Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW (Open Access)

Safe two-way migration for salmonids and eel past hydropower structures in Europe: a review and recommendations for best-practice solutions

Hans-Petter Fjeldstad A D , Ulrich Pulg B and Torbjørn Forseth C
+ Author Affiliations
- Author Affiliations

A SINTEF Energy Research, Postboks 4761 NO-7465 Torgarden, Norway.

B Norwegian Research Centre NORCE LFI, Nygårdsgaten 112, NO-5006 Bergen, Norway.

C Norwegian Institute for Nature Research, Postboks 5685 Torgarden, 7485 Trondheim, Norway.

D Corresponding author. Email: hans-petter.fjeldstad@sintef.no

Marine and Freshwater Research 69(12) 1834-1847 https://doi.org/10.1071/MF18120
Submitted: 23 March 2018  Accepted: 6 August 2018   Published: 7 November 2018

Journal Compilation © CSIRO 2018 Open Access CC BY-NC-ND

Abstract

This review provides a summary of knowledge on two-way fish migration of salmonids and eels past hydroelectric plants in Europe. On the basis of a summary of international literature, general designs and recommendations for best practices for fish-pass facilities are provided. The review is part of the Norwegian SafePass project, which focuses on Atlantic salmon, brown trout, grayling and European eel. According to recent international recommendations, many existing European fishways for upstream migration do not have an optimal design. This is especially evident for denil and pool-and-weir fishways in inland areas with species such as grayling and brown trout. Based on the review, we generally recommend (1) using ramps, nature-like channels and vertical-slot fishways for these species and (2) reducing water drop between the pools in pool-and-weir fishways and reducing energy dissipation compared with the design of traditional Atlantic salmon ladders. There are few well-functioning passages for downstream migration of fish in Europe and significant progress has been made in the past decade to improve technology and knowledge. Several international studies have shown that physical structures, such as fine-mesh trash racks with alternative escape routes and bypass arrangements, provide >90% passage efficiency for downstream migration, especially for brown trout and salmon, and have, in recent years, shown good results also for silver eels.


References

Acou, A., Laffaille, P., Legault, A., and Feunteun, E. (2008). Migration pattern of silver eel (Anguilla anguilla, L.) in an obstructed river system. Ecology Freshwater Fish 17, 432–442.
Migration pattern of silver eel (Anguilla anguilla, L.) in an obstructed river system.Crossref | GoogleScholarGoogle Scholar |

Allen, G., Amaral, S., and Black, J. (2012). Fish protection technologies: the US experience. In ‘Operational and Environmental Consequences of Large Industrial Cooling Water Intakes’. (Eds S. Rajagopal, H. A. Jenner, and V. P. Venugopalan.) pp. 371–390. (Springer Nature Switzerland AG.)

Armstrong, G., Aprahamian, M., Fewings, G., Gough, P., Reader, N., and Varallo, P. (2010). ‘Environment Agency Fish Pass Manual.’ (Environment Agency: Bristol, UK.)

Arnekleiv, J., and Kraabol, M. (1996). Migratory behaviour of adult fast-growing brown trout (Salmo trutta L.) in relation to water flow in a regulated Norwegian river. Regulated Rivers: Research and Management 12, 39–49.
Migratory behaviour of adult fast-growing brown trout (Salmo trutta L.) in relation to water flow in a regulated Norwegian river.Crossref | GoogleScholarGoogle Scholar |

Arnekleiv, J. V., Kraabøl, M., and Museth, J. (2007). Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway. Hydrobiologia 582, 5–15.
Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway.Crossref | GoogleScholarGoogle Scholar |

Brink, K., Gough, P., Royte, J., Schollema, P. P., and Wan-ningen, H. (2018). ‘From Sea to Source 2.0. Protection and Restoration of Fish Migration in Rivers Worldwide.’ (World Fish Migration Foundation: Groningen, Netherlands.)

Brown, R. S., Colotelo, A. H., Pflugrath, B. D., Boys, C. A., Baumgartner, L. J., Deng, Z. D., Luiz, G. M., Silva, L. G. M., Brauner, C. J., Mallen-Cooper, M., Phonekhampeng, O., Thorncraft, G., and Singhanouvong, D. (2014). Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources Fisheries 39, 108–122.
Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resourcesCrossref | GoogleScholarGoogle Scholar |

Bundesministerium für Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft (2012). ‘Leitfaden zum Bau von Fischaufstiegshilfen.’ (BMLFUW: Wien, Austria.)

