Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Hydrogeochemical processes and trace elements in sediments at the south-eastern Mexican karst aquifer

Tonatiuh Sánchez-Ahuactzin A B , Mario Rebolledo Vieyra A D , Daniela Ortega-Camacho A , Sergio Escobar-Morales C and Laura M. Hernández Terrones A E
+ Author Affiliations
- Author Affiliations

A Centro de Investigación Científica de Yucatán, Unidad de Ciencias del Agua, Calle 8 #39, Lote-1, Manzana 29, Super Manzana 64, CP 77524 Cancún, Quintana Roo, México.

B Escuela Secundaria Técnica #38, Calle Granaditas S/N, CP 90240 Hueyotiplan, Tlaxcala, México.

C Deceased. Formerly at Centro de Investigación Científica de Yucatán, Unidad de Ciencias del Agua, Calle 8 # 39, Lote-1, Manzana 29, Super Manzana 64, CP 77524 Cancún, Quintana Roo, México.

D Present address: Chipre 5, Residencial Isla Azul, CP 77500 Cancún, Quintana Roo, México.

E Corresponding author. Present address: Universidad del Caribe, Lote-1, Manzana 1,Esquina Fraccionamiento Tabachines, Super Manzana 78, CP 77528 Cancún, Quintana Roo, México. Email: lmhernandez@ucaribe.edu.mx

Marine and Freshwater Research 70(4) 513-530 https://doi.org/10.1071/MF18036
Submitted: 26 January 2018  Accepted: 30 August 2018   Published: 13 November 2018

Abstract

The chemical characteristics and hydrogeochemical processes that govern the groundwater in the sinkholes ring of the Yucatan Peninsula were assessed. The groundwater of the area studied is of the Ca–Mg–HCO3 type. Local geology (abundance of dolomite) determines Mg2+ enrichment relative to Ca2+. The absence of seawater intrusion was established. Sinkhole water chemistry is controlled by carbonate rock dissolution, with dominance of Ca2+, Mg2+ and HCO3. The dynamic and controlling factors of trace elements were determined in sediments of the southern part of Mexico. The order of mean concentrations of trace elements in sediments is Sr > Pb > Cu > Zn > Cr > > Cd. With regard to the sequential extraction procedure, the potential importance of fractions in sediments is in the order residual > organic matter > carbonates > exchangeable > water soluble, confirming that sinkhole sediments works as a sink of trace elements, and that no anthropogenic pressure exists in the groundwater of the hydrogeological reserve area. Trace element stability in sediments decreased as follow: Cd > Pb > Zn > Cr > Cu > Sr. The study results describe the groundwater and sediment condition of the hydrogeological reserve area, and provide insights for stakeholders and authorities. Growing population and economic activities may be major threats to the groundwater in coming decades.

Additional keywords: groundwater, hydrochemistry, major ions, sequential extraction, sinkhole.


References

Adriano, D. (1986). ‘Trace Elements in the Terrestrial Environment’, 1st edn. (Springer-Verlag: Berlin, Germany.)

Alcocer, J., Lugo, A., Marín, L. E., and Escobar, E. (1998). Hydrochemistry of waters from five cenotes and evaluation of their suitability for drinking-water supplies, northeastern Yucatan, Mexico. Hydrogeology Journal 6, 293–301.
Hydrochemistry of waters from five cenotes and evaluation of their suitability for drinking-water supplies, northeastern Yucatan, Mexico.Crossref | GoogleScholarGoogle Scholar |

Alvarez, M., Malla, M., and Batistoni, D. (2001). Comparative assessment of two sequential chemical extraction schemes for the fractionation of cadmium, chromium, lead and zinc in surface coastal sediments. Fresenius’ Journal of Analytical Chemistry 369, 81–90.
Comparative assessment of two sequential chemical extraction schemes for the fractionation of cadmium, chromium, lead and zinc in surface coastal sediments.Crossref | GoogleScholarGoogle Scholar |

Appel, Ch., and Ma, L. (2002). Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils. Journal of Environmental Quality 31, 581–589.
Concentration, pH, and surface charge effects on cadmium and lead sorption in three tropical soils.Crossref | GoogleScholarGoogle Scholar |

Appelo, C. A. J., and Postma, D. (2005). ‘Geochemistry, Groundwater and Pollution’, 2nd edn. (A. A. Balkema: Rotterdam, Netherlands.)

