Seasonal variation in basal resources supporting fish biomass in longitudinal zones of the Usumacinta River Basin, southern Mexico
Miriam Soria-Barreto A F , Carmen G. Montaña B G , Kirk O. Winemiller C , María M. Castillo D and Rocío Rodiles-Hernández E HA CONACYT–El Colegio de la Frontera Sur, Departamento de Conservación de la Biodiversidad, Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, Mexico.
B Department of Biological Sciences, Sam Houston State University, 1900 Avenue I, Huntsville, TX 77341, USA.
C Department of Ecology and Conservation Biology, Texas A&M University, 534 John Kimbrough Boulevard, College Station, TX 77843-2258, USA.
D Departamento de Ciencias de la Sustentabilidad, El Colegio de la Frontera Sur, Carretera a Reforma Kilómetro 15.5, Ranchería Guineo 2a Sección Villahermosa 86280, Tabasco, Mexico.
E Departamento de Conservación de la Biodiversidad, El Colegio de la Frontera Sur, Carretera Panamericana y Periférico Sur s/n, Barrio María Auxiliadora, San Cristóbal de Las Casas, Chiapas 29290, Mexico.
F Present address: Centro de Investigación de Ciencias Ambientales, Facultad de Ciencias Naturales, Universidad Autónoma del Carmen, Calle Laguna de Términos s/n, Col. Renovación 2a Sección, Ciudad del Carmen 24155, Campeche, Mexico.
G Present address: Department of Biology, Stephen F. Austin State University, PO Box 13003, SFA Station, Nacogdoches, TX 75964, USA.
H Corresponding author. Email: rrodiles@gmail.com
Marine and Freshwater Research - https://doi.org/10.1071/MF19341
Submitted: 26 October 2019 Accepted: 17 June 2020 Published online: 20 August 2020
Abstract
Aquatic food webs in tropical rivers are affected by spatial and temporal variations in basal resources and the composition of consumer assemblages. We used stable isotope analysis to estimate seasonal variation in basal resources supporting fish biomass in zones along the longitudinal gradient of the Usumacinta River Basin, the largest of Mesoamerica. A Bayesian isotope mixing model was used to estimate the proportional contributions of six basal resources: seston, filamentous algae, periphyton, aquatic macrophytes, riparian C3 plants and C4 plants. Models estimated that fish in the upper zone were largely supported by periphyton and riparian C3 plants during the dry season and by filamentous algae during the wet season. In the dry season, fishes in the middle and lower zones assimilated material derived from seston and, to a lesser extent, periphyton, whereas aquatic macrophytes were more important during the wet season. Chlorophyll-a measurements from the middle and lower zones suggested that seston contained large fractions of suspended algae. These patterns are consistent with the river wave concept, which predicts flow-associated changes in contributions of basal resources to the aquatic food web. The findings of this study reinforce the major role of flow regime in the ecological dynamics of rivers and how these dynamics vary depending on location and local conditions within fluvial networks.
Keywords: Mesoamerica, MixSIAR model, stable isotope analysis, tropical river.
References
Amador-del-Ángel, L. E., and Wakida-Kusunoki, A. T. (2014). Peces invasores en el sureste de México. In ‘Especies acuáticas invasoras en México’. (Eds L. E. Amador-del-Ángel and A. T. Wakida-Kusunoki.) pp. 425–433. (Comisión Nacional para el Conocimiento y Uso de la Biodiversidad: Mexico City, México.)Arrington, D. A., and Winemiller, K. O. (2002). Preservation effects on stable isotope analysis of fish muscle. Transactions of the American Fisheries Society 131, 337–342.
| Preservation effects on stable isotope analysis of fish muscle.Crossref | GoogleScholarGoogle Scholar |
Brett, M. T., Bunn, S. E., Chandra, S., Galloway, A. W. E., Guo, F., Kainz, M. J., Kankaala, P., Lau, D. C. P., Moulton, T. P., Power, M. E., Rasmussen, J. B., Taipale, S. J., Thorp, J. H., and Wehr, J. D. (2017). How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems? Freshwater Biology 62, 833–853.
