Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Ecoregions and stream types help us understand ecological variability in Neotropical reference streams

Janaina Uchôa Medeiros Agra A E , Raphael Ligeiro B , Diego Rodrigues Macedo C , Robert Mason Hughes D and Marcos Callisto A
+ Author Affiliations
- Author Affiliations

A Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Biologia Geral, Laboratório de Ecologia de Bentos, Avenida Antonio Carlos 6627, CP 486, Belo Horizonte, MG, CEP 31270-901, Brazil.

B Universidade Federal do Pará, Instituto de Ciências Biológicas, Rua Augusto Corrêa 01, Guamá, Belém, PA, CEP 66075-110, Brazil.

C Universidade Federal de Minas Gerais, Instituto de Geociências, Departamento de Geografia. Avenida Antonio Carlos 6627, Belo Horizonte, MG, CEP 31270-901, Brazil.

D Amnis Opes Institute and Oregon State University, Department of Fisheries & Wildlife, 104 Nash Hall, Corvallis, OR 97331-3803, USA.

E Corresponding author. Email: janaina.agra88@gmail.com

Marine and Freshwater Research 70(4) 594-602 https://doi.org/10.1071/MF18309
Submitted: 22 March 2018  Accepted: 29 August 2018   Published: 7 November 2018

Abstract

Stream site classification is a fundamental step in defining reference conditions for freshwater bioassessments globally. Landscape regionalisation and stream typology approaches have both been used to determine classes that reduce inherent environmental variation and to show classes with ecological meaning. We evaluated the applicability of ecoregion and stream typology approaches in a river basin located between the Neotropical Savanna and the Atlantic Forest biomes in south-eastern Brazil. We delimited two ecoregions and assessed whether stream types within each ecoregion would further reduce environmental and macroinvertebrate assemblage variability. In addition, we determined indicator taxa for each of the reference condition classes. Our results confirm the importance of defining ecoregions a priori and for using a nested a posteriori stream typology approach for further explaining macroinvertebrate assemblage variation. Geology and natural vegetation physiognomy were the key ecoregion factors likely to influence macroinvertebrate assemblages, and stream dimension attributes best delimited meaningful stream types. Although stream classification is a very important step in any monitoring, management or restoration program, it has been widely neglected in many tropical regions. In this study we demonstrated how it can be conducted to determine macroinvertebrate assemblage potentials even with a relatively limited number of sites.

Additional keywords: benthic macroinvertebrates, Espinhaço Range, instream physical habitats, rupestrian grassland, tropical rainforest.


References

American Public Health Association (1998). ‘Standard Methods for the Examination of Water and Wastewater.’ (APHA: Washington, DC, USA.)

Bouchard, R. W. (2004). Guide to aquatic macroinvertebrates of the Upper Midwest. In ‘Water Resources’. (Eds L. C. Ferrington Jr, and M. L. Karius.) pp. 9–33. (Water Resources Center, University of Minnesota: Saint Paul, MN, USA.)

Cáceres, M., and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574.
Associations between species and groups of sites: indices and statistical inference.Crossref | GoogleScholarGoogle Scholar |

Carvalho, A. L., and Nessimian, J. L. (1998). Odonata do estado do Rio de Janeiro, Brasil: habitats e hábitos das larvas. In ‘Ecologia de Insetos Aquáticos’. (Eds J. L. Nessimian and A. L. Carvalho.) pp. 3–28. (Programa de Pós-Graduação em Educação, Universidade Federal do Rio de Janeiro: Rio de Janeiro, Brazil.)

Clarke, R. T., Wright, J. F., and Furse, M. T. (2003). RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers. Ecological Modelling 160, 219–233.
RIVPACS models for predicting the expected macroinvertebrate fauna and assessing the ecological quality of rivers.Crossref | GoogleScholarGoogle Scholar |

Cummins, K. W., Merritt, R. W., and Andrade, P. C. N. (2005). The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil. Studies on Neotropical Fauna and Environment 40, 69–89.
The use of invertebrate functional groups to characterize ecosystem attributes in selected streams and rivers in south Brazil.Crossref | GoogleScholarGoogle Scholar |

Dodds, W. K., and Smith, V. H. (2016). Nitrogen, phosphorus, and eutrophication in streams. Inland Waters 6, 155–164.
Nitrogen, phosphorus, and eutrophication in streams.Crossref | GoogleScholarGoogle Scholar |

Dufrene, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.