Čada, G. F. (1990). A review of studies relating to the effects of propeller type turbine passage on fish early life stages North American Journal of Fisheries Management 10, 418–426.
A review of studies relating to the effects of propeller type turbine passage on fish early life stagesCrossref | GoogleScholarGoogle Scholar |

Čada, G. F. (1997). Shaken, not stirred: the recipe for a fish-friendly turbine. In ‘Waterpower ‘97. Proceedings of an International Conference & Exposition on Hydropower’. pp. 374–382. (American Society of Civil Engineers: New York, NY, USA.)

Čada, G. F. (2001). The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26, 14–23.
The development of advanced hydroelectric turbines to improve fish passage survival.Crossref | GoogleScholarGoogle Scholar |

Čada, G. F., Loar, J. M., Garrison, L., Fisher, R. K., and Neitzel, D. (2006). Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses. Environmental Management 37, 898–906.
Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.Crossref | GoogleScholarGoogle Scholar |

Calles, O., and Greenberg, L. (2009). Connectivity is a two-way street: the need for a holistic approach to fish passage problems in regulated rivers. River Research and Applications 25, 1268–1286.
Connectivity is a two-way street: the need for a holistic approach to fish passage problems in regulated rivers.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Karlsson, S., Hebrand, M., and Comoglio, C. (2012). Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant. Ecological Engineering 48, 30–37.
Evaluating technical improvements for downstream migrating diadromous fish at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Degermann, E., Wickstrøm, E., Christiansson, J., Wickstrøm, H., and Næslund, I. (2013a). Anordningar för upp- och nedströmspassage av fisk vid vattenanläggningar. Havs- og Vattenmyndigheter. Report 2013:14. Available at https://www.havochvatten.se/download/18.5f66a4e81416b5e51f73113/1383209282924/rapport-hav-2013-14-anordningar-passage-fisk.pdf [Verified 14 September 2018].

Calles, O., Karlsson, S., Vezza, P., Comoglio, C., and Tielman, J. (2013b). Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant. Freshwater Biology 58, 2168–2179.
Success of a low-sloping rack for improving downstream passage of silver eels at a hydroelectric plant.Crossref | GoogleScholarGoogle Scholar |

Calles, O., Christiansson, J., Kläppe, S., Alenäs, I., Karlsson, S., Nyqvist, D., and Hebrand, M. (2015). Slutrapport Hertingprojektet: förstudie och uppföljning av åtgärder för förbättrad fiskpassage 2007–2015. Technical report. Naturresurs Rinnande Vatten, Biologi, Karlstads Universitet, Karlstad, Sweden.

Chatellier, L., Wang, R.-W., David, L., Courret, D., and Larinier, M. (2011). Experimental characterization of the flow across fish-friendly angled trashrack models. In ‘Proceedings of the 34th World Congress of the International Association for Hydro- Environment Research and Engineering: 33rd Hydrology and Water Resources Symposium and 10th Conference on Hydraulics in Water Engineering’, 26 June–1 July 2011, Brisbane, Qld, Australia. (Eds E. M. Valentine, C. J. Apelt, J. Ball, H. Chanson, R. Cox, R. Ettema, G. Kuczera, M. Lambert, B. W. Melville, and J. E. Sargison.) pp. 2776–2783. (Engineers Australia: Barton, ACT, Australia.)

Clay, C. H. (1995). ‘Design of Fishways and other Fish Facilities.’ (Lewia Publishers: Boca Raton, FL, USA.)

Coutant, C. C., and Whitney, R. R. (2000). Fish behaviour in relation to passage through hydropower turbines: a review. Transactions of the American Fisheries Society 129, 351–380.
Fish behaviour in relation to passage through hydropower turbines: a review.Crossref | GoogleScholarGoogle Scholar |

Croze, O., Bau, F., and Delmouly, L. (2008). Efficiency of a fish lift for returning Atlantic salmon at a large-scale hydroelectric complex in France. Fisheries Management and Ecology 15, 467–476.
Efficiency of a fish lift for returning Atlantic salmon at a large-scale hydroelectric complex in France.Crossref | GoogleScholarGoogle Scholar |

Degerman, E. (2008). Ekologisk restaurering av vattendrag. Naturvårdsverket & Fiskeriverket. (Fiskeriverket och Naturvårdsverket.) Available at https://www.havochvatten.se/download/18.64f5b3211343cffddb2800022567/1348912824990/ekologisk-restaurering-av-vattendrag.pdf [Verified 14 September 2018].