Arcega-Cabrera, F., Garza-Pérez, R., Noreña-Barroso, E., and Oceguera-Vargas, I. (2015). Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico. Bulletin of Environmental Contamination and Toxicology 94, 58–65.
Impacts of geochemical and environmental factors on seasonal variation of heavy metals in a coastal lagoon Yucatan, Mexico.Crossref | GoogleScholarGoogle Scholar |

Askri, B., Ahmed, A. T., Al-Shandari, R. A., Bouhlila, R., and Al-Farisi, K. B. K. (2016). Isotopic and geochemical identifications of groundwater salinisation processes in Salalah coastal plain, Sultanate of Oman. Chemie der Erde 76, 243–255.
Isotopic and geochemical identifications of groundwater salinisation processes in Salalah coastal plain, Sultanate of Oman.Crossref | GoogleScholarGoogle Scholar |

Ayora-Domíguez, M. E. (2014). Caracterización del agua en cenotes localizados en dos zonas del anillo de cenotes. M.Eng. Thesis, Universidad Autónoma de Yucatán, Yucatán, México.

Back, W. (1985). Hydrogeology of the Yucatan. In ‘Geology and Hydrogeology of the Yucatan and Quaternary Geology of Northeastern Yucatan Peninsula’. (Eds W. C. Ward, A. E. Weidie, and W. Back.) pp. 99–124. (New Orleans Geological Society: New Orleans, LA, USA.)

Back, W., and Hanshaw, B. B. (1970). Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan. Journal of Hydrology 10, 330–368.
Comparison of chemical hydrogeology of the carbonate peninsulas of Florida and Yucatan.Crossref | GoogleScholarGoogle Scholar |

Back, W., and Lesser, J. M. (1981). Chemical constraints of groundwater management in the Yucatan Peninsula, México. Journal of Hydrology 51, 119–130.
Chemical constraints of groundwater management in the Yucatan Peninsula, México.Crossref | GoogleScholarGoogle Scholar |

Bacon, J., and Davidson, C. (2008). Is there a future for sequential chemical extraction? Analyst 133, 25–46.
Is there a future for sequential chemical extraction?Crossref | GoogleScholarGoogle Scholar |

Baize, D. (1997). ‘Teneurs totales en éléments trace métalliques dans les sols (France). Références et stratégies d’interprétation.’ (INRA: Paris, France.)

Bakalowicz, M., Drew, D., Orvan, J., Bosch, A. P., Salaga, I., Sarin, A., and Tulipano, L. (1995). The Characteristics of Karst Groundwater Systems. In ‘COST Action 65, Hydrogeological Aspects of Groundwater Protection in Karstic Areas’. Final report, pp. 349–369, European Commission, Luxembourg.

Baruah, N., Kotoky, P., Bhattacharyya, K., and Borah, G. (1996). Metal speciation in Jhanji River sediments. The Science of the Total Environment 193, 1–12.
Metal speciation in Jhanji River sediments.Crossref | GoogleScholarGoogle Scholar |

Bauer-Gottwein, P., Gondwe, B. R. N., Charvet, G., Marín, L. E., Reboelledo-Vieyra, M., and Merediz-Alonso, G. (2011). Review: the Yucatán Peninsula karst aquifer, Mexico. Hydrogeology Journal 19, 507–524.
Review: the Yucatán Peninsula karst aquifer, Mexico.Crossref | GoogleScholarGoogle Scholar |

Bonet, F., and Butterlin, J. (1965). ‘Stratigraphy of the Northern Part of the Yucatan Peninsula. Field Trip to Peninsula of Yucatan Guide Book.’ (New Orleans Geological Society: New Orleans, LA, USA.)

Brown, G., and Calas, G. (2011). Environmental mineralogy – understanding element behavior in ecosystems. Comptes Rendus Geoscience 343, 90–112.
Environmental mineralogy – understanding element behavior in ecosystems.Crossref | GoogleScholarGoogle Scholar |

Byoung-Young, C., Seong-Taek, Y., Bernhard, M., So-Young, H., Kyoung-Ho, K., and Ho-Young, J. (2012). Hydrogeochemical processes in clastic sedimentary rocks, South Korea: a natural analogue study of the role of dedolomitization in geologic carbon storage. Chemical Geology 306–307, 103–113.

Cabrera, A., Pacheco, J., Cuevas, E., Ramírez, J., Comas, M., and Cámara, A. (2002). Hidrogeoquímica del agua que subyace a la JAPAY I, en Mérida, Yucatán, México. Ingeniería 6, 29–40.

Callender, E. (2004). Heavy metals in the environment – historical trends. In ‘Environmental Geochemistry. Vol. 9, Treatise on Geochemistry’. (Eds H. D. Holland and K. K. Tureckian.) pp. 67–101. (Elsevier–Pergamon: Oxford, UK.)

