Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Assessing methods for restoring seagrass (Zostera muelleri) in Australia’s subtropical waters

Nele Svenja Wendländer A C , Troels Lange A , Rod M. Connolly B , Erik Kristensen A , Ryan M. Pearson B , Thomas Valdemarsen A and Mogens R. Flindt A
+ Author Affiliations
- Author Affiliations

A Department of Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark.

B Australian Rivers Institute – Coast and Estuaries, School of Environment and Science, Griffith University, Gold Coast, Parklands Drive, Southport, Qld 4215, Australia.

C Corresponding author. Email: nelew@biology.sdu.dk

Marine and Freshwater Research 71(8) 996-1005 https://doi.org/10.1071/MF19237
Submitted: 14 July 2019  Accepted: 30 September 2019   Published: 16 December 2019

Abstract

Zostera muelleri, the dominant seagrass species along the eastern coastline of Australia, has declined due to anthropogenic stressors, including reduced water clarity. Water quality has improved in recent years, but restoration efforts are hampered by limited knowledge of transplantation methods. To support future restoration efforts, we tested multiple techniques for transplanting mature seagrass shoots: (1) sediment cores with intact seagrass plants (plug); (2) individual shoots anchored on frames (frame); (3) frame methods combined with subsurface mats to exclude bioturbating animals (mat + frame); (4) above-ground cages to exclude grazing fish (cage + frame); and (5) combined treatment of above-ground cages and subsurface mats (cage + mat + frame). Transplant success over 10 months showed considerable variability among locations. At one site, seagrass persisted in all treatments, with highest growth in the mat + frame treatment. At two locations, uncaged shoots were lost within 6–35 days of transplanting, presumably due to grazing by fish. In treatments with cages, growth was again highest in the mat + frame treatment. At the fourth location, all seagrass was lost due to physical stress. Thus, we conclude that transplantation success is highest using the mat + frame technique, but overall success depends on careful assessment of biotic and abiotic stressors at the chosen locations.

Additional keywords: bioturbation, grazing, method assessment, restoration.


References

Abal, E. G., Loneragan, N., Bowen, P., Perry, C. J., Udy, J. W., and Dennison, W. C. (1994). Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity. Journal of Experimental Marine Biology and Ecology 178, 113–129.
Physiological and morphological responses of the seagrass Zostera capricorni Aschers, to light intensity.Crossref | GoogleScholarGoogle Scholar |

Abdullah, M. M., and Lee, S. Y. (2016). Meiofauna and crabs in mangroves and adjoining sandflats: is the interaction physical or trophic? Journal of Experimental Marine Biology and Ecology 479, 69–75.
Meiofauna and crabs in mangroves and adjoining sandflats: is the interaction physical or trophic?Crossref | GoogleScholarGoogle Scholar |

Aragones, L., and Marsh, H. (1999). Impact of dugong grazing and turtle cropping on tropical seagrass communities. Pacific Conservation Biology 5, 277–288.
Impact of dugong grazing and turtle cropping on tropical seagrass communities.Crossref | GoogleScholarGoogle Scholar |

Atlas of Living Australia (2019). Girella tricuspidata (Quoy & Gaimard, 1824): Luderick. In ‘Atlas of Living Australia’. (CSIRO: Canberra, ACT, Australia.) Available at https://bie.ala.org.au/species/urn:lsid:biodiversity.org.au:afd.taxon:b9adeefd-97c6-4748-a1fe-489fbc7398b4 [Verified 30 October 2019].

Australian Wetlands (2009). Southport Parklands redevelopment seagrass establishment report. Report for ABIGROUP Constructions Pty Ltd. Australian Wetlands Pty Ltd, Byron Bay, NSW, Australia.