Feio, M. J., Ferreira, W. R., Macedo, D. R., Eller, A. P., Alves, C. B. M., França, J. S., and Callisto, M. (2015). Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions. River Research and Applications 31, 70–84.
Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions.Crossref | GoogleScholarGoogle Scholar |

Frissell, C. A., Liss, W. J., Warren, C. E., and Hurley, M. D. (1986). A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10, 199–214.
A hierarchical framework for stream habitat classification: viewing streams in a watershed context.Crossref | GoogleScholarGoogle Scholar |

Gerritsen, J., Barbour, M. T., and King, K. (2000). Apples, oranges, and ecoregions: on determining pattern in aquatic assemblages. Journal of the North American Benthological Society 19, 487–496.
Apples, oranges, and ecoregions: on determining pattern in aquatic assemblages.Crossref | GoogleScholarGoogle Scholar |

Gooderham, J. P. R., Barmuta, L. A., and Davies, P. E. (2007). Upstream heterogeneous zones: small stream systems structured by a lack of competence? Journal of the North American Benthological Society 26, 365–374.
Upstream heterogeneous zones: small stream systems structured by a lack of competence?Crossref | GoogleScholarGoogle Scholar |

Gotelli, N. J., and Ellison, A. M. (2004). ‘A Primer of Ecological Statistics.’ (Sinauer Associates: Boston, MA, USA.)

Graça, M. A. S., Ferreira, W. R., Firmiano, K., França, J., and Callisto, M. (2015). Macroinvertebrate identity, not diversity, differed across patches differing in substrate particle size and leaf litter packs in low order, tropical Atlantic Forest streams. Limnetica 34, 29–40.

Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., and Stevenson, R. J. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society 19, 541–556.
Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations.Crossref | GoogleScholarGoogle Scholar |

Hawkins, C. P., Olson, J. R., and Hill, R. A. (2010). The reference condition: predicting benchmarks for ecological and water-quality assessments. Journal of the North American Benthological Society 29, 312–343.
The reference condition: predicting benchmarks for ecological and water-quality assessments.Crossref | GoogleScholarGoogle Scholar |

Heino, J., Parviainen, J., Paavola, R., Jehle, M., Louhi, P., and Muotka, T. (2005). Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position. Hydrobiologia 539, 121–130.
Characterizing macroinvertebrate assemblage structure in relation to stream size and tributary position.Crossref | GoogleScholarGoogle Scholar |

Heino, J., Mykrä, H., Kotanen, J., and Muotka, T. (2007). Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30, 217–230.
Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path?Crossref | GoogleScholarGoogle Scholar |

Hughes, R. M., and Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27, 837–859.
Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. M., Larsen, D. P., and Omernik, J. M. (1986). Regional reference sites: a method for assessing stream potentials. Environmental Management 10, 629–635.
Regional reference sites: a method for assessing stream potentials.Crossref | GoogleScholarGoogle Scholar |

Ibañez, C., Belliard, J., Hughes, R. M., Irz, P., Kamdem-Toham, A., Lamouroux, N., Tedesco, P. A., and Oberdorff, T. (2009). Convergence of temperate and tropical stream fish assemblages. Ecography 32, 658–670.
Convergence of temperate and tropical stream fish assemblages.Crossref | GoogleScholarGoogle Scholar |

Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., and Peck, D. V. (1999). Quantifying physical habitat in wadeable stream. EPA/620/R- 99/003, US Environmental Protection Agency, Washington DC, USA.

Larsen, S., Pace, G., and Ormerod, S. J. (2011). Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications 27, 257–267.
Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams.Crossref | GoogleScholarGoogle Scholar |

Lewis, W. M. (2008). Physical and chemical features of tropical flowing waters. In ‘Tropical Stream Ecology’. (Ed. D. Dudgeon.) pp. 1–21. (Elsevier: Hong Kong SAR, PR China.)

Ligeiro, R., Melo, A. S., and Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology 55, 424–435.
Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment.Crossref | GoogleScholarGoogle Scholar |

Macedo, D. R., Hughes, R. M., Ligeiro, R., Ferreira, W. R., Castro, M. A., Junqueira, N. T., Oliveira, D. R., Firmiano, K. R., Kaufmann, P. R., Pompeu, P. S., and Callisto, M. (2014). The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams. Landscape Ecology 29, 1001–1016.
The relative influence of catchment and site variables on fish and macroinvertebrate richness in cerrado biome streams.Crossref | GoogleScholarGoogle Scholar |

Martins, I. S., Ligeiro, R., Hughes, R. M., Macedo, D. R., and Callisto, M. (2018). Regionalisation is key to establishing reference conditions for Neotropical savanna streams. Marine and Freshwater Research 69, 82–94.
Regionalisation is key to establishing reference conditions for Neotropical savanna streams.Crossref | GoogleScholarGoogle Scholar |

