da Série Escola Piloto de Engenharia Química.’ (Editora E-papers: Rio de Janeiro, Brazil.)
Diao, P., Chen, Q., Wang, R., Sun, D., Cai, Z., Wu, H., and Duan, S. (2017). Phenolic endocrine-disrupting compounds in the Pearl River Estuary: occurrence, bioaccumulation and risk assessment. The Science of the Total Environment 584–585, 1100–1107.
| Phenolic endocrine-disrupting compounds in the Pearl River Estuary: occurrence, bioaccumulation and risk assessment.Crossref | GoogleScholarGoogle Scholar | 28185731PubMed |
do Nascimento, M. T. L. (2016). Avaliação da presença de micropuluentes, atividade estrogênica e toxicidae na água da Baía da Guanabara. Ph.D. Thesis, Fluminense Federal University, Niterói, Brazil.
do Nascimento, M. T. L., Santos, A. D. O., Felix, L. C., Gomes, G., Sá, M. O., Cunha, D. L., Vieira, N., Hauser-Davis, R. A., Baptista Neto, J. A., and Bila, D. M. (2018). Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, southeastern Brazil. Ecotoxicology and Environmental Safety 149, 197–202.
| Determination of water quality, toxicity and estrogenic activity in a nearshore marine environment in Rio de Janeiro, southeastern Brazil.Crossref | GoogleScholarGoogle Scholar |
Empresa Brasileira de Pesquisa Agropecuária (1997). ‘Manual de métodos de análise de solo’, 2nd edn. (Centro Nacional de Pesquisa de Solos: Rio de Janeiro, Brazil.) Available at https://www.agencia.cnptia.embrapa.br/Repositorio/Manual+de+Metodos_000fzvhotqk02wx5ok0q43a0ram31wtr.pdf [Verified 29 April 2020].
Esteban, S., Gorga, M., Petrovic, M., González-Alonso, S., Barceló, D., and Valcárcel, Y. (2014). Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain. The Science of the Total Environment 466–467, 939–951.
| Analysis and occurrence of endocrine-disrupting compounds and estrogenic activity in the surface waters of Central Spain.Crossref | GoogleScholarGoogle Scholar | 23978587PubMed |
Fent, K., Weston, A. A., and Caminada, D. (2006). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology (Amsterdam, Netherlands) 76, 122–159.
| Ecotoxicology of human pharmaceuticals.Crossref | GoogleScholarGoogle Scholar |
Franks, C. G., Pearce, D. W., and Rood, S. B. (2019). A prescription for drug-free rivers: uptake of pharmaceuticals by a widespread streamside willow. Environmental Management 63, 136–147.
| A prescription for drug-free rivers: uptake of pharmaceuticals by a widespread streamside willow.Crossref | GoogleScholarGoogle Scholar | 30421133PubMed |
French, V. A., Codi King, S., Kumar, A., Northcott, G., McGuinness, K., and Parry, D. (2015). Characterisation of microcontaminants in Darwin Harbour, a tropical estuary of northern Australia undergoing rapid development. The Science of the Total Environment 536, 639–647.
| Characterisation of microcontaminants in Darwin Harbour, a tropical estuary of northern Australia undergoing rapid development.Crossref | GoogleScholarGoogle Scholar | 26247692PubMed |
Frische, T., Faust, M., Meyer, W., and Backhaus, T. (2009). Toxic masking and synergistic modulation of the estrogenic activity of chemical mixtures in a yeast estrogen screen (YES). Environmental Science and Pollution Research International 16, 593–603.
| Toxic masking and synergistic modulation of the estrogenic activity of chemical mixtures in a yeast estrogen screen (YES).Crossref | GoogleScholarGoogle Scholar | 19499261PubMed |
Froehner, S., Machado, K. S., Stefen, E., and Nolasco, M. (2011). Occurrence of sexual hormones in sediments of mangrove in Brazil. Water, Air, and Soil Pollution 219, 591–599.
| Occurrence of sexual hormones in sediments of mangrove in Brazil.Crossref | GoogleScholarGoogle Scholar |
Fundação Estadual de Engenharia do Meio Ambiente (1982). Relatório de Avaliação das Condições Físico-Químicas do Sistema Lagunar de Piratininga-Itaipu, DEP/DIAG. Rio de Janeiro, Brazil.
