Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Distribution of Palinuridae and Scyllaridae phyllosoma larvae within the East Australian Current: a climate change hot spot

Laura N. Woodings https://orcid.org/0000-0001-7339-8142 A F , Nicholas P. Murphy A , Andrew Jeffs B , Iain M. Suthers C , Geoffrey W. Liggins D and Jan M. Strugnell E
+ Author Affiliations
- Author Affiliations

A Department of Ecology, Environment and Evolution, School of Life Sciences, La Trobe University, Kingsbury Drive, Bundoora, Vic. 3086, Australia.

B School of Biological Sciences and Institute of Marine Science, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.

C School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

D NSW Department of Primary Industries, Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW 2088, Australia

E Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and Engineering, James Cook University, James Cook Drive, Townsville, Qld 4811, Australia.

F Corresponding author. Email: 17869067@students.latrobe.edu.au

Marine and Freshwater Research 70(7) 1020-1033 https://doi.org/10.1071/MF18331
Submitted: 3 September 2018  Accepted: 5 May 2019   Published: 30 May 2019

Abstract

Many marine species are predicted to shift their ranges poleward due to rising ocean temperatures driven by climate change. For benthic marine species with pelagic larval stages, poleward range shifts are often facilitated through pelagic larval transport via western boundary currents (WBC). By surveying pelagic larval distributions within WBCs, species advected poleward of their known distributions can be identified and monitored. Palinurid and scyllarid lobster larvae (phyllosoma) have long pelagic larval durations, providing high potential for poleward advection. We surveyed spatial distribution of phyllosoma within the western-boundary East Australian Current. Due to difficulties morphologically identifying phyllosoma, we tested the utility of molecular identification using cytochrome c oxidase I (COI). From COI sequences of 56 phyllosoma and one postlarva, 65% of sequences consisted of good-quality mitochondrial DNA. Across water types sampled, scyllarid phyllosoma exhibited relatively homogeneous distribution, whereas palinurid phyllosoma exhibited heterogeneous distribution with greatest abundance inside a warm core eddy on the south coast of eastern Australia. Two tropical and one subtropical palinurid species were detected ~75–1800 km to the south or south-west of their known species distribution. Our results indicate tropical lobster species are reaching temperate regions, providing these species the opportunity to establish in temperate regions if or when environmental conditions become amenable to settlement.

Additional keywords: cytochrome c oxidase I, dispersal, eddies, range shift, spiny lobster, western boundary current, zooplankton.


References

Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control 19, 716–723.
A new look at the statistical model identification.Crossref | GoogleScholarGoogle Scholar |

Bates, A. E., Pecl, G. T., Frusher, S., Hobday, A. J., Wernberg, T., Smale, D. A., Sunday, J. M., Hill, N. A., Dulvy, N. K., Colwell, R. K., Holbrook, N. J., Fulton, E. A., Slawinski, D., Feng, M., Edgar, G. J., Radford, B. T., Thompson, P. A., and Watson, R. A. (2014). Defining and observing stages of climate-mediated range shifts in marine systems. Global Environmental Change 26, 27–38.
Defining and observing stages of climate-mediated range shifts in marine systems.Crossref | GoogleScholarGoogle Scholar |

Bensasson, D., Zhang, D., Hartl, D. L., and Hewitt, G. M. (2001). Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution 16, 314–321.
Mitochondrial pseudogenes: evolution’s misplaced witnesses.Crossref | GoogleScholarGoogle Scholar |

Booth, J., and Phillips, B. (1994). Early life history of spiny lobster. Crustaceana 66, 271–294.
Early life history of spiny lobster.Crossref | GoogleScholarGoogle Scholar |

Booth, J. D., Webber, W. R., Sekiguchi, H., and Coutures, E. (2005). Diverse larval recruitment strategies within the Scyllaridae. New Zealand Journal of Marine and Freshwater Research 39, 581–592.
Diverse larval recruitment strategies within the Scyllaridae.Crossref | GoogleScholarGoogle Scholar |