Deng, Z., Carlson, T. J., Dauble, D. D., and Ploskey, G. R. (2011). Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling. Energies 4, 57–67.
Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling.Crossref | GoogleScholarGoogle Scholar |

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (2005). ‘Fish Protection Technologies and Downstream Fishways. Dimensioning, Design, Effectiveness Inspection.’ (DWA: Hennef, Germany.)

Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (2014). ‘Merkblatt M-509: Fischaufstiegsanlagen und Fischpassierbare Bauwerke: Gestaltung, Bemessung, Qualitätssicherung.’ (DWA: Hennef, Germany.)

Deutcher Verband für Wasserwirtschaft und Kulturbau (1996). Fischaufstiegsanlagen – Bemessungen, Gestaltung, Funktionskontrolle. In ‘Merkblätter zur Wasserwirtshaft, Vol. 232’. (Wirtschafts- und Verlagsgesellschaft Gas und Wasser: Bonn, Germany.)

Dumont, U., Danderer, P., and Schwevers, U. (2005). ‘Handbuch Querbauwerke.’ (MUNLV: Düsseldorf, Germany.)

Ebel, G. (2013). ‘Fischschutz und Fischabstieg an Wasserkraftanlagen: Handbuch Rechen- und Bypasssysteme.’ (BGF, Mitteilungen aus dem Buro fur Gewasserokologie und Fischereibiologie Dr. Ebel (Band 4): Halle (Saale), Germany.)

Electric Power Research Institute–US Department of Energy (2011). ‘Conference on Environmentally Enhanced Hydropower Turbines: Technical Papers.’ (EPRI: Palo Alto, CA, USA; and DOE: Washington, DC, USA.)

Emanuelsson, A., Christensen, P., Mikaelsson, F., Böjer, M., Göransson, F., Östberg, J., Öhrfeldt, U., Hemfrid-Schwartz, Y., Noren, P., and Calles, O. (2017). Fysiska avledare för uppsamling av blankål vid vattenkraftverk. Tekniska utmaningar och kostnadseffektiviseringar. Report 2017: 458, Energiforsk, Stockholm, Sweden.

Environment Agency UK (2011). Screening at intakes and outfalls: measures to protect eels. Available at http://www.therrc.co.uk/MOT/References/EA_Eel_Manual.pdf [Verified 28 October 2018].

Fahrig, L. (2003). Effects of habitat fragmentation on biodiversity. Annual Review of Ecology and Systematics 34, 487–515.
Effects of habitat fragmentation on biodiversity.Crossref | GoogleScholarGoogle Scholar |

Ferguson, J. W., and Williams, J. (2002). ‘Recommendations for Improving Fish Passage at the Stornorrfors Power Station on the Umealven, Umea, Sweden.’ (Northwest Fisheries Science Center: Seattle, WA, USA.)

Ferguson, J. W., Matthews, G. M., McComas, R. L., Absolon, R. F., Brege, D. A., Gessel, M. H., and Gilbreath, L. G. (2005). Passage of adult and juvenile salmonids through federal Columbia River power system dams. NOAA Technical Memorandum NMFS–NWFSC 64, pp. i–xx. National Technical Information Service, Springfield, VA, USA.

Fjeldstad, H.-P. (2012). Atlantic salmon migration past barriers. Ph.D. Thesis (NTNU thesis number 128-2012), Norwegian University of Science and Technology, Trondheim, Norway.

Fjeldstad, H.-P., Barlaup, B. T., Stickler, M., Gabrielsen, S.-E., and Alfredsen, K. (2012a). Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river. River Research and Applications 28, 753–763.
Removal of weirs and the influence on physical habitat for salmonids in a Norwegian river.Crossref | GoogleScholarGoogle Scholar |

Fjeldstad, H. P., Uglem, I., Diserud, O. H., Fiske, P., Forseth, T., Kvingedal, E., Hvidsten, N. A., Økland, F., and Järnegren, J. A. (2012b). A concept for improving smolt migration past hydropower intakes. Journal of Fish Biology 81, 642–663.
A concept for improving smolt migration past hydropower intakes.Crossref | GoogleScholarGoogle Scholar |

Fjeldstad, H.-P., Alfredsen, K., and Forseth, T. (2013). Atlantic salmon fishways: the Norwegian experience. Vann 2, 191–204.