Berkenbusch, K., Rowden, A. A., and Myers, T. E. (2007). Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages. Journal of Experimental Marine Biology and Ecology 341, 70–84.
Interactions between seagrasses and burrowing ghost shrimps and their influence on infaunal assemblages.Crossref | GoogleScholarGoogle Scholar |

Butler, S., and Bird, F. (2007). Estimating density of intertidal ghost shrimps using counts of burrow openings. Is the method reliable? Hydrobiology 589, 303–314.
Estimating density of intertidal ghost shrimps using counts of burrow openings. Is the method reliable?Crossref | GoogleScholarGoogle Scholar |

Cadée, G. C. (1976). Sediment reworking by arenicola marina on tidal flats in the Dutch Wadden Sea. Netherlands Journal of Sea Research 10, 440–460.
Sediment reworking by arenicola marina on tidal flats in the Dutch Wadden Sea.Crossref | GoogleScholarGoogle Scholar |

Connolly, R., Dunn, R., Flindt, M., Jackson, E., Kristensen, E., McKenna, S., Olds, A., Rasheed, M., Schlacher, T., and York, P. (2016). Assessment of the effects of foreshore nourishment and mitigation projects on seagrass ecosystems. Report to Gold Coast Waterways Authority, SRMP-004, Griffith University, Gold Coast, Qld, Australia.

Consulting, V. D. M. (2012). Ecological investigations to support the Broadwater Masterplan. (Gold Coast City Council: Gold Coast, Qld, Australia.) Available at https://www.goldcoast.qld.gov.au/ecological-investigations-to-support-the-broadwater-masterplan-18929.html [Verified 31 October 2019].

Dos Santos, V. M., Matheson, F. E., Pilditch, C. A., and Elger, A. (2013). Seagrass resilience to waterfowl grazing in a temperate estuary: a multi-site experimental study. Journal of Experimental Marine Biology and Ecology 446, 194–201.
Seagrass resilience to waterfowl grazing in a temperate estuary: a multi-site experimental study.Crossref | GoogleScholarGoogle Scholar |

Duarte, C., Marba, N., Gacia, E., Fourqurean, J., Beggins, J., Barrón, C., and Apostolaki, E. (2010). Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles 24, GB4032.
Seagrass community metabolism: assessing the carbon sink capacity of seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Dunn, R., Waltham, N., Benfer, N., King, B., Lemckert, C., and Zigic, S. (2014). Gold Coast Broadwater: Southern Moreton Bay, Southeast Queensland (Australia). In ‘Estuaries of Australia in 2050 and Beyond’. (Ed. E. Wolanski.) pp. 93–109. (Springer: Dordrecht, Netherlands.)

Eklöf, J. S., Donadi, S., van der Heide, T., van der Zee, E. M., and Eriksson, B. K. (2015). Effects of antagonistic ecosystem engineers on macrofauna communities in a patchy, intertidal mudflat landscape. Journal of Sea Research 97, 56–65.
Effects of antagonistic ecosystem engineers on macrofauna communities in a patchy, intertidal mudflat landscape.Crossref | GoogleScholarGoogle Scholar |

Eriander, L., Infantes, E., Olofsson, M., Olsen, J., and Moksnes, P.-O. (2016). Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region. Journal of Experimental Marine Biology and Ecology 479, 76–88.
Assessing methods for restoration of eelgrass (Zostera marina L.) in a cold temperate region.Crossref | GoogleScholarGoogle Scholar |

Flindt, M., Pardal, M., Lillebø, A. I., Martins, I., and Marques, J. (1999). Nutrient cycling and plant dynamics in estuaries: a brief review. Acta Oecologica 20, 237–248.
Nutrient cycling and plant dynamics in estuaries: a brief review.Crossref | GoogleScholarGoogle Scholar |

Flindt, M., Rasmussen, E., Valdemarsen, T., Erichsen, A., Kaas, H., and Canal-Vergés, P. (2016). Using a GIS-tool to evaluate potential eelgrass reestablishment in estuaries. Ecological Modelling 338, 122–134.
Using a GIS-tool to evaluate potential eelgrass reestablishment in estuaries.Crossref | GoogleScholarGoogle Scholar |

Fonseca, M. S., Zieman, J. C., Thayer, G. W., and Fisher, J. S. (1983). The role of current velocity in structuring eelgrass (Zostera marina L.) meadows. Estuarine, Coastal and Shelf Science 17, 367–380.
The role of current velocity in structuring eelgrass (Zostera marina L.) meadows.Crossref | GoogleScholarGoogle Scholar |

Fonseca, M. F., Kennworthy, W. J., and Thayer, G. W. (1998). Guidelines for the conservation and restoration of seagrasses in the United States and adjacent waters. National Oceanic and Atmospheric Administration (NOAA), Coastal Ocean Program Decision Analyses 12, NOAA, Washington, DC, USA.