Booth, D. J., Figueira, W. F., Gregson, M. A., Brown, L., and Beretta, G. (2007). Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuarine, Coastal and Shelf Science 72, 102–114.
Occurrence of tropical fishes in temperate southeastern Australia: role of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Bracken-Grissom, H. D., Ahyong, S. T., Wilkinson, R. D., Feldmann, R. M., Schweitzer, C. E., Breinholt, J. W., Bendall, M., Palero, F., Chan, T., Felder, D. L., Robles, R., Chu, K., Tsang, L., Kim, D., Martin, J. L., and Crandall, K. A. (2014). The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheida, Polychelida). Systematic Biology 63, 457–479.
The emergence of lobsters: phylogenetic relationships, morphological evolution and divergence time comparisons of an ancient group (Decapoda: Achelata, Astacidea, Glypheida, Polychelida).Crossref | GoogleScholarGoogle Scholar | 24562813PubMed |

Brandt, S. (1981). Effects of a warm-core eddy on fish distributions in the Tasman Sea off East Australia. Marine Ecology Progress Series 6, 19–33.
Effects of a warm-core eddy on fish distributions in the Tasman Sea off East Australia.Crossref | GoogleScholarGoogle Scholar |

Buhay, J. E. (2009). ‘COI-like’ sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology 29, 96–110.
COI-like’ sequences are becoming problematic in molecular systematic and DNA barcoding studies.Crossref | GoogleScholarGoogle Scholar |

Canto-García, A. A., Goldstein, J. S., Sosa-Cordero, E., and Carrillo, L. (2016). Distribution and abundance of Panulirus spp. phyllosomas off the Mexican Caribbean coast. Bulletin of Marine Science 92, 207–227.
Distribution and abundance of Panulirus spp. phyllosomas off the Mexican Caribbean coast.Crossref | GoogleScholarGoogle Scholar |

Carew, M. E., Nichols, S. J., Batovska, J., St Clair, R., Murphy, N. P., Blacket, M. J., and Shackleton, M. E. (2017). A DNA barcode database of Australia’s freshwater macroinvertebrate fauna. Marine and Freshwater Research 68, 1788–1802.
A DNA barcode database of Australia’s freshwater macroinvertebrate fauna.Crossref | GoogleScholarGoogle Scholar |

Chan, T. Y., and Ng, P. K. L. (2001). On the nomenclature of the commercially important spiny lobsters Panulirus longipes femoristriga (Von Martens, 1872), P. bispinosus Borradaile, 1899, and P. albiflagellum Chan & Chu, 1996 (Decapoda, Palinuridae). Crustaceana 74, 123–127.
On the nomenclature of the commercially important spiny lobsters Panulirus longipes femoristriga (Von Martens, 1872), P. bispinosus Borradaile, 1899, and P. albiflagellum Chan & Chu, 1996 (Decapoda, Palinuridae).Crossref | GoogleScholarGoogle Scholar |

Chan, T., Butler, M., Cockcroft, A., MacDiarmid, A., and Wahle, R. (2011). White-whiskered coral crayfish Panulirus femoristriga. In ‘The IUCN Red List of Threatened Species 2011’, e.T170031A6714256. (International Union for Conservation of Nature and Natural Resources.) Available at https://www.iucnredlist.org/species/170031/6714256 [Verified 14 May 2019].

Chiswell, S. M., and Booth, J. D. (1999). Rock lobster Jasus edwardsii larval retention by the Wairarapa Eddy off New Zealand. Marine Ecology Progress Series 183, 227–240.
Rock lobster Jasus edwardsii larval retention by the Wairarapa Eddy off New Zealand.Crossref | GoogleScholarGoogle Scholar |

Chow, S., Suzuki, N., Imai, H., and Yoshimura, T. (2006a). Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific. Marine Biotechnology 8, 260–267.
Molecular species identification of spiny lobster phyllosoma larvae of the genus Panulirus from the northwestern Pacific.Crossref | GoogleScholarGoogle Scholar | 16555028PubMed |

Chow, S., Yamada, H., and Suzuki, N. (2006b). Identification of mid- to final stage phyllosoma larvae of the genus Panulirus White, 1847 collected in the Ryukyu Archipelago. Crustaceana 79, 745–764.
Identification of mid- to final stage phyllosoma larvae of the genus Panulirus White, 1847 collected in the Ryukyu Archipelago.Crossref | GoogleScholarGoogle Scholar |

Collins, R. A., and Cruickshank, R. H. (2013). The seven deadly sins of DNA barcoding. Molecular Ecology Resources 13, 969–975.
| 23280099PubMed |