Fjeldstad, H.-P., Pulg., U., and Forseth, T. (2018). Sikker toveis vandring forbi vannkraftverk: kunnskapsoppdatering og mønsterpraksis. SINTEF report 2017, 00723, SINTEF Energy, Trondheim, Norway.

Food and Agriculture Organisation of the United Nations (2002). ‘Fish Passes: Design, Dimensions and Monitoring.’ (FAO: Rome, Italy.)

Gough, P., Philipsen, P., Schollema, P. P., and Wanningen, H. (2012). From sea to source; international guidance for the restoration of fish migration highways. (Regional Water Authority Hunze en Aa’s: Veendam, Netherlands.) Available at http://www.fromseatosource.com/?page=DOWNLOAD&version=2012 [Verified 30 October 2018].

Gowans, A. R. D., Armstrong, J. D., and Priede, I. G. (1999). Movements of adult Atlantic salmon in relation to a hydroelectric dam and fish ladder. Journal of Fish Biology 54, 713–726.
Movements of adult Atlantic salmon in relation to a hydroelectric dam and fish ladder.Crossref | GoogleScholarGoogle Scholar |

Grande, R. (2010). ‘Håndbok for Fisketrapper.’ (Tapir Akademiske Forlag: Trondheim, Norway.) [Summary and figure captions in English.]

Greenberg, L., Nyqvist, D., Bergman, E., and Calles, O. (2017). Förbättrad nedströmspassage för vild laxfisk I Klarälven. Report, University of Karlstad, Sweden.

Haltunen, E. (2011). Staying alive: the survival and importance of Atlantic salmon post-spawners. Ph.D. Thesis, Univesitetet i Tromsø, Norway.

Hart, D. D., and Poff, N. L. (2002). Introduction to special issue. Bioscience 52, 653–655.
Introduction to special issue.Crossref | GoogleScholarGoogle Scholar |

Hogan, T. W., Čada, G. F., and Amaral, S. V. (2014). The status of environmentally enhanced hydropower turbines. Fisheries 39, 164–172.
The status of environmentally enhanced hydropower turbines.Crossref | GoogleScholarGoogle Scholar |

International Commission for the Protection of the Danube River (2013). ‘Measures for Ensuring Fish Migration at Transversal Structures.’ (ICPDR Secretariat: Vienna, Austria.)

Jansen, H. M., Winter, H. V., Bruijs, M. C. M., and Polman, H. J. G. (2007). Just go with the flow? Route selection and mortality during downstream migration of silver eels in relation to river discharge2007. ICES Journal of Marine Science 64, 1437–1443.
Just go with the flow? Route selection and mortality during downstream migration of silver eels in relation to river discharge2007.Crossref | GoogleScholarGoogle Scholar |

Jepsen, N., Aarestrup, K., Økland, F., and Rasmussen, G. (1998). Survival of radiotagged Atlantic salmon (Salmo salar L.) – and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration. Hydrobiologia 371/372, 347–353.
Survival of radiotagged Atlantic salmon (Salmo salar L.) – and trout (Salmo trutta L.) smolts passing a reservoir during seaward migration.Crossref | GoogleScholarGoogle Scholar |

Jepsen, N., Pedersen, S., and Thorstad, E. (2000). Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river. Regulated Rivers: Research and Management 16, 189–198.
Behavioural interactions between prey (trout smolts) and predators (pike and pikeperch) in an impounded river.Crossref | GoogleScholarGoogle Scholar |

Johnson, G. E., and Dauble, D. D. (2006). Surface flow outlets to protect juvenile salmonids passing through hydropower dams. Reviews in Fisheries Science 14, 213–244.
Surface flow outlets to protect juvenile salmonids passing through hydropower dams.Crossref | GoogleScholarGoogle Scholar |

Johnson, P. N., and Ploskey, G. R. (1998). Behavioral technologies for bypass channels, phase 2: evaluation of infrasound and strobe lights for redistributing migrant salmon smolts in the McNary Juvenile Bypass. Technical report, US Department of Energy, Office of Scientific and Technical Information, Vicksburg, MS, USA.