Goldenberg, S. U., and Erzini, K. (2014). Seagrass feeding choices and digestive strategies of the herbivorous fish Sarpa salpa. Journal of Fish Biology 84, 1474–1489.
Seagrass feeding choices and digestive strategies of the herbivorous fish Sarpa salpa.Crossref | GoogleScholarGoogle Scholar | 24684485PubMed |

Kendrick, G., Orth, R., Statton, J., Hovey, R., Ruiz Montoya, L., Lowe, R., Krauss, S., and Sinclair, E. (2017). Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses. Biological Reviews of the Cambridge Philosophical Society 92, 921–938.
Demographic and genetic connectivity: the role and consequences of reproduction, dispersal and recruitment in seagrasses.Crossref | GoogleScholarGoogle Scholar | 27010433PubMed |

Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana, C. O., and Banta, G. T. (2012). What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446, 285–302.
What is bioturbation? The need for a precise definition for fauna in aquatic sciences.Crossref | GoogleScholarGoogle Scholar |

Kuusemäe, K., Rasmussen, E. K., Canal-Vergés, P., and Flindt, M. R. (2016). Modelling stressors on the eelgrass recovery process in two Danish estuaries. Ecological Modelling 333, 11–42.
Modelling stressors on the eelgrass recovery process in two Danish estuaries.Crossref | GoogleScholarGoogle Scholar |

Kuusemäe, K., von Thenen, M., Lange, T., Rasmussen, E. K., Pothoff, M., Sousa, A. I., and Flindt, M. R. (2018). Agent based modelling (ABM) of eelgrass (Zostera marina) seedbank dynamics in a shallow Danish estuary. Ecological Modelling 371, 60–75.
Agent based modelling (ABM) of eelgrass (Zostera marina) seedbank dynamics in a shallow Danish estuary.Crossref | GoogleScholarGoogle Scholar |

Lillebø, A. I., Neto, J. M., Flindt, M., Marques, J., and Pardal, M. (2004). Phosphorous dynamics in a temperate intertidal estuary. Estuarine, Coastal and Shelf Science 61, 101–109.
Phosphorous dynamics in a temperate intertidal estuary.Crossref | GoogleScholarGoogle Scholar |

Matheson, F. E., Reed, J., Dos Santos, V. M., Mackay, G., and Cummings, V. J. (2017). Seagrass rehabilitation: successful transplants and evaluation of methods at different spatial scales. New Zealand Journal of Marine and Freshwater Research 51, 96–109.
Seagrass rehabilitation: successful transplants and evaluation of methods at different spatial scales.Crossref | GoogleScholarGoogle Scholar |

Maxwell, P. S., Eklöf, J. S., van Katwijk, M. M., O’Brien, K. R., de la Torre-Castro, M., Boström, C., Bouma, T. J., Krause-Jensen, D., Unsworth, R. K. F., van Tussenbroek, B. I., and van der Heide, T. (2017). The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review. Biological Reviews of the Cambridge Philosophical Society 92, 1521–1538.
The fundamental role of ecological feedback mechanisms for the adaptive management of seagrass ecosystems – a review.Crossref | GoogleScholarGoogle Scholar | 27581168PubMed |

McLennan, M., and Sumpton, W. (2005). The distribution of seagrasses and the viability of seagrass transplanting in the Broadwater, Gold Coast, Queensland. Proceedings of the Royal Society of Queensland 112, 31–38.