Monteiro, J. C., and Bacellar, L. de A. P. (2014). Influência dos fatores geológicos, geomorfológicos e antrópicos da produção de fluxo de base em pequenas bacias hidrográficas nas APA Cachoeira das Andorinhas, Ouro Preto (MG). Revista Brasileira de Geomorfologia 15, 173–189.
Influência dos fatores geológicos, geomorfológicos e antrópicos da produção de fluxo de base em pequenas bacias hidrográficas nas APA Cachoeira das Andorinhas, Ouro Preto (MG).Crossref | GoogleScholarGoogle Scholar |

Moya, N., Hughes, R. M., Domínguez, E., Gibon, F.-M., Goitia, E., and Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams. Ecological Indicators 11, 840–847.
Macroinvertebrate-based multimetric predictive models for evaluating the human impact on biotic condition of Bolivian streams.Crossref | GoogleScholarGoogle Scholar |

Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010). ‘Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro.’ (Technical Books Editora: Rio de Janeiro, Brazil.)

Mykrä, H., Heino, J., and Muotka, T. (2004). Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications. Environmental Management 34, 341–352.
Variability of lotic macroinvertebrate assemblages and stream habitat characteristics across hierarchical landscape classifications.Crossref | GoogleScholarGoogle Scholar |

NASA Jet Propulsion Laboratory (2013). NASA Shuttle Radar Topography Mission Global 1 arc second dataset. (NASA EOSDIS Land Processes Distributed Active Archive Center.)10.5067/MEASURES/SRTM/SRTMGL1.003

Omernik, J. M., and Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management 54, 1249–1266.
Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework.Crossref | GoogleScholarGoogle Scholar |

Omernik, J. M., Griffith, G. E., Hughes, R. M., Glover, J. B., and Weber, M. H. (2017). How misapplication of the hydrologic unit framework diminishes the meaning of watersheds. Environmental Management 60, 1–11.
How misapplication of the hydrologic unit framework diminishes the meaning of watersheds.Crossref | GoogleScholarGoogle Scholar |

Orr, H. G., Large, A. R. G., Newson, M. D., and Walsh, C. L. (2008). A predictive typology for characterising hydromorphology. Geomorphology 100, 32–40.
A predictive typology for characterising hydromorphology.Crossref | GoogleScholarGoogle Scholar |

Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazor-Chak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., and Cappaert, M. R. (2006). Environmental monitoring and assessment program – surface waters western pilot study: field operations manual for wadeable streams. EPA 600/ R-06/003, US Environmental Protection Agency, Washington, DC, USA.

Shimano, Y., Juen, L., Salles, F. F., Nogueira, D. S., and Cabette, H. S. R. (2013). Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams. Annales de Limnologie – International Journal of Limnology 49, 31–41.
Environmental and spatial processes determining Ephemeroptera (Insecta) structures in tropical streams.Crossref | GoogleScholarGoogle Scholar |

Silveira, F. A. O., Negreiros, D., Barbosa, N. P. U., Buisson, E., Carmo, F. F., Carstensen, D. W., Conceição, A. A., Cornelissen, T. G., Echternacht, L., Fernandes, G. W., Garcia, Q. S., Guerra, T. J., Jacobi, C. M., Lemos-Filho, J. P., Le Stradic, S., Morellato, L. P. C., Neves, F. S., Oliveira, R. S., Schaefer, C. E., Viana, P. L., and Lambers, H. (2016). Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority. Plant and Soil 403, 129–152.
Ecology and evolution of plant diversity in the endangered campo rupestre: a neglected conservation priority.Crossref | GoogleScholarGoogle Scholar |

Snelder, T. H., and Biggs, B. J. F. (2002). Multiscale river environment classification for water resources management. Journal of the American Water Resources Association 38, 1225–1239.
Multiscale river environment classification for water resources management.Crossref | GoogleScholarGoogle Scholar |

Turak, E., and Koop, K. (2008). Multi-attribute ecological river typology for assessing ecological condition and conservation planning. Hydrobiologia 603, 83–104.
Multi-attribute ecological river typology for assessing ecological condition and conservation planning.Crossref | GoogleScholarGoogle Scholar |

Vander Vorste, R., McElmurray, P., Bell, S., Eliason, K. M., and Brown, B. L. (2017). Does stream size really explain biodiversity patterns in lotic systems? A call for mechanistic explanations. Diversity 9, 26.
Does stream size really explain biodiversity patterns in lotic systems? A call for mechanistic explanations.Crossref | GoogleScholarGoogle Scholar |

Villamarín, C., Rieradevall, M., Paul, M. J., Barbour, M. T., and Prat, N. (2013). A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: the IMEERA index. Ecological Indicators 29, 79–92.
A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: the IMEERA index.Crossref | GoogleScholarGoogle Scholar |