Campanella, L., D’Orazio, D., Petronio, B., and Pietrantonio, E. (1995). Proposal for a metal speciation study in sediments. Analytica Chimica Acta 309, 387–393.
Proposal for a metal speciation study in sediments.Crossref | GoogleScholarGoogle Scholar |

Capaccioni, B., Didero, M., Paletta, C., and Salvadori, P. (2001). Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: an example from the Mt Catria Mt Nerone ridge (Northern Appennines, Italy). Journal of Hydrology 253, 14–26.
Hydrogeochemistry of groundwaters from carbonate formations with basal gypsiferous layers: an example from the Mt Catria Mt Nerone ridge (Northern Appennines, Italy).Crossref | GoogleScholarGoogle Scholar |

Chang, C., Wang, C., Mui, D., and Chiang, H. (2009). Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: a case study for BCR 176. Journal of Hazardous Materials 163, 578–587.
Application of methods (sequential extraction procedures and high-pressure digestion method) to fly ash particles to determine the element constituents: a case study for BCR 176.Crossref | GoogleScholarGoogle Scholar |

Custodio, E., and Llamas, M. R. (2007). ‘Hidrología subterranean’, 2nd edn. (Omega: Barcelona, Spain.)

Daniele, L., Vallejos, A., Corbella, M., Molina, L., and Pulido-Bosch, A. (2013). Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain). Applied Geochemistry 29, 43–54.
Hydrogeochemistry and geochemical simulations to assess water–rock interactions in complex carbonate aquifers: the case of Aguadulce (SE Spain).Crossref | GoogleScholarGoogle Scholar |

Dehnavi, A. G., Ramin Sarikhani, R., and Nagaraju, D. (2011). Hydrogeochemical and rock water interaction studies in East of Kurdistan, N-W of Iran. International Journal Environment Science Research 1, 16–22.

Drever, J. I. (1988). ‘The Geochemistry of Natural Waters’, 2nd edn. (Prentice Hall: Englewood Cliffs, NJ, USA.)

Drucker, A., Escalante, R., Gómez, V., and Magaña, S. (2003). La industria porcina en Yucatán: un análisis de la generación de aguas residuales. Problemas del Desarrollo Revista Latinoamericana de Economía 34, 105–120.

Eaton, A. D., Clesceri, L. S., Greenberg, A. E. (Eds) (1998). ‘Standard Methods for the Examination of Water and Wastewater’, 21st edn. (American Public Health Association: Washington, DC, USA.)

Eggleton, J., and Thomas, K. (2004). A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environment International 30, 973–980.
A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events.Crossref | GoogleScholarGoogle Scholar |

Environmental Protection Agency (1996). Method 3052: microwave assisted acid digestion of siliceous and organically based matrices. Available at https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf [Verified 14 September 2018].

Escolero, O., Marín, L. E., Steinich, B., Pacheco, J. A., Molina-Maldonado, A., and Anzaldo, J. M. (2005). Geochemistry of the hydrogeological reserve of Mérida, Yucatán, México. Geofísica Internacional 44, 301–314.

Farkas, A., Erratico, C., and Vigano, L. (2007). Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po. Chemosphere 68, 761–768.
Assessment of the environmental significance of heavy metal pollution in surficial sediments of the River Po.Crossref | GoogleScholarGoogle Scholar |

Fernandez, A., Singh, A., and Jaffé, R. (2007). A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region. Marine Pollution Bulletin 54, 1681–1691.
A literature review on trace metals and organic compounds of anthropogenic origin in the Wider Caribbean Region.Crossref | GoogleScholarGoogle Scholar |

Filgueiras, A., Lavilla, I., and Bendicho, C. (2002). Chemical sequential extraction for metal partitioning in environmental solid samples. Journal of Environmental Monitoring 4, 823–857.
Chemical sequential extraction for metal partitioning in environmental solid samples.Crossref | GoogleScholarGoogle Scholar |

Ford, D., and Williams, P. D. (2007). ‘Karst Hydrogeology and Geomorphology.’ (Wiley: Chichester, UK.)

Förstner, U., and Wittmann, G. (1981). ‘Metal Pollution in the Aquatic Environment’, 2nd edn. (Springer-Verlag: Heidelberg, Germany.)