| How important are terrestrial organic carbon inputs for secondary production in freshwater ecosystems?Crossref | GoogleScholarGoogle Scholar |
Bunn, S. E., Davies, P. M., and Winning, M. (2003). Sources of organic carbon supporting the food web of an arid zone floodplain river. Freshwater Biology 48, 619–635.
| Sources of organic carbon supporting the food web of an arid zone floodplain river.Crossref | GoogleScholarGoogle Scholar |
Castillo, M. M., Barba-Álvarez, R., and Mayorga, A. (2018). Riqueza y diversidad de insectos acuáticos en la cuenca del río Usumacinta en México. Revista Mexicana de Biodiversidad 89, S45–S64.
| Riqueza y diversidad de insectos acuáticos en la cuenca del río Usumacinta en México.Crossref | GoogleScholarGoogle Scholar |
Cole, J. J., Carpenter, S. R., Kitchell, J., Pace, M. L., Solomon, C. T., and Weidel, B. (2011). Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences of the United States of America 108, 1975–1980.
| Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen.Crossref | GoogleScholarGoogle Scholar | 21245299PubMed |
Correa, S. B., and Winemiller, K. O. (2018). Terrestrial–aquatic trophic linkages support fish production in a tropical oligotrophic river. Oecologia 186, 1069–1078.
| Terrestrial–aquatic trophic linkages support fish production in a tropical oligotrophic river.Crossref | GoogleScholarGoogle Scholar | 29455256PubMed |
De la Maza, J., and Carabias, J. (2011). ‘Usumacinta bases para una política de sustentabilidad ambiental’. (Instituto Mexicano de Tecnología del Agua–Natura y Ecosistemas Mexicanos, A. C.: Mexico City, México.)
Deng, H., Li, Y., Liu, M., Duan, X., Liu, S., and Chen, D. (2018). Stable isotope analysis reveals the importance of riparian resources as carbon subsidies for fish species in the Daning River, a tributary of the Three Gorges Reservoir, China. Water 10, 1233.
| Stable isotope analysis reveals the importance of riparian resources as carbon subsidies for fish species in the Daning River, a tributary of the Three Gorges Reservoir, China.Crossref | GoogleScholarGoogle Scholar |
França, S., Vasconcelos, R. P., Tanner, S., Máguas, C., Costa, M. J., and Cabral, H. N. (2011). Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach. Marine Environmental Research 72, 204–215.
| Assessing food web dynamics and relative importance of organic matter sources for fish species in two Portuguese estuaries: a stable isotope approach.Crossref | GoogleScholarGoogle Scholar | 21958908PubMed |
Hladyz, S., Nielsen, D. L., Suter, P. J., and Krull, E. S. (2012). Temporal variations in organic carbon utilization by consumers in a lowland river. River Research and Applications 28, 513–528.
| Temporal variations in organic carbon utilization by consumers in a lowland river.Crossref | GoogleScholarGoogle Scholar |
Hoeinghaus, D. J., Winemiller, K. O., and Agostinho, A. A. (2007). Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033.
| Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs.Crossref | GoogleScholarGoogle Scholar |
Humphries, P., Keckeis, H., and Finlayson, B. (2014). The river wave concept: integrating river ecosystem models. Bioscience 64, 870–882.
| The river wave concept: integrating river ecosystem models.Crossref | GoogleScholarGoogle Scholar |
Jackson, A. T., Adite, A., Roach, K. A., and Winemiller, K. O. (2013). Primary production, food web structure, and fish yields in constructed and natural wetlands in the floodplain of an African river. Canadian Journal of Fisheries and Aquatic Sciences 70, 543–553.
| Primary production, food web structure, and fish yields in constructed and natural wetlands in the floodplain of an African river.Crossref | GoogleScholarGoogle Scholar |
Jardine, T. D., Hunt, R. J., Faggotter, S. J., Valdez, D., Burford, M. A., and Bunn, S. E. (2013). Carbon from periphyton supports fish biomass in waterholes of a wet–dry tropical river. River Research and Applications 29, 560–573.