Johnson, P. N., Bouchard, K., and Goetz, F. A. (2005). Effectiveness of strobe lights for reducing juvenile salmonid entrainment into a navigation lock. North American Journal of Fisheries Management 25, 491–501.
Effectiveness of strobe lights for reducing juvenile salmonid entrainment into a navigation lock.Crossref | GoogleScholarGoogle Scholar |

Jungwirth, M., Schmutz, S., Weiss, S. (Eds) (1998). ‘Fish Migration and Fish Bypasses. Fishing News Books.’ (Blackwell Publications: Oxford, UK.)

Katopodis, C. (1992). Introduction to fishway design. Working document, Freshwater Institute, Fisheries and Oceans Canada, Winnipeg, MB, Canada.

Katopodis, C., and Williams, J. G. (2012). The development of fish passage research in a historical context. Ecological Engineering 48, 8–18.
The development of fish passage research in a historical context.Crossref | GoogleScholarGoogle Scholar |

Koed, A., Rasmussen, G., Holdensgård, G., and Pedersen, C. (1996). Tangetrappen 1994–95. DFU-rapport 8-96, Danmarks Fiskeriundersøgelser, Silkeborg, Denmark.

Koed, A., Jepsen, N., Aarestrup, K., and Nielsen, C. (2002). Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station. Hydrobiologia 483, 31–37.
Initial mortality of radio-tagged Atlantic salmon (Salmo salar L.) smolts following release downstream of a hydropower station.Crossref | GoogleScholarGoogle Scholar |

Kraabøl, M. (2012). Reproductive and migratory challenges inflicted on migrant brown trout (Salmo trutta L.) in a heavily modified river. PhD Thesis, NTNU, Institut for Biologi, Trondheim, Norway.

Kraabøl, M., Arnekleiv, J. V., and Museth, J. (2008). Efforts to aid downstream migrating brown trout (Salmo trutta L.) kelts and smolts passing a hydroelectric dam and a spillway. Fisheries Management and Ecology 15, 417–423.

Kroglund, F., Haugen, T., Güttrup, J., Hawley, K., Johansen, J., Rosten, C., Kristensen, T., and Tormodsgard, L. (2011). Effekter av å passere en kraftverksturbin på smoltoverlevelse og atferd. Betydningen av tiltak. Report 6139, NIVA, Oslo, Norway.

Kroglund, F., Haraldstad, T., Güttrup, J., and Hegeland, P. V. (2014). Evaluering av tiltak for nedvandrende blankål ved elvekraftverk. Resultater fra forsøk ved Fosstveit kraftverk, 2010–2013. Report 6722–2014, NIVA, Oslo, Norway.

Laine, A., Kamula, R., and Hooli, P. (1998). Fish and lamprey passage in a combined denil and vertical slot fishway. Fisheries Management and Ecology 5, 31–44.
Fish and lamprey passage in a combined denil and vertical slot fishway.Crossref | GoogleScholarGoogle Scholar |

Larinier, M. (2008). Fish passage in small-scale hydro-electric power plants in France. Hydrobiologia 609, 97–108.
Fish passage in small-scale hydro-electric power plants in France.Crossref | GoogleScholarGoogle Scholar |

Larinier, M., and Travade, F. (2002). Downstream migration: problems and facilities. Bulletin Francais de la Peche et de la Pisciculture 364, 181–207.
Downstream migration: problems and facilities.Crossref | GoogleScholarGoogle Scholar |

Larinier, M., Travade, F., and Porcher, J. P. (2002). Fishways: biological basis, design criteria and monitoring. Bulletin Francais de la Peche et de la Pisciculture 364, 1–208.

Liao, J. C. (2007). A review of fish swimming mechanics and behaviour in altered flows. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 362, 1973–1993.
A review of fish swimming mechanics and behaviour in altered flows.Crossref | GoogleScholarGoogle Scholar |

Lindmark, E., and Gustavsson, L. H. (2008). Field study of an attraction channel as entrance to fishways. River Research and Applications 24, 564–570.
Field study of an attraction channel as entrance to fishways.Crossref | GoogleScholarGoogle Scholar |

Linløkken, A. (1993). Efficiency of fishways and impact of dams on the migration of grayling and brown trout in the Glomma River system, southeastern Norway. Regulated Rivers: Research and Management 8, 145–153.
Efficiency of fishways and impact of dams on the migration of grayling and brown trout in the Glomma River system, southeastern Norway.Crossref | GoogleScholarGoogle Scholar |

Lucas, M. C., and Baras, E. (2001). ‘Migration of Freshwater Fishes.’ (Blackwell Science: Oxford, UK.)