McLeod, E., Chmura, G., Bouillon, S., Salm, R., Björk, M., Duarte, C., Lovelock, C., Schlesinger, W., and Silliman, B. R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment 9, 552–560.
A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2.Crossref | GoogleScholarGoogle Scholar |

Mirfenderesk, H., and Tomlinson, R. (2008). Observation and analysis of hydrodynamic parameters in tidal inlets in a predominantly semidiurnal regime. Journal of Coastal Research 24, 1229–1239.
Observation and analysis of hydrodynamic parameters in tidal inlets in a predominantly semidiurnal regime.Crossref | GoogleScholarGoogle Scholar |

Moksnes, P.-O., Gullström, M., Tryman, K., and Baden, S. (2008). Trophic cascades in a temperate seagrass community. Oikos 117, 763–777.
Trophic cascades in a temperate seagrass community.Crossref | GoogleScholarGoogle Scholar |

Morton, R. M. (1992). Fish assemblages in residential canal developments near the mouth of a subtropical Queensland estuary. Marine and Freshwater Research 43, 1359–1371.
Fish assemblages in residential canal developments near the mouth of a subtropical Queensland estuary.Crossref | GoogleScholarGoogle Scholar |

Natura Pacific (2012). An underwater treasure: seagrass health and abundance on the Gold Coast. Available at https://www.natura-pacific.com/an-underwater-treasure-seagrass-health-and-abundance-on-the-gold-coast/ [Verified 30 October 2019].

Nelson, W. G. (2017). Development of an epiphyte indicator of nutrient enrichment: threshold values for seagrass epiphyte load. Ecological Indicators 74, 343–356.
Development of an epiphyte indicator of nutrient enrichment: threshold values for seagrass epiphyte load.Crossref | GoogleScholarGoogle Scholar | 30294244PubMed |

Nordlund, L. M., Jackson, E. L., Nakaoka, M., Samper-Villarreal, J., Beca-Carretero, P., and Creed, J. C. (2018). Seagrass ecosystem services – what’s next? Marine Pollution Bulletin 134, 145–151.
Seagrass ecosystem services – what’s next?Crossref | GoogleScholarGoogle Scholar | 28938998PubMed |

Orth, R. J., Harwell, M. C., and Inglis, G. J. (2006). Ecology of seagrass seeds and seagrass dispersal processes. in ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth, and C. M. Duarte.) pp. 111–133. (Springer: Dordrecht, Netherlands.)

Orth, R. J., Moore, K. A., Marion, S. R., Wilcox, D. J., and Parrish, D. B. (2012). Seed addition facilitates eelgrass recovery in a coastal bay system. Marine Ecology Progress Series 448, 177–195.
Seed addition facilitates eelgrass recovery in a coastal bay system.Crossref | GoogleScholarGoogle Scholar |

Rasheed, M. A. (2004). Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. Journal of Experimental Marine Biology and Ecology 310, 13–45.
Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction.Crossref | GoogleScholarGoogle Scholar |

Seagrass-Watch (2015). Gold Coast. Available at http://www.seagrasswatch.org/GoldCoast.html [Verified 5 June 2015].

Short, F., Carruthers, T., Dennison, W., and Waycott, M. (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350, 3–20.
Global seagrass distribution and diversity: a bioregional model.Crossref | GoogleScholarGoogle Scholar |

Short, F. T., Williams, S. L., Carruthers, T. J. R., Waycott, M., Kendrick, G. A., Fourqurean, J. W., Callabine, A., Kenworthy, W. J., and Dennison, W. C. (2010). Zostera muelleri: species code: Zc. In ‘The IUCN Red List of Threatened Species’, 2010. e.T173384A7004901. (International Union for Conservation of Nature and Natural Resources.) Available at https://www.iucnredlist.org/species/173384/7004901 [Verified 28 February 2011].

Sievers, M., Brown, C. J., Tulloch, V. J. D., Pearson, R. M., Haig, J. A., Turschwell, M. P., and Connolly, R. M. (2019). The role of vegetated coastal wetlands for marine megafauna conservation. Trends in Ecology & Evolution 34, 807–817.
The role of vegetated coastal wetlands for marine megafauna conservation.Crossref | GoogleScholarGoogle Scholar |

Smith, T., York, P., Macreadie, P., Keough, M., Ross, D., and Sherman, C. (2016). Spatial variation in reproductive effort of a southern Australian seagrass. Marine Environmental Research 120, 214–224.
Spatial variation in reproductive effort of a southern Australian seagrass.Crossref | GoogleScholarGoogle Scholar | 27592387PubMed |