| Carbon from periphyton supports fish biomass in waterholes of a wet–dry tropical river.Crossref | GoogleScholarGoogle Scholar |
Jardine, T. D., Woods, R., Marshall, J., Fawcett, J., Lobegeiger, J., Valdez, D., and Kainz, M. J. (2015). Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals. Ecology 96, 3257–3269.
| Reconciling the role of organic matter pathways in aquatic food webs by measuring multiple tracers in individuals.Crossref | GoogleScholarGoogle Scholar | 26909431PubMed |
Jepsen, D. B., and Winemiller, K. O. (2007). Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers. Ecology Freshwater Fish 16, 267–281.
| Basin geochemistry and isotopic ratios of fishes and basal production sources in four neotropical rivers.Crossref | GoogleScholarGoogle Scholar |
Junk, W. J., Bayley, P. B., and Sparks, R. E. (1989). The flood pulse concept in river–floodplain systems. In ‘Proceedings of the International Large River Symposium (LARS)’. (Ed. D. P. Dodge.) Canadian Special Publication of Fisheries and Aquatic Sciences 106, pp. 110–127. (NRC Research Press: Ottawa, ON, Canada.)
Marceniuk, A. P., Betancur-R, R., Acero, P. A., and Muriel-Cunha, J. (2012). Review of the genus Cathorops (Siluriformes: Ariidae) from the Caribbean and Atlantic South America, with description of a new species. Copeia 2012, 77–97.
| Review of the genus Cathorops (Siluriformes: Ariidae) from the Caribbean and Atlantic South America, with description of a new species.Crossref | GoogleScholarGoogle Scholar |
Mendoza-Carranza, M., Hoeinghaus, D. J., Garcia, A. M., and Romero-Rodriguez, Á. (2010). Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico. Neotropical Ichthyology 8, 171–178.
| Aquatic food webs in mangrove and seagrass habitats of Centla Wetland, a Biosphere Reserve in Southeastern Mexico.Crossref | GoogleScholarGoogle Scholar |
Miller, R. R., Minckley, W. L., and Norris, S. M. (2009). ‘Peces dulceacuícolas de México.’ (Comisiòn Nacional para el Conocimiento y Uso de la Biodiversidad/El Colegio de la Frontera Sur/Sociedad Ictiológica Mexicana/Desert Fishes Council: Mexico City, Mexico.)
Minson, D. J. (1971). Influence of lignin and silicon on a summative system for assessing the organic matter disgestibility of Panicum. Australian Journal of Agricultural Research 22, 589–598.
| Influence of lignin and silicon on a summative system for assessing the organic matter disgestibility of Panicum.Crossref | GoogleScholarGoogle Scholar |
Myers, G. S. (1966). Derivation of the freshwater fish fauna of Central America. Copeia 1966, 766–773.
| Derivation of the freshwater fish fauna of Central America.Crossref | GoogleScholarGoogle Scholar |
Oliveira, A. C. B., Soares, M. G. M., Martinelli, L. A., and Moreira, M. Z. (2006). Carbon sources of fish in an Amazonian floodplain lake. Aquatic Sciences 68, 229–238.
| Carbon sources of fish in an Amazonian floodplain lake.Crossref | GoogleScholarGoogle Scholar |
Ou, C., and Winemiller, K. O. (2016). Seasonal hydrology shifts production sources supporting fishes in rivers of the Lower Mekong Basin. Canadian Journal of Fisheries and Aquatic Sciences 73, 1342–1362.
| Seasonal hydrology shifts production sources supporting fishes in rivers of the Lower Mekong Basin.Crossref | GoogleScholarGoogle Scholar |
Pease, A. A., Mendoza-Carranza, M., and Winemiller, K. O. (2018). Feeding ecology and ecomorphology of cichlid assemblages in a large Mesoamerican river delta. Environmental Biology of Fishes 101, 867–879.