Cowen, R. K., and Sponaugle, S. (2009). Larval dispersal and marine population connectivity. Annual Review of Marine Science 1, 443–466.
Larval dispersal and marine population connectivity.Crossref | GoogleScholarGoogle Scholar | 21141044PubMed |

Darriba, D., Taboada, G., Doallo, R., and Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9, 772.
jModelTest 2: more models, new heuristics and parallel computing.Crossref | GoogleScholarGoogle Scholar | 22847109PubMed |

Deiana, A. M., Cau, A., Coluccia, E., Cannas, R., Milia, A., Salvadori, S., and Libertini, A. (1999). Genome size and AT-DNA content in thirteen species of Decapoda. In ‘Crustaceans and the Biodiversity Crisis’. (Eds F. Schram and J. von Vaupel Klein.) pp. 981–985. (Kninklijke Brill NV: Leiden, Netherlands.)

Dennis, D. M., Pitcher, C. R., and Skewes, T. D. (2001). Distribution and transport pathways of Panulirus ornatus (Fabricius, 1776) and Panulirus spp. larvae in the Coral Sea, Australia. Marine and Freshwater Research 52, 1175–1185.
Distribution and transport pathways of Panulirus ornatus (Fabricius, 1776) and Panulirus spp. larvae in the Coral Sea, Australia.Crossref | GoogleScholarGoogle Scholar |

Folmer, O., Black, M., Hoeh, W., Lutz, R., and Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294–299.
| 7881515PubMed |

García-Rodríguez, F. J., Ponce-Díaz, G., Muñoz-García, I., González-Armas, R., and Perez-Enriquez, R. (2008). Mitochondrial DNA markers to identify commercial spiny lobster species (Panulirus spp.) from the Pacific coast of Mexico: an application on phyllosoma larvae. Fishery Bulletin 106, 204–212.

Genis-Armero, R., Guerao, G., Abelló, P., González-Gordillo, J. I., Cuesta, J. A., Corbari, L., Clark, P. F., Capaccioni-Azzati, R., and Palero, F. (2017). Possible amphi-atlantic dispersal of scyllarus lobsters (crustacea: Scyllaridae): molecular and larval evidence. Zootaxa 4306, 325–338.
Possible amphi-atlantic dispersal of scyllarus lobsters (crustacea: Scyllaridae): molecular and larval evidence.Crossref | GoogleScholarGoogle Scholar |

Guindon, S., and Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology 52, 696–704.
A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood.Crossref | GoogleScholarGoogle Scholar | 14530136PubMed |

Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., and Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology 59, 307–321.
New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0.Crossref | GoogleScholarGoogle Scholar | 20525638PubMed |

Higa, T., Fujita, Y., and Shokita, S. (2005). Complete larval development of a scyllarine lobster Galearctus kitanoviriosus (Harada, 1962) (Decapoda: Scyllaridae: Scyllarinae), reared under laboratory conditions. Crustacean Research 34, 1–26.
Complete larval development of a scyllarine lobster Galearctus kitanoviriosus (Harada, 1962) (Decapoda: Scyllaridae: Scyllarinae), reared under laboratory conditions.Crossref | GoogleScholarGoogle Scholar |

Holthuis, L. B. (2002). The Indo-Pacific scyllarine lobsters (Crustacea, Decapoda, Scyllaridae). Zoosystema 24, 499–529.

Jeffs, A. G., Montgomery, J. C., and Tindle, C. T. (2005). How do spiny lobster post-larvae find the coast? New Zealand Journal of Marine and Freshwater Research 39, 605–617.
How do spiny lobster post-larvae find the coast?Crossref | GoogleScholarGoogle Scholar |

Jimenez, A., Kinsey, S., Dillaman, R., and Kapraun, D. (2010). Nuclear DNA content variation associated with muscle fiber hypertrophic growth in decapod crustaceans. Genome 53, 161–171.
Nuclear DNA content variation associated with muscle fiber hypertrophic growth in decapod crustaceans.Crossref | GoogleScholarGoogle Scholar | 20237594PubMed |

Johnson, M. (1971). The palinurid and scyllarid lobster larvae of the tropical eastern Pacific and their distribution as related to the prevailing hydrography. Bulletin of the Scripps Institution of Oceanography 19, 1–36.