García-Córcoles, M. T., Rodríguez-Gómez, R., de Alarcón-Gómez, B., Çipa, M., Martín-Pozo, L., Kauffmann, J. M., and Zafra-Gómez, A. (2019). Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: a review. Critical Reviews in Analytical Chemistry 49, 160–186.
| Chromatographic methods for the determination of emerging contaminants in natural water and wastewater samples: a review.Crossref | GoogleScholarGoogle Scholar | 30285467PubMed |
Gavrilescu, M., Demnerová, K., Aamand, J., Agathos, S., and Fava, F. (2015). Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation. New Biotechnology 32, 147–156.
| Emerging pollutants in the environment: present and future challenges in biomonitoring, ecological risks and bioremediation.Crossref | GoogleScholarGoogle Scholar | 24462777PubMed |
Geissen, V., Mol, H., Klumpp, E., Umlauf, G., Nadal, M., Ploeg, M., Zee, S., and Ritsema, C. J. (2015). Emerging pollutants in the environment: a challenge for water resource management. International Soil and Water Conservation Research 3, 57–65.
| Emerging pollutants in the environment: a challenge for water resource management.Crossref | GoogleScholarGoogle Scholar |
Gilbert, N. (2012). Drug-pollution law all washed up. Nature 491, 503–504.
| Drug-pollution law all washed up.Crossref | GoogleScholarGoogle Scholar | 23172189PubMed |
Hirakawa, I., Miyagawa, S., Katsu, Y., Kagami, Y., Tatarazako, N., Kobayashi, T., Kusano, T., Mizutani, T., Ogino, Y., Takeuchi, T., Ohta, Y., and Iguchi, T. (2012). Gene expression profiles in the testis associated with testis-ova in adult Japanese medaka (Oryzias latipes) exposed to 17α-ethinylestradiol. Chemosphere 87, 668–674.
| Gene expression profiles in the testis associated with testis-ova in adult Japanese medaka (Oryzias latipes) exposed to 17α-ethinylestradiol.Crossref | GoogleScholarGoogle Scholar | 22230730PubMed |
Honda, L., Becerra-Herrera, M., and Richter, P. (2018). Liquid chromatography–time-of-flight high-resolution mass spectrometry study and determination of the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater. Analytical and Bioanalytical Chemistry 410, 7909–7919.
| Liquid chromatography–time-of-flight high-resolution mass spectrometry study and determination of the dansylated products of estrogens and their hydroxylated metabolites in water and wastewater.Crossref | GoogleScholarGoogle Scholar | 30306236PubMed |
Huang, B., Pan, X. J., Wan, X., Liu, J. L., Zhao, S. M., Hu, P., and Li, F. R. (2011). Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction–derivatization–gas chromatographic–mass spectrometry. Chinese Journal of Analytical Chemistry 39, 449–454.
| Simultaneous determination of steroid endocrine disrupting chemicals in water by solid phase extraction–derivatization–gas chromatographic–mass spectrometry.Crossref | GoogleScholarGoogle Scholar |
Humble, J. L., Hands, E., Saaristo, M., Lindström, K., Lehtonen, K. K., Diaz de Cerio, O., Cancio, I., Wilson, G., and Craft, J. A. (2013). Characterisation of genes transcriptionally upregulated in the liver of sand goby (Pomatoschistus minutus) by 17α-ethinyloestradiol: identification of distinct vitellogenin and zona radiata protein transcripts. Chemosphere 90, 2722–2729.
| Characterisation of genes transcriptionally upregulated in the liver of sand goby (Pomatoschistus minutus) by 17α-ethinyloestradiol: identification of distinct vitellogenin and zona radiata protein transcripts.Crossref | GoogleScholarGoogle Scholar | 23270706PubMed |
Jardim, W. F., Montagner, C. C., Pescara, I. C., Umbuzeiro, G. A., Bergamasco, A. M. D., Eldridge, M. L., and Sodré, F. F. (2012). An integrated approach to evaluate emerging contaminants in drinking water. Separation and Purification Technology 84, 3–8.
| An integrated approach to evaluate emerging contaminants in drinking water.Crossref | GoogleScholarGoogle Scholar |
Jin, S., Yang, F., Xu, Y., Dai, H., and Liu, W. (2013). Risk assessment of xenoestrogens in a typical domestic sewage-holding lake in China. Chemosphere 93, 892–898.
