Cave benthic invertebrates in south-eastern Brazil: are there ‘key’ factors structuring such communities?
T. G. Pellegrini A C , P. S. Pompeu B and R. L. Ferreira AA Centro de Estudos em Biologia Subterrânea, Universidade Federal de Lavras, Campus Universitário, 3037, CEP 37200-000, Lavras, MG, Brazil.
B Laboratório de Ecologia de Peixes, Universidade Federal de Lavras, Campus Universitário, 3037, CEP 37200-000, Lavras, MG, Brazil.
C Corresponding author. Email: thais.g.pellegrini@gmail.com
Marine and Freshwater Research 69(11) 1762-1770 https://doi.org/10.1071/MF18025
Submitted: 6 June 2017 Accepted: 18 April 2018 Published: 13 August 2018
Abstract
The aim of this study was to determine the effects of microhabitat traits related to water quality and physical features of stream channels (substrate, channel morphology and hydraulic characteristics) on the richness and structure of the aquatic insect assemblage in cave streams. Sampling was conducted in three subterranean streams in Brazil. Aquatic insect richness was significantly and positively related to water depth and the presence of shelters for invertebrates. These shelters are directly related to channel heterogeneity, a factor that determined the surface area of habitats suitable for colonisation, refuges and the amount and variety of nutrients in streams where resources are extremely limited. Furthermore, analyses of community composition revealed that aquatic insect assemblages in each cave were structured by distinct factors (including physicochemical characteristics of the water or hydraulic features of the channel). Together, these findings highlight that different factors are responsible for structuring the assemblages in each cave, which may reflect their local variability, and that silting of cave streams would likely have deleterious effects on aquatic insect communities through reductions in overall habitat heterogeneity.
Additional keywords: aquatic insects, physical habitat, shelter, substrate heterogeneity, subterranean.
References
Anderson, M. J., Gorley, R. N., and Clarke, K. R. (Eds) (2008). ‘PERMANOVA+ for PRIMER: Guide to Software and Statistical Methods.’ (Massey University, Albany Campus: Auckland, New Zealand.)Astorga, A., Death, R., Death, F., Paavola, R., Chakraborty, M., and Muotka, T. (2014). Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates. Ecology and Evolution 4, 2693–2702.
| Habitat heterogeneity drives the geographical distribution of beta diversity: the case of New Zealand stream invertebrates.Crossref | GoogleScholarGoogle Scholar |
Barr, T. C. (1967). Observations on ecology of caves. American Naturalist 101, 475–491.
| Observations on ecology of caves.Crossref | GoogleScholarGoogle Scholar |
Bates, D., Maechler, M., Bolker, B., and Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67, 1–48.
| Fitting linear mixed-effects models using lme4.Crossref | GoogleScholarGoogle Scholar |
Benetti, C. J., Cueto, J. A. R., and Fiorentin, G. L. (2003). Gêneros de Hydradephaga (Coleoptera: Dytiscidae, Gyrinidae, Haliplidae, Noteridae) citados para o Brasil, com chaves para identificação. Biota Neotropica 3, 1–20.
| Gêneros de Hydradephaga (Coleoptera: Dytiscidae, Gyrinidae, Haliplidae, Noteridae) citados para o Brasil, com chaves para identificação.Crossref | GoogleScholarGoogle Scholar |
Bichuette, M. E., and Santos, F. H. S. (1998). Levantamento de dados ecológicos da fauna de invertebrados da Gruta dos Paiva Iporanga, SP. O Carste 10, 14–19.
Brooks, A. J., Haeusler, T. I. M., Reinfelds, I., and Williams, S. (2005). Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles. Freshwater Biology 50, 331–344.
| Hydraulic microhabitats and the distribution of macroinvertebrate assemblages in riffles.Crossref | GoogleScholarGoogle Scholar |
Callisto, M., Moreno, P., and Barbosa, F. A. R. (2001). Habitat diversity and benthic functional trophic groups at Serra do Cipó, southeast Brazil. Revista Brasileira de Biologia 61, 259–266.
| Habitat diversity and benthic functional trophic groups at Serra do Cipó, southeast Brazil.Crossref | GoogleScholarGoogle Scholar |
Collier, K. (1994). Influence of nymphal size, sex and morphotype on microdistribution of Deleatidium (Ephemeroptera: Leptophlebiidae) in a New Zealand river. Freshwater Biology 31, 35–42.
| Influence of nymphal size, sex and morphotype on microdistribution of Deleatidium (Ephemeroptera: Leptophlebiidae) in a New Zealand river.Crossref | GoogleScholarGoogle Scholar |
Connolly, N. M., Crossland, M. R., and Pearson, R. G. (2004). Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates. Journal of the North American Benthological Society 23, 251–270.
| Effect of low dissolved oxygen on survival, emergence, and drift of tropical stream macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |
Cooper, S. D., Barmuta, L., Sarnelle, O., Kratz, K., and Diehl, S. (1997). Quantifying spatial heterogeneity in streams. Journal of the North American Benthological Society 16, 174–188.
| Quantifying spatial heterogeneity in streams.Crossref | GoogleScholarGoogle Scholar |
Culver, D. C., Pipan, T., and Gottstein, S. (2006). Hypothelminorheic – a unique freshwater habitat. Subterranean Biology 4, 1–7.