Gale, R., Gale, S., and Winchester, H. (2006). Inorganic pollution of the sediments of the River Torrens, South Australia. Environmental Geology 50, 62–75.
Inorganic pollution of the sediments of the River Torrens, South Australia.Crossref | GoogleScholarGoogle Scholar |

Giménez-Forcada, E., Bencini, A., and Pranzini, G. (2010). Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy) Environmental Geochemistry and Health 32, 243–257.
Hydrogeochemical considerations about the origin of groundwater salinization in some coastal plains of Elba Island (Tuscany, Italy)Crossref | GoogleScholarGoogle Scholar |

Gondwe, B. R. N., Lerer, S., Stisen, S., Marín, L., Rebolledo-Vieyra, M., Merediz-Alonso, G., and Bauer-Gottwein, P. (2010). Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. Journal of Hydrology 389, 1–17.
Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing.Crossref | GoogleScholarGoogle Scholar |

Hanshaw, B. B., and Back, W. (1979). Major geochemical processes in the evolution of carbonate–aquifer systems. Journal of Hydrology 43, 287–312.
Major geochemical processes in the evolution of carbonate–aquifer systems.Crossref | GoogleScholarGoogle Scholar |

Hernández, L. (2003). Dynamique des éléments traces métalliques dans les sols de différents écosystèmes forestiers Français: origine, distribution physique et chimique et facteurs de contrôle. Ph.D. Thesis, Université Paul Sabatier, Toulouse, France.

Hernández-Terrones, L., Rebolledo-Vieyra, M., Merino-Ibarra, M., Soto, M., Le-Cossec, A., and Monroy-Rios, E. (2011). Groundwater pollution in a karstic region (NE Yucatan) baseline nutrient content and flux to coastal ecosystems. Water, Air, and Soil Pollution 218, 517–528.
Groundwater pollution in a karstic region (NE Yucatan) baseline nutrient content and flux to coastal ecosystems.Crossref | GoogleScholarGoogle Scholar |

Ho, M., and Evans, G. (2000). Sequential extraction of metal contaminated soils with radiochemical assessment of readsorption effects Environmental Science & Technology 34, 1030–1035.
Sequential extraction of metal contaminated soils with radiochemical assessment of readsorption effectsCrossref | GoogleScholarGoogle Scholar |

Idris, A., Eltayeb, M., Potgieter-Vermaak, S., Grieken, R., and Potgieter, J. (2007). Assessment of heavy metal pollution in Sudanese harbours along the Red Sea coast. Microchemical Journal 87, 104–112.
Assessment of heavy metal pollution in Sudanese harbours along the Red Sea coast.Crossref | GoogleScholarGoogle Scholar |

Jamali, M., Kazi, T., Afridi, H., Arain, M., Jalbani, N., and Memon, A. (2007). Speciation study of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method. Journal of Environmental Science and Health – A. Environmental Science and Engineering 42, 649–659.
Speciation study of heavy metals in untreated domestic wastewater sludge by time saving BCR sequential extraction method.Crossref | GoogleScholarGoogle Scholar |

Javan, S., Hassani, A., Ahangar, A., and Soltani, J. (2015). Fractionation of heavy metals in bottom sediments in Chahnimeh 1, Zabol, Iran. Environmental Monitoring and Assessment 187, 340.
Fractionation of heavy metals in bottom sediments in Chahnimeh 1, Zabol, Iran.Crossref | GoogleScholarGoogle Scholar |

Juste, C., Chassin, P., and Gomez, A. (1995). ‘Les micro-polluants métalliques dans les boues résiduaires des stations d’épuration urbaines.’ (ADEME: Angers, France.)

Kabata-Pendias, A., and Pendias, H. (2001). ‘Trace Elements in Soils and Plants’, 3rd edn. (CRC Press: Boca Raton, FL, USA.)

Katz, B. G., Coplen, T. B., Bullen, T. D., and Davis, J. H. (1997). Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled karst. Ground Water 35, 1014–1028.
Use of chemical and isotopic tracers to characterize the interaction between groundwater and surface water in mantled karst.Crossref | GoogleScholarGoogle Scholar |

Kenkmann, T., and Shönian, F. (2006). Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteoritics & Planetary Science 41, 1587–1603.
Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets.Crossref | GoogleScholarGoogle Scholar |

Kløve, B., Ala-aho, P., Bertrand, G., Boukalova, Z., Ertürk, A., Goldscheider, N., Ilmonen, J., Karakaya, N., Kupfersberger, H., Kvœrner, J., Lundberg, A., Mileusnić, M., Moszczynska, A., Muotka, T., Preda, E., Rossi, P., Siergieiev, D., Simek, J., and Widerlund, A. (2011). Groundwater dependent ecosystems. Part I. Hydroecological status and trends. Environmental Science & Policy 14, 770–781.
Groundwater dependent ecosystems. Part I. Hydroecological status and trends.Crossref | GoogleScholarGoogle Scholar |

Kumar, M., Kalpana, K., Umesh Kumar, S., and Ramanathan, Al. (2009). Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach. Environmental Geology 57, 873–884.
Hydrogeochemical processes in the groundwater environment of Muktsar, Punjab: conventional graphical and multivariate statistical approach.Crossref | GoogleScholarGoogle Scholar |

Leleyter, L., and Probst, J.-L. (1999). A new sequential extraction procedure for the speciation of particulate trace elements in river sediments. International Journal of Environmental Analytical Chemistry 73, 109–128.
A new sequential extraction procedure for the speciation of particulate trace elements in river sediments.Crossref | GoogleScholarGoogle Scholar |

Lesser, J. M. (1976). Estudio hidrogeológico e hidrogeoquímico de la Peninsula de Yucatán [Hydrogeological and hydrochemical study of the Yucatan Peninsula]. Proyecto Conacyt-NSF 704, Secretaria de Recursos Hidraulicos, Direccion de Geohidrologia y Zonas Aridas, México City, México.