Mallen-Cooper, M., and Brand, D. A. (2007). Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage? Fisheries Management and Ecology 14, 319–332.
Non-salmonids in a salmonid fishway: what do 50 years of data tell us about past and future fish passage?Crossref | GoogleScholarGoogle Scholar |

Montén, E. (1985). ‘Fish och Turbiner. Om Fiskars Möjligheter att Oskadda Passere Genem Kraftverksturbiner.’ (Vattenfall: Stochholm, Sweden.)

National Oceanic and Atmospheric Administration (2012). ‘Diadromous Fish Passage: a Primer on Technology, Planning, and Design for the Atlantic and Gulf Coasts.’ (NOAA: Silver Spring, MD, USA.)

Nilsson, C., Reidy, C. A., Dynesius, M., and Revenga, C. (2005). Fragmentation and flow regulation of the world’s large river systems. Science 308, 405–408.
Fragmentation and flow regulation of the world’s large river systems.Crossref | GoogleScholarGoogle Scholar |

Noatch, M. R., and Suski, C. D. (2012). Non-physical barriers to deter fish movements. Environmental Reviews 20, 71–82.
Non-physical barriers to deter fish movements.Crossref | GoogleScholarGoogle Scholar |

Noonan, M. J., Grant, J. W. A., and Jackson, C. D. (2012). A quantitative assessment of fish passage efficiency. Fish and Fisheries 13, 450–464.
A quantitative assessment of fish passage efficiency.Crossref | GoogleScholarGoogle Scholar |

Norrgård, J., Greenberg, L. A., Piccolo, J. J., Schmitz, M., and Bergman, E. (2017). Multiplicative loss of landlocked Atlantic salmon Salmo salar L. smolts during downstream migration through multiple dams. River Research and Applications 10, 1306–1317.

Nyqvist, D., Nilsson, P. A., Alenäs, I., Elghagen, J., Hebrand, M., Karlsson, S., Kläppe, S., and Calles, O. (2017). Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower dam Ecological Engineering 102, 331–343.
Upstream and downstream passage of migrating adult Atlantic salmon: remedial measures improve passage performance at a hydropower damCrossref | GoogleScholarGoogle Scholar |

Økland, F., Kvingedal, E., Lamberg, A., Kroglund, F., Forseth, T., Diserud, O., and Uglem, I. (2013). Smoltutvandring forbi Laudal Kraftverk i Mandalselva i 2013. Report 1067, NINA, Trondheim, Norway.

Økland, F., Teichert, M. A. K., Havn, T. B., Thorstad, E. B., Heermann, L., Sæther, S. A., Tambets, M., and Borcherding, J. (2017). Downstream migration of European eel at three German hydropower stations. Report 1355, NINA, Trondheim, Norway.

Östergren, J., and Rivinoja, P. (2008). Overwintering and downstream migration of sea trout (Salmo trutta L.) kelts under regulated flows: northern Sweden. River Research and Applications 24, 551–563.
Overwintering and downstream migration of sea trout (Salmo trutta L.) kelts under regulated flows: northern Sweden.Crossref | GoogleScholarGoogle Scholar |

Pavlov, D. S. (1989). Structures assisting the migration of non-salmonid fish. Technical Paper 308, Food and Agriculture Organisation of the United Nations, Rome, Italy.

Pedersen, M. I., Jepsen, N., Aarestrup, K., Koed, A., Pedersen, S., and Økland, F. (2012). Loss of European silver eel passing a hydropower station. Journal of Applied Ichthyology 28, 189–193.
Loss of European silver eel passing a hydropower station.Crossref | GoogleScholarGoogle Scholar |

Ploskey, G. R., Johnson, P. N., Burczynski, M. G., Nestler, J. M., and Carlson, T. J. (1998). ‘Effectiveness of Strobe Lights, Infrasound Devices, and a Sound Transducer for Eliciting Avoidance by Juvenile Salmon.’ (US Army Engineer District: Portland OR, USA.)