| Feeding ecology and ecomorphology of cichlid assemblages in a large Mesoamerican river delta.Crossref | GoogleScholarGoogle Scholar |
Pease, A. A., Capps, K. A., Rodiles-Hernández, R., Castillo, M. M., Mendoza-Carranza, M., Soria-Barreto, M., and González-Díaz, A. A. (2019). Trophic structure of fish assemblages varies across a Mesoamerican river network with contrasting climate and flow conditions. Food Webs 18, e00113.
| Trophic structure of fish assemblages varies across a Mesoamerican river network with contrasting climate and flow conditions.Crossref | GoogleScholarGoogle Scholar |
Peterson, B. J., and Fry, B. (1987). Stable isotopes in ecosystem studies. Annual Review of Ecology and Systematics 18, 293–320.
| Stable isotopes in ecosystem studies.Crossref | GoogleScholarGoogle Scholar |
Post, D. M. (2002). Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83, 703–718.
| Using stable isotopes to estimate trophic position: models, methods, and assumptions.Crossref | GoogleScholarGoogle Scholar |
Power, M. E., Parker, M. S., and Dietrich, W. E. (2008). Seasonal reassembly of a river food web: floods, droughts, and impacts of fish. Ecological Monographs 78, 263–282.
| Seasonal reassembly of a river food web: floods, droughts, and impacts of fish.Crossref | GoogleScholarGoogle Scholar |
Pringle, C. (2003). What is hydrologic connectivity and why is it ecologically important? Hydrological Processes 17, 2685–2689.
| What is hydrologic connectivity and why is it ecologically important?Crossref | GoogleScholarGoogle Scholar |
Roach, K. A. (2013). Environmental factors affecting incorporation of terrestrial material into large river food webs. Freshwater Science 32, 283–298.
| Environmental factors affecting incorporation of terrestrial material into large river food webs.Crossref | GoogleScholarGoogle Scholar |
Roach, K. A., and Winemiller, K. O. (2015). Hydrologic regime and turbidity influence entrance of terrestrial material into river food webs. Canadian Journal of Fisheries and Aquatic Sciences 72, 1099–1112.
| Hydrologic regime and turbidity influence entrance of terrestrial material into river food webs.Crossref | GoogleScholarGoogle Scholar |
Roach, K. A., Winemiller, K. O., Layman, C. A., and Zeug, S. C. (2009). Consistent trophic patterns among fishes in lagoon and channel habitats of a tropical floodplain river: evidence from stable isotopes. Acta Oecologica 35, 513–522.
| Consistent trophic patterns among fishes in lagoon and channel habitats of a tropical floodplain river: evidence from stable isotopes.Crossref | GoogleScholarGoogle Scholar |
Roach, K. A., Winemiller, K. O., and Davis, S. E. (2014). Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients. Freshwater Biology 59, 1278–1293.
| Autochthonous production in shallow littoral zones of five floodplain rivers: effects of flow, turbidity and nutrients.Crossref | GoogleScholarGoogle Scholar |
Saikia, W. (2011). Review of periphyton as mediator of nutrient transfer in aquatic ecosystems. Ecologia Balkanica 3, 65–78.
Schmitter-Soto, J. J. (2017). A revision of Astyanax (Characiformes: Characidae) in Central and North America, with the description of nine new species. Journal of Natural History 51, 1331–1424.
| A revision of Astyanax (Characiformes: Characidae) in Central and North America, with the description of nine new species.Crossref | GoogleScholarGoogle Scholar |
Sepúlveda-Lozada, A., Mendoza-Carranza, M., Wolff, M., Saint-Paul, U., and Ponce-Mendoza, A. (2015). Differences in food web structure of mangroves and freshwater marshes: evidence from stable isotope studies in the southern Gulf of Mexico. Wetlands Ecology and Management 23, 293–314.
| Differences in food web structure of mangroves and freshwater marshes: evidence from stable isotope studies in the southern Gulf of Mexico.Crossref | GoogleScholarGoogle Scholar |
Sepúlveda-Lozada, A., Saint-Paul, U., Mendoza-Carranza, M., Wolff, M., and Yáñez-Arancibia, A. (2017). Flood pulse induced changes in isotopic niche and resource utilization of consumers in a Mexican floodplain system. Aquatic Sciences 79, 597–616.