López, P., and Mandado, J. (2002). Extracciones químicas secuenciales de metales pesados. Aplicación en Ciencias Geológicas. Estudios Geológicos 58, 133–144.

Ma, L., and Rao, G. (1997). Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils. Journal of Environmental Quality 26, 259–264.
Chemical fractionation of cadmium, copper, nickel and zinc in contaminated soils.Crossref | GoogleScholarGoogle Scholar |

Marin, B., Valladon, M., Polve, M., and Monaco, A. (1997). Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry. Analytica Chimica Acta 342, 91–112.
Reproducibility testing of a sequential extraction scheme for the determination of trace metal speciation in a marine reference sediment by inductively coupled plasma-mass spectrometry.Crossref | GoogleScholarGoogle Scholar |

Marín, L., Steinich, B., Pacheco, J., and Escolero, O. (2000). Hydrogeology of a contaminated sole-source karst aquifer. Geofísica Internacional 39, 359–365.

Matthes, L. (2008). Analysis and evaluation of ground and surface water quality and groundwater flow in the northern aquifer of Quintana Roo, Mexico. In ‘Estudio geohidrológico del norte de Quintana Roo, México’. (Eds M. A. Gutiérrez-Aguirre and A. Martínez-Cervantes.) pp. 59–106. (Universidad de Quintana Roo: Chetumal, México.)

Mayo, A. L., and Loucks, M. D. (1995). Solute and isotopic geochemistry and groundwater flow in the central Wasatch Range, Utah. Journal of Hydrology 172, 31–59.
Solute and isotopic geochemistry and groundwater flow in the central Wasatch Range, Utah.Crossref | GoogleScholarGoogle Scholar |

Medina, R., Zetina, C., Comas, M., and Roberto, P. (2004). Concentración de Cd, Cr, Cu y Pb en sedimentos y en tres especies de pepino de mar (clase holothuroidea) de las costas del Estado de Yucatán, México. Ingeniería 8, 7–19.

Meybeck, M. (1987). Global chemical weathering of surficial rocks estimated from river disolved loads. American Journal of Science 287, 401–428.
Global chemical weathering of surficial rocks estimated from river disolved loads.Crossref | GoogleScholarGoogle Scholar |

Morgan, J. V., Warner, M. R., Collins, G. S., Melosh, H. J., and Christeson, G. L. (2000). Peak-ring formation in large impact craters: geophysical constraints from Chicxulub. Earth and Planetary Science Letters 183, 347–354.
Peak-ring formation in large impact craters: geophysical constraints from Chicxulub.Crossref | GoogleScholarGoogle Scholar |

Morillo, J., Usero, J., and Gracia, I. (2002). Partitioning of metals in sediments from the Odiel River (Spain). Environment International 28, 263–271.
Partitioning of metals in sediments from the Odiel River (Spain).Crossref | GoogleScholarGoogle Scholar |

Nriagu, J., and Pacyna, J. (1988). Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333, 134–139.
Quantitative assessment of worldwide contamination of air, water and soils by trace metals.Crossref | GoogleScholarGoogle Scholar |

Okoro, H., Fatoki, O., Adekola, F., Ximba, B., and Snyman, R. (2012). A review of sequential extraction procedures for heavy metals speciation in soil and sediments. Scientific Reports 1, 181.
A review of sequential extraction procedures for heavy metals speciation in soil and sediments.Crossref | GoogleScholarGoogle Scholar |

Ortega-Camacho, D. (2011). Verificación y aplicación de unatécnica analítica para la determinación de elementos mayores por ICP-OES. Caracterización y clasificación de agua subterránea del anillo de cenotes, Yucatán, México. B.Sc. Thesis, Universidad Nacional Autónoma de México, México City, México.

Pacheco, J., Cabrera, A., and Pérez, R. (2004). Diagnóstico de la calidad del agua subterránea en los sistemas municipales de abastecimiento en el Estado de Yucatán, México. Ingeniería 8, 165–179.