Poulet, N. (2007). Impact of weirs on fish communities in a Piedmont stream. River Research and Applications 23, 1038–1047.
Impact of weirs on fish communities in a Piedmont stream.Crossref | GoogleScholarGoogle Scholar |

Pulg, U., Barlaup, B. T., Velle, G., Gabrielsen, S.-E., Stranzl, S., Olsen, E. E., Lehmann, G. B., Wiers, T., Skår, B., Normann, E., and Fjeldstad, H.-P. (2018). Tiltakshåndbok for bedre fysisk vannmiljø: god praksis ved miljøforbedrende tiltak I elver og bekker. Report number 296, Uni Miljø Research, Bergen, Norway.

Quigley, J. T., and Harper, D. J. (2006). Effectiveness of fish habitat compensations in Canada in achieving no net loss. Environmental Management 37, 351–366.
Effectiveness of fish habitat compensations in Canada in achieving no net loss.Crossref | GoogleScholarGoogle Scholar |

Raynal, S., Chatellier, L., Courret, D., Larinier, M., and David, L. (2014). Streamwise bars in fish-friendly angled trashracks. Journal of Hydraulic Research 52, 426–431.
Streamwise bars in fish-friendly angled trashracks.Crossref | GoogleScholarGoogle Scholar |

Rivinoja, P. (2005). Migration problems of Atlantic salmon (Salmo salar L.) in flow regulated rivers. Ph.D. Thesis, number 2005: 114, Swedish University of Agricultural Sciences, Umeå, Sweden.

Romundstad, A. T. (1991). Biologiske og fiskeokonomiske forutsetninger for fisketrapper. Norske erfaringer. In ‘Villaksseminaret Kompendium’, 31 May–1 June 1991, Lærdal, Norway. (Eds F. E. Krogh and L. M. Sattem.) pp. 65–83. [In Norwegian].

Roscoe, D. W., and Hinch, S. G. (2010). Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions. Fish and Fisheries 11, 12–33.
Effectiveness monitoring of fish passage facilities: historical trends, geographic patterns and future directions.Crossref | GoogleScholarGoogle Scholar |

Rosten, C., Gozlan, R. E., and Lucas, M. C. (2013). Diel and seasonal movements of the critically endangered European eel. Vann 1, 89–95.

Scruton, D. A., Pennell, C. J., Bourgeois, C. E., Goosney, R. F., King, L., Booth, R. K., Eddy, W., Porter, T. R., Ollerhead, L. M. N., and Clarke, K. D. (2008). Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada. Hydrobiologia 609, 225–239.
Hydroelectricity and fish: a synopsis of comprehensive studies of upstream and downstream passage of anadromous wild Atlantic salmon, Salmo salar, on the Exploits River, Canada.Crossref | GoogleScholarGoogle Scholar |

Seifert, K. (2016). ‘Fischaufstiegsanlagen in Bayern. Hinweise und Empfehlungen zur Planung Bau und Betrieb’, 2nd edn. (Landesfischereiverband Bayern e.V. und Bayerisches Landesamt fuer Umwelt: Munchen. Germany.) Available at https://lfvbayern.de/download/fischaufstiegsanlagen-in-bayern [Verified 28 October 2018].

Silva, A. T., Lucas, M. C., Castro-Santos, T., Katopodis, C., Baumgartner, L. J., Thiem, J. D., Aarestrup, K., Pompeu, P., O’Brien, G. C., Braun, D., Burnett, N. J., Zhu, D. Z., Fjeldstad, H. P., Forseth, T., Rajaratnam, N., Williams, J. G., and Cooke, S. (2018). The future of fish passage science, engineering, and practice. Fish and Fisheries 19, 340–362.
The future of fish passage science, engineering, and practice.Crossref | GoogleScholarGoogle Scholar |

Skalski, J. R., Mathur, D., and Heisey, P. G. (2002). Effects of turbine operating efficiency on smolt passage survival. North American Journal of Fisheries Management 22, 1193–1200.
Effects of turbine operating efficiency on smolt passage survival.Crossref | GoogleScholarGoogle Scholar |