Johnson, C. R., Banks, S. C., Barrett, N. S., Cazassus, F., Dunstan, P. K., Edgar, G. J., Frusher, S. D., Gardner, C., Haddon, M., Helidoniotis, F., Hill, K. L., Holbrook, N. J., Hosie, G. W., Last, P. R., Ling, S. D., Melbourne-Thomas, J., Miller, K., Pecl, G. T., Richardson, A. J., Ridgway, K. R., Rintoul, S. R., Ritz, D. A., Ross, D. J., Sanderson, J. C., Sheperd, S. A., Slotwinski, A., Swadling, K. M., and Taw, N. (2011). Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400, 17–32.
Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Katoh, K., and Standley, D. M. (2013). MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30, 772–780.
MAFFT multiple sequence alignment software version 7: improvements in performance and usability.Crossref | GoogleScholarGoogle Scholar | 23329690PubMed |

Katoh, K., Misawa, K., Kuma, K., and Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30, 3059–3066.
MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform.Crossref | GoogleScholarGoogle Scholar | 12136088PubMed |

Keane, J. P., and Neira, F. J. (2008). Larval fish assemblages along the south-eastern Australian shelf: linking mesoscale non-depth-discriminate structure and water masses. Fisheries Oceanography 17, 263–280.
Larval fish assemblages along the south-eastern Australian shelf: linking mesoscale non-depth-discriminate structure and water masses.Crossref | GoogleScholarGoogle Scholar |

Kittaka, J., Ono, K., and Booth, D. J. (1997). Complete development of the green rock lobster, Jasus verreauxi from egg to juvenile. Bulletin of Marine Science 61, 57–71.

Konishi, K., Suzuki, N., and Chow, S. (2006). A late-stage phyllosoma larva of the spiny lobster Panulirus echinatus Smith, 1869 (Crustacea: Palinuridae) identified by DNA analysis. Journal of Plankton Research 28, 841–845.
A late-stage phyllosoma larva of the spiny lobster Panulirus echinatus Smith, 1869 (Crustacea: Palinuridae) identified by DNA analysis.Crossref | GoogleScholarGoogle Scholar |

Lavalli, K. L., and Spanier, E. (Eds) (2007). ‘The Biology and Fisheries of the Slipper Lobster.’ (CRC Press: Boca Raton, FL, USA.)

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

Lobel, P. S., and Robinson, A. R. (1988). Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters. Journal of Plankton Research 10, 1209–1223.
Larval fishes and zooplankton in a cyclonic eddy in Hawaiian waters.Crossref | GoogleScholarGoogle Scholar |

Matear, R. J., Chamberlain, M. A., Sun, C., and Feng, M. (2013). Climate change projection of the Tasman Sea from an eddy-resolving ocean model. Journal of Geophysical Research – C. Oceans 118, 2961–2976.
Climate change projection of the Tasman Sea from an eddy-resolving ocean model.Crossref | GoogleScholarGoogle Scholar |

Matsuda, H., and Yamakawa, T. (2000). The complete development and morphological changes of larval Panulirus longipes (Decapoda, Palinuridae) under laboratory conditions. Fisheries Science 66, 278–293.
The complete development and morphological changes of larval Panulirus longipes (Decapoda, Palinuridae) under laboratory conditions.Crossref | GoogleScholarGoogle Scholar |

Matsuda, H., Takenouchi, T., and Goldstein, J. S. (2006). The complete larval development of the pronghorn spiny lobster Panulirus penicillatus (Decapoda: Palinuridae) in culture. Journal of Crustacean Biology 26, 579–600.
The complete larval development of the pronghorn spiny lobster Panulirus penicillatus (Decapoda: Palinuridae) in culture.Crossref | GoogleScholarGoogle Scholar |

McWilliam, P. S., and Phillips, B. F. (1983). Phyllosoma larvae and other crustacean macrozooplankton associated with Eddy J, a warm-core eddy off south-eastern Australia. Marine and Freshwater Research 34, 653–663.
Phyllosoma larvae and other crustacean macrozooplankton associated with Eddy J, a warm-core eddy off south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

McWilliam, P. S., Phillips, B. F., and Kelly, S. (1995). Phyllosoma larvae of scyllarus species (Decapoda, Scyllaridae) from the Shelf Waters of Australia. Crustaceana 68, 537–566.
Phyllosoma larvae of scyllarus species (Decapoda, Scyllaridae) from the Shelf Waters of Australia.Crossref | GoogleScholarGoogle Scholar |