Pacheco, J., Sansores, A., Quintal, M., Can, L., and Perera, M. (2011). Environmental study on cadmium in groundwater in Yucatan. In ‘Water Resources in Mexico: Scarcity, Degradation, Stress, Conflicts, Management, and Policy’. (Ed. O. Ú. Spring.) pp. 239–249. (Springer: Berlin, Germany.)

Panno, S. V., Hackley, K. C., Hwang, H. H., Greenberg, S. E., Krapac, I. G., Landsberger, S., and O’Kelly, D. J. (2006). Characterization and identification of Na-Cl sources in ground water. Ground Water 44, 176–187.
Characterization and identification of Na-Cl sources in ground water.Crossref | GoogleScholarGoogle Scholar |

Parkhurst, D. L., and Appelo, C. A. J. (2013). Description of input and examples for PHREEQC version 3 – a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. In ‘US Geological Survey Techniques and Methods Book 6. Modeling Techniques’, Chapt. A43. (US Department of the Interior, US Geological Survey: Denver, CO, USA), Available at http://pubs.usgs.gov/tm/06/a43/ [Verified 26 September 2018].

Pérez, L., Bugja, R., Lorenschat, J., Brenner, M., Curtis, J., Hoelzmann, P., Islebe, G., Scharf, B., and Schwalb, A. (2011). Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala. Hydrobiologia 661, 407–433.
Aquatic ecosystems of the Yucatan Peninsula (Mexico), Belize, and Guatemala.Crossref | GoogleScholarGoogle Scholar |

Pérez-Ceballos, R., Pacheco-Ávila, J., Euán-Ávila, J. I., and Hernández-Arana, H. (2012). Regionalization based on water chemistry and physicochemical traits in the ring of cenotes, Yucatan, Mexico. Journal of Caves and Karst Studies 74, 90–102.
Regionalization based on water chemistry and physicochemical traits in the ring of cenotes, Yucatan, Mexico.Crossref | GoogleScholarGoogle Scholar |

Perry, E., Velazquez-Oliman, G., and Marín, L. E. (2002). The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico. International Geology Review 44, 191–221.
The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar |

Perry, E. C., Paytan, A., Pedersen, B., and Velazquez-Oliman, G. (2009). Groundwater geochemistry of the Yucatan Peninsula, Mexico: constraints on stratigraphy and hydrogeology. Journal of Hydrology 367, 27–40.
Groundwater geochemistry of the Yucatan Peninsula, Mexico: constraints on stratigraphy and hydrogeology.Crossref | GoogleScholarGoogle Scholar |

Peters, C. A., Striegl, R. G., Mills, P. C., and Healy, R. W. (1992). Effects of low-level radioactive-waste disposal on water chemistry in the unsaturated zone at a site near Sheffield, Illinois 1982–84. Water-supply paper 2390, US Department of the Interior, US Geological Survey, Denver, CO, USA.

Prado-Pérez, A. J., and Pérez del Villar, L. (2011). Dedolomitization as an analogue process for assessing the long-term behaviour of a CO2 deep geological storage: the Alicún de las Torres thermal system. Chemical Geology 289, 98–113.
Dedolomitization as an analogue process for assessing the long-term behaviour of a CO2 deep geological storage: the Alicún de las Torres thermal system.Crossref | GoogleScholarGoogle Scholar |

Probst, A., Hernández, L., and Probst, J.-L. (2003). Heavy metals partitioning in three French forest soils by sequential extraction procedure. Journal of Physique IV France 107, 1103–1106.
Heavy metals partitioning in three French forest soils by sequential extraction procedure.Crossref | GoogleScholarGoogle Scholar |

Rademacher, P. (2003). Atmospheric heavy metals and forest ecosystems. Work report of the Institute for World Forestry, Number 2003/12, Federal Research Centre for Forestry and Forest Products (BFH), Institute for World Forestry, Hamburg, Germany. Available at http://nbn-resolving.de/urn:nbn:de:gbv:253-201002-dk040080-3 [Verified 8 November 2018].

Rao, N. S., Nirmala, I. S., and Suryanarayana, K. (2005). Groundwater quality in a coastal area: a case study from Andhra Pradesh, India. Environmental Geology 48, 543–550.
Groundwater quality in a coastal area: a case study from Andhra Pradesh, India.Crossref | GoogleScholarGoogle Scholar |

Rauret, G. (1998). Extraction procedures for the determination of heavy metals in contaminated soil and sediment. Talanta 46, 449–455.
Extraction procedures for the determination of heavy metals in contaminated soil and sediment.Crossref | GoogleScholarGoogle Scholar |

Rebolledo-Vieyra, M., Marín, L., Sharpton, V., and Trejo-García, A. (2011). UNAM: the Chicxulub impact crater and its influence on the regional hydrology in northwestern Yucatan, Mexico. In ‘Gulf of Mexico Origin, Waters, and Biota, Volume 3, Geology’. (Eds N. A. Buster and C. W. Holmes.) pp. 279–290. (Texas A&M University Press: College Station, TX, USA.)