| Risk assessment of xenoestrogens in a typical domestic sewage-holding lake in China.Crossref | GoogleScholarGoogle Scholar | 23746367PubMed |
Kunz, P. Y., Simon, E., Creusot, N., Jayasinghe, B. S., Kienle, C., Maletz, S., Schifferli, A., Schönlau, C., Aït-Aïssa, S., Denslow, N. D., Hollert, H., Werner, I., and Vermeirssen, E. L. M. (2017). Effect-based tools for monitoring estrogenic mixtures: evaluation of five in vitro bioassays. Water Research 110, 378–388.
| Effect-based tools for monitoring estrogenic mixtures: evaluation of five in vitro bioassays.Crossref | GoogleScholarGoogle Scholar | 27836174PubMed |
Kwak, K., Ji, K., Kho, Y., Kim, P., Lee, J., Ryu, J., and Choi, K. (2018). Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay. Chemosphere 204, 156–162.
| Chronic toxicity and endocrine disruption of naproxen in freshwater waterfleas and fish, and steroidogenic alteration using H295R cell assay.Crossref | GoogleScholarGoogle Scholar | 29655108PubMed |
Lange, A., Katsu, Y., Miyagawa, S., Ogino, Y., Urushitani, H., Kobayashi, T., Hirai, T., Shears, J. A., Nagae, M., Yamamoto, J., Ohnishi, Y., Oka, T., Tatarazako, N., Ohta, Y., Tyler, C. R., and Iguchi, T. (2012). Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring. Aquatic Toxicology 109, 250–258.
| Comparative responsiveness to natural and synthetic estrogens of fish species commonly used in the laboratory and field monitoring.Crossref | GoogleScholarGoogle Scholar | 22000336PubMed |
Legler, J., Dennekamp, M., Vethaak, A. D., Brouwer, A., Koeman, J. H., Burg, B., and Murk, A. (2002). Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays. The Science of the Total Environment 293, 69–83.
| Detection of estrogenic activity in sediment-associated compounds using in vitro reporter gene assays.Crossref | GoogleScholarGoogle Scholar | 12109482PubMed |
Lima, D. R. S., Tonucci, M. C., Libânio, M., and Aquino, S. F. (2017). Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção. Engenharia Sanitaria e Ambiental 22, 1043–1054.
| Fármacos e desreguladores endócrinos em águas brasileiras: ocorrência e técnicas de remoção.Crossref | GoogleScholarGoogle Scholar |
Lisboa, N. S., Fahning, C. S., Cotrim, G., dos Anjos, J. P., de Andrade, J. B., Hatje, V., and da Rocha, G. O. (2013). A simple and sensitive UFLC-fluorescence method for endocrine disrupters determination in marine waters. Talanta 117, 168–175.
| A simple and sensitive UFLC-fluorescence method for endocrine disrupters determination in marine waters.Crossref | GoogleScholarGoogle Scholar | 24209326PubMed |
Liu, G., Ke, M., Fan, X., Zhang, M., Zhu, Y., Lu, T., Sun, L., and Qian, H. (2018). Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in female zebrafish. Chemosphere 192, 289–296.
| Reproductive and endocrine-disrupting toxicity of Microcystis aeruginosa in female zebrafish.Crossref | GoogleScholarGoogle Scholar | 29112878PubMed |
Lopes, B. C., Sanson, A. L., Aquino, S. F., Souza, C. L., Chernicharo, C. A. L., and Afonso, R. J. C. F. (2017). Behavior of pharmaceuticals in UV photoreactors fed with sewage treated by anaerobic/aerobic system. Environmental Technology 38, 2775–2784.
| Behavior of pharmaceuticals in UV photoreactors fed with sewage treated by anaerobic/aerobic system.Crossref | GoogleScholarGoogle Scholar | 28043207PubMed |
Mach, J. S. O., and Longo, O. C. (1998). Considerações sobre a gestão ambiental – impacto da construção civil: um estudo de caso do sistema lagunar Piratininga–Itaipu. Available at http://www.abepro.org.br/biblioteca/enegep1998_art209.pdf [Verified 25 October 2018].