Palero, F., Genis-Armero, R., Hall, M. R., and Clark, P. F. (2016). DNA barcoding the phyllosoma of Scyllarides squammosus (H. Milne Edwards, 1837) (Decapoda: Achelata: Scyllaridae). Zootaxa 4139, 481–498.
DNA barcoding the phyllosoma of Scyllarides squammosus (H. Milne Edwards, 1837) (Decapoda: Achelata: Scyllaridae).Crossref | GoogleScholarGoogle Scholar | 27470820PubMed |

Pecl, G., Frusher, S., Gardner, C., Haward, M., Hobday, A., Jennings, S., Nursey-Bray, M., Punt, A., Revill, H., and van Putten, I. (2009). The east coast Tasmanian Rock Lobster Fishery: vulnerability to climate change impacts and adaptation response options. Report to the Department of Climate Change, Australia.

Pecl, G. T., Araújo, M. B., Bell, J. D., Blanchard, J., Bonebrake, T. C., Chen, I.-C., Clark, T. D., Colwell, R. K., Danielsen, F., Evengård, B., Falconi, L., Ferrier, S., Frusher, S., Garcia, R. A., Griffis, R. B., Hobday, A. J., Janion-Scheepers, C., Jarzyna, M. A., Jennings, S., Lenoir, J., Linnetved, H. I., Martin, V. Y., McCormack, P. C., McDonald, J., Mitchell, N. J., Mustonen, T., Pandolfi, J. M., Pettorelli, N., Popova, E., Robinson, S. A., Scheffers, B. R., Shaw, J. D., Sorte, C. J. B., Strugnell, J. M., Sunday, J. M., Tuanmu, M. N., Vergés, A., Villanueva, C., Wernberg, T., Wapstra, E., and Williams, S. E. (2017). Biodiversity redistribution under climate change: impacts on ecosystems and human well-being. Science 355, eaai9214.
Biodiversity redistribution under climate change: impacts on ecosystems and human well-being.Crossref | GoogleScholarGoogle Scholar | 28360268PubMed |

Phillips, B. F., and McWilliam, P. S. (1986). Phyllosoma and nisto stages of Scyllarus martensii Pfeffer (Decapoda, Scyllaridae) from the Gulf of Carpentaria, Australia. Crustaceana 51, 133–154.
Phyllosoma and nisto stages of Scyllarus martensii Pfeffer (Decapoda, Scyllaridae) from the Gulf of Carpentaria, Australia.Crossref | GoogleScholarGoogle Scholar |

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A. (2013). Marine taxa track local climate velocities. Science 341, 1239–1242.
Marine taxa track local climate velocities.Crossref | GoogleScholarGoogle Scholar | 24031017PubMed |

Pitt, N. R., Poloczanska, E. S., and Hobday, A. J. (2010). Climate-driven range changes in Tasmanian intertidal fauna. Marine and Freshwater Research 61, 963–970.
Climate-driven range changes in Tasmanian intertidal fauna.Crossref | GoogleScholarGoogle Scholar |

Poloczanska, E. S., Burrows, M. T., Brown, C. J., Molinos, J. G., Halpern, B. S., Hoegh-Guldberg, O., Kappel, C. V., Moore, P. J., Richardson, A. J., Schoeman, D. S., and Sydeman, W. J. (2016). Responses of marine organisms to climate change across oceans. Frontiers in Marine Science 3, 1–21.
Responses of marine organisms to climate change across oceans.Crossref | GoogleScholarGoogle Scholar |

Prasad, R. R., and Tampi, P. R. (1959). On a collection of Palinurid phyllosomas from the Laccadive seas. Journal of the Marine Biological Association of India 1, 143–165.