Redwan, M., and Abdel Moneim, A. A. (2016). Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt. Journal of African Earth Sciences 118, 328–338.
Factors controlling groundwater hydrogeochemistry in the area west of Tahta, Sohag, Upper Egypt.Crossref | GoogleScholarGoogle Scholar |

Relić, D., Đorđević, D., Popović, A., and Blagojević, T. (2005). Speciations of trace metals in the Danube alluvial sediments within an oil refinery. Environment International 31, 661–669.
Speciations of trace metals in the Danube alluvial sediments within an oil refinery.Crossref | GoogleScholarGoogle Scholar |

Roussiez, V., Ludwig, W., Monaco, A., and Probst, J.-L. (2005). Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements. Environmental Pollution 138, 167–177.
Background levels of heavy metals in surficial sediments of the Gulf of Lions (NW Mediterranean): an approach based on 133Cs normalization and lead isotope measurements.Crossref | GoogleScholarGoogle Scholar |

Šafanda, J., Heidinger, P., Wilhelm, H., and Čermák, V. (2005). Fluid convection observed from temperature logs in the karst formation of the Yucatán Península, México. Journal of Geophysics and Engineering 2, 326–331.
Fluid convection observed from temperature logs in the karst formation of the Yucatán Península, México.Crossref | GoogleScholarGoogle Scholar |

Salomons, W., and Förstner, U. (1980). Trace metal analysis on polluted sediments. II: evaluation of environmental impact. Environmental Technology Letters 1, 506–517.
Trace metal analysis on polluted sediments. II: evaluation of environmental impact.Crossref | GoogleScholarGoogle Scholar |

Sappa, G., Ergul, S., and Ferranti, F. (2013). Geochemical evolution of groundwater in carbonate aquifers of southern Latium region, central Italy. Ground Water 40, 9–15.

Scanlon, B. R. (1990). Relationships between groundwater contamination and major-ion chemistry in a karst aquifer. Hydrology Journal 119, 271–291.
Relationships between groundwater contamination and major-ion chemistry in a karst aquifer.Crossref | GoogleScholarGoogle Scholar |

Schmitter-Soto, J. J., Comín, F. A., Escobar-Briones, E., Herrera-silveira, J., Alcocer, J., Suárez-Morales, E., Elías-Gutiérrez, M., Díaz-Arce, V., Marín, L. E., and Steinich, B. (2002). Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico). Hydrobiologia 467, 215–228.
Hydrogeochemical and biological characteristics of cenotes in the Yucatan Peninsula (SE Mexico).Crossref | GoogleScholarGoogle Scholar |

Schoeller, H. (1977). Geochemistry of groundwater. In ‘Groundwater Studies – an International Guide for Research and Practice’. (Eds R. H. Brown, A. A. Konoplyantsev, J. Ineson, and V. S. Kovalevsky.) pp. 1–18. (UNESCO: Paris, France.)

Senthilkumar, M., and Elango, L. (2013). Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India. Journal of Earth System Science 122, 419–432.
Geochemical processes controlling the groundwater quality in lower Palar river basin, southern India.Crossref | GoogleScholarGoogle Scholar |

Shuman, L. (1985). Fractionation method for soil microelements. Soil Science 140, 11–22.
Fractionation method for soil microelements.Crossref | GoogleScholarGoogle Scholar |

Socki, R. A., Perry, E. C., and Romanek, C. S. (2002). Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico. Limnology and Oceanography 47, 1808–1818.
Stable isotope systematics of two cenotes from the northern Yucatan Peninsula, Mexico.Crossref | GoogleScholarGoogle Scholar |

Sposito, G. (1986). The distribution of potentially hazardous trace metals. In ‘Metals Ions in Biological Systems’. (Ed. H. Sigel.) pp. 1–20. (Marcel Dekker: New York, NY, USA.)

Steinich, B., and Marín, L. E. (1996). Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys. Ground Water 34, 640–646.
Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys.Crossref | GoogleScholarGoogle Scholar |

Stoessell, R. K., and Coke, J. G. (2006). An explanation for brackish groundwaters in the freshwater lens in tropical coastal aquifers: Yucatan example. Gulf Coast Association of Geological Societies Journal 56, 785–792.