| Flood pulse induced changes in isotopic niche and resource utilization of consumers in a Mexican floodplain system.Crossref | GoogleScholarGoogle Scholar |
Soria-Barreto, M., González-Díaz, A. A., Castillo-Domínguez, A., Álvarez-Pliego, N., and Rodiles-Hernández, R. (2018). Diversidad íctica en la cuenca del Usumacinta, México. Revista Mexicana de Biodiversidad 89, S100–S117.
| Diversidad íctica en la cuenca del Usumacinta, México.Crossref | GoogleScholarGoogle Scholar |
Soria-Barreto, M., Rodiles-Hernández, R., and Winemiller, K. (2019). Trophic ecomorphology of cichlid fishes of Selva Lacandona, Usumacinta, Mexico. Environmental Biology of Fishes 102, 985–996.
| Trophic ecomorphology of cichlid fishes of Selva Lacandona, Usumacinta, Mexico.Crossref | GoogleScholarGoogle Scholar |
Thorp, J. H., and Delong, M. D. (1994). The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems. Oikos 70, 305–308.
| The riverine productivity model: an heuristic view of carbon sources and organic processing in large river ecosystems.Crossref | GoogleScholarGoogle Scholar |
Thorp, J. H., and Delong, M. D. (2002). Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96, 543–550.
| Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers.Crossref | GoogleScholarGoogle Scholar |
Thorp, J. H., Delong, M. D., Greenwood, K. S., and Casper, A. F. (1998). Isotopic analysis of three food web theories in constricted and floodplain regions of a large river. Oecologia 117, 551–563.
| Isotopic analysis of three food web theories in constricted and floodplain regions of a large river.Crossref | GoogleScholarGoogle Scholar | 28307681PubMed |
Trinidad-Ocaña, C., Juárez-Flores, J., Sánchez, A. J., and Barba-Macías, E. (2018). Diversidad de moluscos y crustáceos acuáticos en tres zonas de la cuenca del río Usumacinta, México. Revista Mexicana de Biodiversidad 89, S65–S78.
| Diversidad de moluscos y crustáceos acuáticos en tres zonas de la cuenca del río Usumacinta, México.Crossref | GoogleScholarGoogle Scholar |
Vadeboncoeur, Y., and Power, M. E. (2017). Attached algae: the cryptic base of inverted trophic pyramids in freshwaters. Annual Review of Ecology, Evolution, and Systematics 48, 255–279.
| Attached algae: the cryptic base of inverted trophic pyramids in freshwaters.Crossref | GoogleScholarGoogle Scholar |
Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
| Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.Crossref | GoogleScholarGoogle Scholar | 12802678PubMed |
Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
| The river continuum concept.Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O. (1990). Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60, 331–367.
| Spatial and temporal variation in tropical fish trophic networks.Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O. (2005). Floodplain river food webs: generalization and implication for fisheries management. In ‘Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries’. (Eds R. L. Welcomme and T. Petr.) pp. 285–312. (Mekong River Comission: Phnom Penh, Cambodia.)
Winkelman, D. L., and Van den Avyle, M. J. (2002). A comparison of diets of Blueback Herring (Alosa aestivalis) and Threadfin Shad (Dorosoma petenense) in a large Southeastern U.S. Reservoir. Journal of Freshwater Ecology 17, 209–221.
| A comparison of diets of Blueback Herring (Alosa aestivalis) and Threadfin Shad (Dorosoma petenense) in a large Southeastern U.S. Reservoir.Crossref | GoogleScholarGoogle Scholar |
Zeug, S. C., and Winemiller, K. O. (2008). Evidence supporting the importance of terrestrial carbon in a large-river food web. Ecology 89, 1733–1743.
| Evidence supporting the importance of terrestrial carbon in a large-river food web.Crossref | GoogleScholarGoogle Scholar | 18589537PubMed |