Ptacek, M., Sarver, S., Childress, M., and Herrnkind, W. (2001). Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae). Marine and Freshwater Research 52, 1037–1047.
Molecular phylogeny of the spiny lobster genus Panulirus (Decapoda: Palinuridae).Crossref | GoogleScholarGoogle Scholar |

Ramos, J. E., Pecl, G. T., Moltschaniwskyj, N. A., Semmens, J. M., Souza, C. A., and Strugnell, J. M. (2018). Population genetic signatures of a climate change driven marine range extension. Scientific Reports 8, 9558.
Population genetic signatures of a climate change driven marine range extension.Crossref | GoogleScholarGoogle Scholar | 29934542PubMed |

Ravago, R. G., and Juinio-Menez, A. (2002). Phylogenetic position of the striped-legged forms of Panulirus longipes (A. Milne-Edwards, 1868) (Decapoda, Palinuridae) inferred from mitochondrial DNA sequences. Crustaceana 75, 1047–1059.
Phylogenetic position of the striped-legged forms of Panulirus longipes (A. Milne-Edwards, 1868) (Decapoda, Palinuridae) inferred from mitochondrial DNA sequences.Crossref | GoogleScholarGoogle Scholar |

Rees, A., Yearsley, G., Gowlett-Holmes, K., and Pogonoski, J. (1999). Codes for Australian aquatic biota. (CSIRO Australia.) Available at http://www.cmar.csiro.au/caab/ [Verified 16 May 2019].

Ridgway, K., and Hill, K. (2012). East Australian Current. In ‘Marine Climate Change in Australia: Impacts and Adaptation. 2012 Report Card’. (Eds E. S. Poloczanska, A. J. Hobday, and A. J. Richardson.) pp. 47–60. (CSIRO: Canberra, ACT, Australia)

Robinson, L. M., Gledhill, D. C., Moltschaniwskyj, N. A., Hobday, A. J., Frusher, S., Barrett, N., Stuart-Smith, J., and Pecl, G. T. (2015). Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions. Global Environmental Change 31, 28–37.
Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions.Crossref | GoogleScholarGoogle Scholar |

Säwström, C., Beckley, L. E., Saunders, M. I., Thompson, P. A., and Waite, A. M. (2014). The zooplankton prey field for rock lobster phyllosoma larvae in relation to oceanographic features of the south-eastern Indian Ocean. Journal of Plankton Research 36, 1003–1016.
The zooplankton prey field for rock lobster phyllosoma larvae in relation to oceanographic features of the south-eastern Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Smith, S., and Simpson, R. (1991). Nearshore corals of the Coffs Harbour Region, mid north coast, New South Wales. Wetlands Australia 11, 1–9.
Nearshore corals of the Coffs Harbour Region, mid north coast, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Song, H., Buhay, J. E., Whiting, M. F., and Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences of the United States of America 105, 13486–13491.
Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified.Crossref | GoogleScholarGoogle Scholar | 18757756PubMed |

Sorte, C. J. B., Pandori, L. L. M., Cai, S., and Davis, K. A. (2018). Predicting persistence in benthic marine species with complex life cycles: linking dispersal dynamics to redistribution potential and thermal tolerance limits. Marine Biology 165, 20.
Predicting persistence in benthic marine species with complex life cycles: linking dispersal dynamics to redistribution potential and thermal tolerance limits.Crossref | GoogleScholarGoogle Scholar |

Stewardson, C., Andrews, J., Ashby, C., Haddon, M., Hartmann, K., Hone, P., Horvat, P., Klemke, J., Mayfield, S., Roelofs, A., Sainsbury, K., Saunders, T., Stewart, J., Nicol, S., and Wise, B. (2018) Status of Australian fish stocks reports 2018. Fisheries Research and Development Corporation, Canberra, ACT, Australia.

Stuart-Smith, J., Pecl, G., Pender, A., Tracey, S., Villanueva, C., and Smith-Vaniz, W. F. (2018). Southernmost records of two Seriola species in an Australian ocean-warming hotspot. Marine Biodiversity 48, 1579–1582.
Southernmost records of two Seriola species in an Australian ocean-warming hotspot.Crossref | GoogleScholarGoogle Scholar |

Sun, C., Feng, M., Matear, R. J., Chamberlain, M. A., Craig, P., Ridgway, K. R., and Schiller, A. (2012). Marine downscaling of a future climate scenario for Australian boundary currents. Journal of Climate 25, 2947–2962.
Marine downscaling of a future climate scenario for Australian boundary currents.Crossref | GoogleScholarGoogle Scholar |

Sunday, J. M., Bates, A. E., and Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change 2, 686–690.
Thermal tolerance and the global redistribution of animals.Crossref | GoogleScholarGoogle Scholar |