Stoessell, R. K., Coke, J. G., and Easley, D. H. (2002). Localized thermal anomalies in haloclines of coastal Yucatan sinkholes. Ground Water 40, 416–424.
Localized thermal anomalies in haloclines of coastal Yucatan sinkholes.Crossref | GoogleScholarGoogle Scholar |

Stumm, W., and Morgan, J. J. (1995). ‘Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters’, 3rd edn. (Wiley: New York, NY, USA.)

Šurija, B., and Branica, M. (1995). Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction. The Science of the Total Environment 170, 101–118.
Distribution of Cd, Pb, Cu and Zn in carbonate sediments from the Krka river estuary obtained by sequential extraction.Crossref | GoogleScholarGoogle Scholar |

Svete, P., Milacic, R., and Pihlar, B. (2001). Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure. Journal of Environmental Monitoring 3, 586–590.
Partitioning of Zn, Pb and Cd in river sediments from a lead and zinc mining area using the BCR three-step sequential extraction procedure.Crossref | GoogleScholarGoogle Scholar |

Tessier, A., Campbell, P., and Bisson, M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry 51, 844–851.
Sequential extraction procedure for the speciation of particulate trace metals.Crossref | GoogleScholarGoogle Scholar |

Trujillo-Cárdenas, J., Saucedo-Torres, N., Zárate del Valle, P., Ríos-Donato, N., Mendizábal, E., and Gómez-Salazar, S. (2010). Speciation and sources of toxic metals in sediments of Lake Chapala, Mexico. Journal of the Mexican Chemical Society 54, 79–87.

Turekian, K., and Wedepohl, K. (1961). Distribution of the elements in some major units of the Earth’s crust. Geological Society of America Bulletin 72, 175–192.
Distribution of the elements in some major units of the Earth’s crust.Crossref | GoogleScholarGoogle Scholar |

Venkatramanan, S., Chung, S.-Y., Ramkumar, T., and Gnanachandrasamy, G. (2015). Evaluation of geochemical behavior and heavy metal distribution of sediments: the case study of the Tirumalairajan river estuary, southeast coast of India. International Journal of Sediment Research 30, 28–38.
Evaluation of geochemical behavior and heavy metal distribution of sediments: the case study of the Tirumalairajan river estuary, southeast coast of India.Crossref | GoogleScholarGoogle Scholar |

Walraevens, K., and Van Camp, M. (2004). Advances in understanding natural groundwater quality controls in coastal aquifers. In ‘Proceedings of the 18th Salt Water Intrusion Meeting’, 31 May–3 June 2004, Cartagena, Spain. (Eds L. Araguás, E. Custodio and M. Manzano.) pp. 449–463. (Instituto Geológico y Minero de España: Madrid, Spain.) Available at http://www.swim-site.nl/pdf/swim18/swim18_041.pdf [Verified 6 November 2018].

Ward, W. C., Weidie, A. E., and Back, W. (1985). ‘Geology and Hydrogeology of the Yucatan and Quaternary Geology of Northeastern Yucatan Peninsula.’ (New Orleans Geological Society: New Orleans, LA, USA.)

Wedepohl, K. (1995). The composition of continental crust. Geochimica et Cosmochimica Acta 59, 1217–1232.
The composition of continental crust.Crossref | GoogleScholarGoogle Scholar |

World Health Organization (2017). Guidelines for drinking-water quality, 4th edition, incorporating the 1st addendum. Available at http://www.who.int/water_sanitation_health/publications/drinking-water-quality-guidelines-4-including-1st-addendum/en/ [Verified 27 September 2018].

Xiao, J., Jin, Z., Wang, J., and Zhang, F. (2015). Major ion chemistry, weathering process and water quality of natural waters in the Bosten Lake catchment in an extreme arid region, NW China. Environmental Earth Sciences 73, 3697–3708.
Major ion chemistry, weathering process and water quality of natural waters in the Bosten Lake catchment in an extreme arid region, NW China.Crossref | GoogleScholarGoogle Scholar |

Yang, Q., Li, Z., Ma, H., Wang, L., and Martín, J. D. (2016). Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos Basin, China. Environmental Pollution 218, 879–888.
Identification of the hydrogeochemical processes and assessment of groundwater quality using classic integrated geochemical methods in the Southeastern part of Ordos Basin, China.Crossref | GoogleScholarGoogle Scholar |

Yu, K., Tsai, L., Chen, S., Chang, D., and Ho, S. (2006). Multivariate correlations of geochemical binding phases of heavy metals in contaminated river sediment. Journal of Environmental Science and Health – A. Toxic/Hazardous Substances and Environmental Engineering 36, 1–16.

Zachara, J., Cowan, C., and Resch, C. (1991). Sorption of divalent metals on calcite. Geochimica et Cosmochimica Acta 55, 1549–1562.
Sorption of divalent metals on calcite.Crossref | GoogleScholarGoogle Scholar |