Mathias, F. T., Fockink, D. H., Disner, G. R., Prodocimo, V., Ribas, J. L. C., Ramos, L. P., Cestari, M. M., and Assis, S. H. C. (2018). Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. Environmental Toxicology and Pharmacology 59, 105–113.
| Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen.Crossref | GoogleScholarGoogle Scholar | 29558665PubMed |
Mboula, V. M., Héquet, V., Andrès, Y., Gru, Y., Colin, R., Doña-Rodríguez, J. M., Pastrana-Martínez, L. M., Silva, A. M. T., Leleu, M., Tindall, A. J., Mateos, S., and Falaras, P. (2015). Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity. Applied Catalysis – B. Environmental 162, 437–444.
| Photocatalytic degradation of estradiol under simulated solar light and assessment of estrogenic activity.Crossref | GoogleScholarGoogle Scholar |
Mo, L., Zheng, J., Wang, T., Shi, Y. G., Chen, B. J., Liu, B., Ma, Y. H., Li, M., Zhuo, L., and Chen, S. J. (2019). Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China. Chemosphere 215, 133–141.
| Legacy and emerging contaminants in coastal surface sediments around Hainan Island in South China.Crossref | GoogleScholarGoogle Scholar | 30316155PubMed |
Montagner, C. C., Vidal, C., and Acayaba, R. (2017). Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios. Quimica Nova 40, 1094–1110.
| Contaminantes emergentes em matrizes aquáticas do Brasil: cenário atual e aspectos analíticos, ecotoxicológicos e regulatórios.Crossref | GoogleScholarGoogle Scholar |
Nilsen, E., Smalling, K. L., Ahrens, L., Gros, M., Miglioranza, K. S. B., Pico, Y., and Schoenfuss, H. L. (2019). Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs. Environmental Toxicology and Chemistry 38, 46–60.
| Critical review: grand challenges in assessing the adverse effects of contaminants of emerging concern on aquatic food webs.Crossref | GoogleScholarGoogle Scholar | 30294805PubMed |
Pawlowski, S., Ternes, T. A., Bonerz, M., Rastall, A. C., Erdinger, L., and Braunbeck, T. (2004). Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and River Rhine water using the yeast estrogen screen. Toxicology In Vitro 18, 129–138.
| Estrogenicity of solid phase-extracted water samples from two municipal sewage treatment plant effluents and River Rhine water using the yeast estrogen screen.Crossref | GoogleScholarGoogle Scholar | 14630071PubMed |
Pereira, C. D. S., Maranho, L. A., Cortez, F. S., Pusceddu, F. H., Santos, A. R., Ribeiro, D. A., Cesar, A., and Guimarães, L. L. (2016). Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone. The Science of the Total Environment 548–549, 148–154.
| Occurrence of pharmaceuticals and cocaine in a Brazilian coastal zone.Crossref | GoogleScholarGoogle Scholar |
Pesci Pereira, C., Conceição Pereira, T., Gomes, G., Quintaes, B. R., Bila, D. M., and Campos, J. C. (2018). Evaluation of reduction estrogenic activity in the combined treatment of landfill leachate and sanitary sewage. Waste Management 80, 339–348.
| Evaluation of reduction estrogenic activity in the combined treatment of landfill leachate and sanitary sewage.Crossref | GoogleScholarGoogle Scholar | 30455015PubMed |
Petersen, G., Rasmussen, D., Gustavson, K. (2007). Study on enhancing the endocrine disrupter priority list with a focus on low production volume chemicals. Available at http://ec.europa.eu/environment/chemicals/endocrine/pdf/final_report_2007.pdf [Verified 12 November 2018].
Pojana, G., Gomiero, A., Jonkers, N., and Marcomini, A. (2007). Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon. Environment International 33, 929–936.
| Natural and synthetic endocrine disrupting compounds (EDCs) in water, sediment and biota of a coastal lagoon.Crossref | GoogleScholarGoogle Scholar | 17559935PubMed |
Porter, K. L., Olmstead, A. W., Kumsher, D. M., Dennis, W. E., Sprando, R. L., Holcombe, G. W., Korte, J. J., Lindberg-Livingston, A., and Degitz, S. J. (2011). Effects of 4-tert-octylphenol on Xenopus tropicalis in a long term exposure. Aquatic Toxicology (Amsterdam, Netherlands) 103, 159–169.
| Effects of 4-tert-octylphenol on Xenopus tropicalis in a long term exposure.Crossref | GoogleScholarGoogle Scholar |
Prefeitura Municipal de Niterói (2014). EIA/RIMA. Estudo de Impactos Ambientais das obras de implantação e construção do corredor viário Charitas – Piratininga (BRT Transoceânica). (Agrar: Rio de Janeiro, Brazil.) Available at http://www.inea.rj.gov.br/cs/groups/public/documents/document/zwew/mdiw/~edisp/inea0020366.pdf [Verified 5 May 2020].