Suchanek, T. H. (1983). Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation. Journal of Marine Research 41, 281–298.
Control of seagrass communities and sediment distribution by Callianassa (Crustacea, Thalassinidea) bioturbation.Crossref | GoogleScholarGoogle Scholar |

Unsworth, R. K. F., McKenzie, L. J., Collier, C. J., Cullen-Unsworth, L. C., Duarte, C. M., Eklöf, J. S., Jarvis, J. C., Jones, B. L., and Nordlund, L. M. (2019). Global challenges for seagrass conservation. Ambio 48, 801–815.
Global challenges for seagrass conservation.Crossref | GoogleScholarGoogle Scholar |

Valdemarsen, T., Canal-Vergés, P., Kristensen, E., Holmer, M., Kristiansen, M. D., and Flindt, M. R. (2010). Vulnerability of Zostera marina seedlings to physical stress. Marine Ecology 418, 119–130.
Vulnerability of Zostera marina seedlings to physical stress.Crossref | GoogleScholarGoogle Scholar |

Valdemarsen, T., Wendelboe, K., Egelund, J., Kristensen, E., and Flindt, M. (2011). Burial of seeds and seedlings by the lugworm Arenicola marina hampers seagrass (Zostera marina) recovery. Journal of Experimental Marine Biology and Ecology 410, 45–52.
Burial of seeds and seedlings by the lugworm Arenicola marina hampers seagrass (Zostera marina) recovery.Crossref | GoogleScholarGoogle Scholar |

Valentine, J., Duffy, J. W. D., Larkum, A., Orth, R., and Duarte, C. (2006). The central role of grazing in seagrass ecology. In ‘Seagrasses: Biology, Ecology and Conservation’. (Eds A. W. D. Larkum, R. J. Orth, and C. M. Duarte.) pp. 463–501. (Springer: Dordrecht, Netherlands.)

van der Heide, J., van Nes, E. H., Geerling, G. W., Smolders, A. P. J., and Bouma, T. J. (2007). Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration. Ecosystems 10, 1311–1322.
Positive feedbacks in seagrass ecosystems: implications for success in conservation and restoration.Crossref | GoogleScholarGoogle Scholar |

van Katwijk, M., Thorhaug, A., Marba, N., Orth, R., Duarte, C., Kendrick, G., Althuizen, H. J. I., Balestri, E., Bernard, G., Cambridge, M., Cunha, A., Durance, C., Giesen, W., Han, Q., Hosokawa, S., Kiswara, W., Komatsu, T., Lardicci, C., Lee, K.-S., and Verduin, J. (2016). Global analysis of seagrass restoration: the importance of large-scale planting. Journal of Applied Ecology 53, 567–578.
Global analysis of seagrass restoration: the importance of large-scale planting.Crossref | GoogleScholarGoogle Scholar |

van Wesenbeeck, B., van de Koppel, J., Herman, P. P., Bakker, J., and Bouma, T. (2007). Biomechanical warfare in ecology; negative interactions between species by habitat modification. Oikos 116, 742–750.
Biomechanical warfare in ecology; negative interactions between species by habitat modification.Crossref | GoogleScholarGoogle Scholar |

Walker, D. I., and McComb, A. J. (1992). Seagrass degradation in Australian coastal waters. Marine Pollution Bulletin 25, 191–195.
Seagrass degradation in Australian coastal waters.Crossref | GoogleScholarGoogle Scholar |

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12377–12381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 19587236PubMed |

York, P. H., and Smith, T. M. (2013). Research, monitoring and management of seagrass ecosystems adjacent to port developments in central Queensland: literature review and gap analysis. Report CA120018 for the Port Curtis and Port Alma Ecosystem Research & Monitoring Program, Deakin University, Geelong, Vic., Australia.

York, P. H., Gruber, R. K., Hill, R., Ralph, P. J., Booth, D. J., and Macreadie, P. I. (2013). Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PLoS One 8, e76377.
Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature.Crossref | GoogleScholarGoogle Scholar | 24124551PubMed |