Sunday, J. M., Pecl, G. T., Frusher, S., Hobday, A. J., Hill, N., Holbrook, N. J., Edgar, G. J., Stuart-Smith, R., Barrett, N., Wernberg, T., Watson, R. A., Smale, D. A., Fulton, E. A., Slawinski, D., Feng, M., Radford, B. T., Thompson, P. A., and Bates, A. E. (2015). Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot. Ecology Letters 18, 944–953.
Species traits and climate velocity explain geographic range shifts in an ocean-warming hotspot.Crossref | GoogleScholarGoogle Scholar | 26189556PubMed |

Suthers, I. M., Young, J. W., Baird, M. E., Roughan, M., Everett, J. D., Brassington, G. B., Byrne, M., Condie, S. A., Hartog, J. R., Hassler, C. S., Hobday, A. J., Holbrook, N. J., Malcolm, H. A., Oke, P. R., Thompson, P. A., and Ridgway, K. (2011). The strengthening East Australian Current, its eddies and biological effects – an introduction and overview. Deep-sea Research – II. Topical Studies in Oceanography 58, 538–546.
The strengthening East Australian Current, its eddies and biological effects – an introduction and overview.Crossref | GoogleScholarGoogle Scholar |

Syahailatua, A., Roughan, M., and Suthers, I. M. (2011). Characteristic ichthyoplankton taxa in the separation zone of the East Australian Current: larval assemblages as tracers of coastal mixing. Deep-sea Research – II. Topical Studies in Oceanography 58, 678–690.
Characteristic ichthyoplankton taxa in the separation zone of the East Australian Current: larval assemblages as tracers of coastal mixing.Crossref | GoogleScholarGoogle Scholar |

Tampi, P. R., and George, M. J. (1975). Phyllosoma larvae in the IIOE (1960–65) collections – systematics. Mahasagar 8, 15–44.

Tranter, D. J., Tafe, D. J., and Sandland, R. L. (1983). Some zooplankton characteristics of warm-core eddies shed by the East Australian Current, with particular reference to copepods. Marine and Freshwater Research 34, 587–607.
Some zooplankton characteristics of warm-core eddies shed by the East Australian Current, with particular reference to copepods.Crossref | GoogleScholarGoogle Scholar |

Vergés, A., Steinberg, P. D., Hay, M. E., Poore, A. G. B., Campbell, A. H., Ballesteros, E., Heck, K. L., Booth, D. J., Coleman, M. A., Feary, D. A., Figueira, W., Langlois, T., Marzinelli, E. M., Mizerek, T., Mumby, P. J., Nakamura, Y., Roughan, M., van Sebille, E., Gupta, A. S., Smale, D. A., Tomas, F., Wernberg, T., and Wilson, S. K. (2014). The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts. Proceedings of the Royal Society of London – B. Biological Sciences 281, 20140846.
The tropicalization of temperate marine ecosystems: climate-mediated changes in herbivory and community phase shifts.Crossref | GoogleScholarGoogle Scholar |

Wakabayashi, K., Yang, C. H., Shy, J. Y., He, C. H., and Chan, T. Y. (2017). Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda:Scyllaridae). Journal of Crustacean Biology 37, 204–219.
Correct identification and redescription of the larval stages and early juveniles of the slipper lobster Eduarctus martensii (Pfeffer, 1881) (Decapoda:Scyllaridae).Crossref | GoogleScholarGoogle Scholar |

Wang, M., O’Rorke, R., Waite, A. M., Beckley, L. E., Thompson, P., and Jeffs, A. G. (2015). Condition of larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic eddies of the Leeuwin Current off Western Australia. Marine and Freshwater Research 66, 1158–1167.
Condition of larvae of western rock lobster (Panulirus cygnus) in cyclonic and anticyclonic eddies of the Leeuwin Current off Western Australia.Crossref | GoogleScholarGoogle Scholar |

Yang, C. H., and Chan, T. Y. (2010). A new slipper lobster of the genus Galearctus Holthuis, 2002 (Decapoda, Scyllaridae) from Taiwan and Japan. In ‘Studies on Malacostraca: Lipke Bijdeley Holthuis Memorial Volume. Crustaceana Monographs’. (Eds C. Fransen, S. De Grave, and P. Ng.) pp. 735–745. (Brill: Leiden, Netherlands.)