Quadra, G. R., Oliveira de Souza, H., Costa, R. D., and Fernandez, M. A. (2017). Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country. Environmental Science and Pollution Research International 24, 1200–1218.
| Do pharmaceuticals reach and affect the aquatic ecosystems in Brazil? A critical review of current studies in a developing country.Crossref | GoogleScholarGoogle Scholar | 27734317PubMed |
Richardson, S. D., and Ternes, T. A. (2011). Water analysis: emerging contaminants and current issues. Analytical Chemistry 83, 4614–4648.
| Water analysis: emerging contaminants and current issues.Crossref | GoogleScholarGoogle Scholar | 21668018PubMed |
Robinson, B. J., Hui, J. P., Soo, E. C., and Hellou, J. (2009). Estrogenic compounds in seawater and sediment from Halifax Harbour, Nova Scotia, Canada. Environmental Toxicology and Chemistry 28, 18–25.
| Estrogenic compounds in seawater and sediment from Halifax Harbour, Nova Scotia, Canada.Crossref | GoogleScholarGoogle Scholar | 18702564PubMed |
Rocha, M. J., Cruzeiro, C., Reis, M., Rocha, E., and Pardal, M. (2013). Determination of seventeen endocrine disruptor compounds and their spatial and seasonal distribution in Ria Formosa Lagoon (Portugal). Environmental Monitoring and Assessment 185, 8215–8226.
| Determination of seventeen endocrine disruptor compounds and their spatial and seasonal distribution in Ria Formosa Lagoon (Portugal).Crossref | GoogleScholarGoogle Scholar | 23595688PubMed |
Routledge, E. J., and Sumpter, J. P. (1996). Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen. Environmental Toxicology and Chemistry 15, 241–248.
| Estrogenic activity of surfactants and some of their degradation products assessed using a recombinant yeast screen.Crossref | GoogleScholarGoogle Scholar |
Rutishauser, B. V., Pesonen, M., Escher, B. I., Ackermann, G. E., Aerni, H. R., Suter, M. J. F., and Eggen, R. I. (2004). Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids. Environmental Toxicology and Chemistry 23, 857–864.
| Comparative analysis of estrogenic activity in sewage treatment plant effluents involving three in vitro assays and chemical analysis of steroids.Crossref | GoogleScholarGoogle Scholar | 15095880PubMed |
Samaras, V. G., Thomaidis, N. S., Stasinakis, A. S., and Lekkas, T. D. (2011). An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography–mass spectrometry. Analytical and Bioanalytical Chemistry 399, 2549–2561.
| An analytical method for the simultaneous trace determination of acidic pharmaceuticals and phenolic endocrine disrupting chemicals in wastewater and sewage sludge by gas chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 21197532PubMed |
Singh, S. P., Azua, A., Chaudhary, A., Khan, S., Willett, K. L., and Gardinali, P. R. (2010). Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments. Ecotoxicology (London, England) 19, 338–350.
| Occurrence and distribution of steroids, hormones and selected pharmaceuticals in South Florida coastal environments.Crossref | GoogleScholarGoogle Scholar |
Sisinno, C. L. S., and Oliveira-Filho, E. C. (2013). ‘Princípios de toxicologia ambiental’, 1st edn. (Editora Interciência: Rio de Janeiro, Brazil.)
Sousa, A., Schönenberger, R., Jonkers, N., Suter, M. J.-F., Tanabe, S., and Barroso, C. M. (2010). Chemical and biological characterization of estrogenicity in effluents from WWTPs in Ria de Aveiro (Portugal). Archives of Environmental Contamination and Toxicology 58, 1–8.
| Chemical and biological characterization of estrogenicity in effluents from WWTPs in Ria de Aveiro (Portugal).Crossref | GoogleScholarGoogle Scholar | 19381711PubMed |
Subcomitê do Sistema Lagunar Itaipu–Piratininga (2015). Estratégia para Gerenciamento Ambiental Compartilhado dos Ecossistemas Lagunares de Itaipu e Piratininga e da Região Hidrográfica. Available at http://www.secretariaexecutiva.niteroi.rj.gov.br/images/pdf/Estrategia-CLIPFINALMAIO2016.pdf [Verified 23 October 2018].