Szabo-Meszaros, M., Navaratnam, C. U., Aberle, J., Silva, A. T., Forseth, T., Calles, O., Fjeldstad, H.-P., and Alfredsen, K. (2018). Experimental hydraulics on fish-friendly trash-racks: an ecological approach. Ecological Engineering 113, 11–20.
Experimental hydraulics on fish-friendly trash-racks: an ecological approach.Crossref | GoogleScholarGoogle Scholar |

Thorstad, E. B. (2010). Ål og konsekvenser av vannkraftutbygging - en kunnskapsoppsummering. Miljøbasert Vannføring 1–2010. (Norges Vassdrags- og Energidirektorat: Oslo, Norway.) Available at http://www.nina.no/archive/nina/PppBasePdf/rapporter%20i%20ekstern%20rapportserie/2010/Thorstad%20%C3%85l%20Milj%C3%B8basert%20Vannf%C3%B8ring%201%202010.pdf [Verified 30 October 2018].

Thorstad, E. B., Økland, F., Kroglund, F., and Jepsen, N. (2003). Upstream migration of Atlantic salmon at a power station on the River Nidelva, southern Norway. Fisheries Management and Ecology 10, 139–146.
Upstream migration of Atlantic salmon at a power station on the River Nidelva, southern Norway.Crossref | GoogleScholarGoogle Scholar |

Thorstad, E. B., Økland, F., Aarestrup, K., and Heggberget, T. G. (2008). Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts. Reviews in Fish Biology and Fisheries 18, 345–371.
Factors affecting the within-river spawning migration of Atlantic salmon, with emphasis on human impacts.Crossref | GoogleScholarGoogle Scholar |

Thorstad, E. B., Larsen, B. M., Finstad, B., Hesthagen, T., Hvidsten, N. A., Johnsen, B. O., Næsje, T. F., and Sandlund, O. T. (2011). Kunnskapsoppsummering om ål og forslag til overvåkingssystem i norske vassdrag. Report 661, NINA, Trondheim, Norway.

Travade, F., and Larinier, M. (2002). Chapter 12. Monitoring techniques for fishways. Bulletin Francais de la Peche et de la Pisciculture 364, 166–180.
Chapter 12. Monitoring techniques for fishways.Crossref | GoogleScholarGoogle Scholar |

Tsikata, J. M., Tachie, M. F., and Katopodis, C. (2014). Open channel turbulent flow through bar racks. Journal of Hydraulic Research 52, 630–643.
Open channel turbulent flow through bar racks.Crossref | GoogleScholarGoogle Scholar |

Turnpenny, A. W. H, Struthers, G., and Hanson, K. P. (1998). ‘A UK Guide to Intake Fish Screening Regulations, Policy and Best Practice.’ (Fawley Aquatic Research Laboratories Ltd & Hydroplan: Fawley, UK.)

Washington Department of Fish and Wildlife (2000). ‘Fish Passage Barrier and Surface Water Diversion Screening and Prioritization Manual.’ (WDFW: Olympia, WA, USA.)

Welton, J. S., Beaumont, W. R. C., and Clarke, R. T. (2002). ‘The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK. Fisheries Management and Ecology 9, 11–18.
‘The efficacy of air, sound and acoustic bubble screens in deflecting Atlantic salmon, Salmo salar L., smolts in the River Frome, UK.Crossref | GoogleScholarGoogle Scholar |

Williams, J. G. (1998). Fish passage in the Columbia River, USA and its tributaries: problems and solutions. In ‘Fish Migration and Fish Bypasses’. (Eds M. Jungwirth, S. Schmutz, and S. Weiss.) Fishing News Book, pp. 180–191. (Cambridge University Press: Cambridge, UK.)

Williams, J. G., Armstrong, G., Katopodis, C., Larinier, M., and Travade, F. (2012). Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions. River Research and Applications 28, 407–417.
Thinking like a fish: a key ingredient for development of effective fish passage facilities at river obstructions.Crossref | GoogleScholarGoogle Scholar |

Winchell, F. C., and Sullivan, C. W. (1991). Evaluation of the Eicher fish diversion screen at Elwha dam. In ‘Waterpower ‘91: Proceedings of the International Conference on Hydropower’, 24–26 July 1991, Denver, CO, USA. (Ed. D. D. Darling.) Vol. 1, pp. 93–102. (American Society of Civil Engineers: New York, NY, USA.)