Sun, L., Gu, L., Tan, H., Liu, P., Gao, G., Tian, L., Chen, H., Lu, T., Qian, H., Fu, Z., and Pan, X. (2019). Effects of 17α-ethinylestradiol on caudal fin regeneration in zebra fish larvae. The Science of the Total Environment 653, 10–22.
| Effects of 17α-ethinylestradiol on caudal fin regeneration in zebra fish larvae.Crossref | GoogleScholarGoogle Scholar | 30390549PubMed |
Thompson, M., Ellison, S. L. R., and Wood, R. (2002). Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report). Pure and Applied Chemistry 74, 835–855.
| Harmonized guidelines for single-laboratory validation of methods of analysis (IUPAC Technical Report).Crossref | GoogleScholarGoogle Scholar |
US Environmental Protection Agency (1997). Special report on environmental endocrine disruption: an effects assessment and analysis. Report number EPA/630/R-96/012, US EPA, Washington, DC, USA.
Verderame, M., Prisco, M., Andreuccetti, P., Aniello, F., and Limatola, E. (2011). Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver of male lizard Podarcis sicula. Environmental Pollution 159, 1101–1107.
| Experimentally nonylphenol-polluted diet induces the expression of silent genes VTG and ERα in the liver of male lizard Podarcis sicula.Crossref | GoogleScholarGoogle Scholar | 21397372PubMed |
Villa, S., Di Nica, V., Pescatore, T., Bellamoli, F., Miari, F., Finizio, A., and Lencioni, V. (2018). Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae). Environmental Pollution 238, 130–139.
| Comparison of the behavioural effects of pharmaceuticals and pesticides on Diamesa zernyi larvae (Chironomidae).Crossref | GoogleScholarGoogle Scholar | 29554561PubMed |
Volkova, K., Reyhanian, N. C., Porseryd, T., Hallgren, S., Dinnétz, P., and Porsch-Hällström, I. (2015). Developmental exposure of zebrafish (Danio rerio) to 17-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny. Hormones and Behavior 73, 30–38.
| Developmental exposure of zebrafish (Danio rerio) to 17-ethinylestradiol affects non-reproductive behavior and fertility as adults, and increases anxiety in unexposed progeny.Crossref | GoogleScholarGoogle Scholar | 26072466PubMed |
Von Sperling, M. (2012). ‘Princípios do tratamento biológico de águas residuárias.’ (Departamento de Engenharia Sanitária e Ambiental, Universidade Federal de Minas Gerais: Belo Horizonte, Brazil.)
Wang, Y. Q., Li, Y. W., Chen, Q. L., and Liu, Z. H. (2019). Long-term exposure of xenoestrogens with environmental relevant concentrations disrupted spermatogenesis of zebrafish through altering sex hormone balance, stimulating germ cell proliferation, meiosis and enhancing apoptosis. Environmental Pollution 244, 486–494.
| Long-term exposure of xenoestrogens with environmental relevant concentrations disrupted spermatogenesis of zebrafish through altering sex hormone balance, stimulating germ cell proliferation, meiosis and enhancing apoptosis.Crossref | GoogleScholarGoogle Scholar | 30366296PubMed |
World Health Organization and United Nations Environment Program (2013). State of the science of endocrine disrupting chemicals – 2012. Available at https://www.who.int/ceh/publications/endocrine/en/ [Verified 28 April 2020].
Wu, Q. Y., Shao, Y. R., Wang, C., Sun, Y., and Hu, H. Y. (2014). [Health risk induced by estrogens during unplanned indirect potable reuse of reclaimed water from domestic wastewater]. Huan Jing Ke Xue 35, 1041–1050.
| 24881395PubMed |
Wu, Q., Lam, J. C. W., Kwok, K. Y., Tsui, M. M. P., and Lam, P. K. S. (2017). Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems. Journal of Environmental Sciences 61, 49–58.
| Occurrence and fate of endogenous steroid hormones, alkylphenol ethoxylates, bisphenol A and phthalates in municipal sewage treatment systems.Crossref | GoogleScholarGoogle Scholar |
Xu, E. G. B., Morton, B., Lee, J. H. W., and Leung, K. M. Y. (2015). Environmental fate and ecological risks of nonylphenols and bisphenol A in the Cape D’Aguilar Marine Reserve, Hong Kong. Marine Pollution Bulletin 91, 128–138.
| Environmental fate and ecological risks of nonylphenols and bisphenol A in the Cape D’Aguilar Marine Reserve, Hong Kong.Crossref | GoogleScholarGoogle Scholar |
Yu, H., Caldwell, D. J., and Suri, R. P. (2019). In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations. Chemosphere 215, 396–403.
| In vitro estrogenic activity of representative endocrine disrupting chemicals mixtures at environmentally relevant concentrations.Crossref | GoogleScholarGoogle Scholar | 30336316PubMed |