Davis, J. C. (1975). Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review. Journal of the Fisheries Research Board of Canada 32, 2295–2332.
| Minimal dissolved oxygen requirements of aquatic life with emphasis on Canadian species: a review.Crossref | GoogleScholarGoogle Scholar |
Death, R. G. (1989). The effect of a cave on benthic invertebrate communities in a South Island stream. New Zealand Natural Sciences 16, 67–78.
do Couto Carvalho, V., da Silva, M. A. C., and Oliveira, D. V. (2007). Potencialidades espeleoturísticas da área cárstica do município de Luminárias (MG, Brasil). Caderno Virtual de Turismo 7, 32–34.
| Potencialidades espeleoturísticas da área cárstica do município de Luminárias (MG, Brasil).Crossref | GoogleScholarGoogle Scholar |
Dolédec, S., Lamouroux, N., Fuchs, U., and Merigoux, S. (2007). Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams. Freshwater Biology 52, 145–164.
| Modelling the hydraulic preferences of benthic macroinvertebrates in small European streams.Crossref | GoogleScholarGoogle Scholar |
Elson-Harris, M. M. (1990). Keys to the immature stages of some Australian Ceratopogonidae (Diptera). Austral Entomology 29, 267–275.
| Keys to the immature stages of some Australian Ceratopogonidae (Diptera).Crossref | GoogleScholarGoogle Scholar |
Esteves, F. A. (1998). ‘Fundamentos da Limnologia.’ (Interciencias FINEP: Rio de Janeiro, Brazil.)
Fišer, C., Konec, M., Kobe, Z., Osanič, M., Gruden, P., and Potočnik, H. (2010). Conservation problems with hypothelminorheic Niphargus species (Amphipoda: Niphargidae). Aquatic Conservation 20, 602–604.
| Conservation problems with hypothelminorheic Niphargus species (Amphipoda: Niphargidae).Crossref | GoogleScholarGoogle Scholar |
Gibert, J., and Deharveng, L. (2002). Subterranean ecosystems: a truncated functional biodiversity. Bioscience 52, 473–481.
| Subterranean ecosystems: a truncated functional biodiversity.Crossref | GoogleScholarGoogle Scholar |
Gibert, J., Danielopol, D., and Stanford, J. A. (1994). ‘Groundwater Ecology (Vol. 1).’ (Academic Press: San Diego, CA, USA.)
Gunn, J. (1983). Point-recharge of limestone aquifers – a model from New Zealand karst. Journal of Hydrology 61, 19–29.
| Point-recharge of limestone aquifers – a model from New Zealand karst.Crossref | GoogleScholarGoogle Scholar |
Gurski, F. D. A., Pinha, G. D., Moretto, Y., Takeda, A. M., and Bueno, N. C. (2014). Effect of habitat heterogeneity in the composition and distribution of Chironomidae (Diptera) assemblage in different microhabitats of preserved streams in the Brazilian Atlantic Forest. Acta Limnologica Brasiliensia 26, 163–175.
| Effect of habitat heterogeneity in the composition and distribution of Chironomidae (Diptera) assemblage in different microhabitats of preserved streams in the Brazilian Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |
Hamada, N., Nessimian, J. L., and Querino, R. B. (2014). ‘Insetos aquáticos na Amazônia brasileira: taxonomia, biologia e ecologia.’ (Editora do INPA: Manaus, Brazil.)
Hart, D. D., and Finelli, C. M. (1999). Physical–biological coupling in streams: the pervasive effects of flow on benthic organisms. Annual Review of Ecology and Systematics 30, 363–395.
| Physical–biological coupling in streams: the pervasive effects of flow on benthic organisms.Crossref | GoogleScholarGoogle Scholar |
Hood, G. A., and Larson, D. G. (2014). Beaver-created habitat heterogeneity influences aquatic invertebrate assemblages in boreal Canada. Wetlands 34, 19–29.
| Beaver-created habitat heterogeneity influences aquatic invertebrate assemblages in boreal Canada.Crossref | GoogleScholarGoogle Scholar |
Hughes, R. M., and Peck, D. V. (2008). Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27, 837–859.
| Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality.Crossref | GoogleScholarGoogle Scholar |
Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., and Peck, D. V. (1999). Quantifying physical habitat in wadeable streams. EPA/620/R-99/003, US Biodiversity Environmental Protection Agency, Washington, DC, USA.
Kohler, S. L. (1985). Identification of stream drift mechanisms: an experimental and observational approach. Ecology 66, 1749–1761.
| Identification of stream drift mechanisms: an experimental and observational approach.Crossref | GoogleScholarGoogle Scholar |
Kolar, C. S., and Rahel, F. J. (1993). Interaction of a biotic factor (predator presence) and an abiotic factor (low oxygen) as an influence on benthic invertebrate communities. Oecologia 95, 210–219.
| Interaction of a biotic factor (predator presence) and an abiotic factor (low oxygen) as an influence on benthic invertebrate communities.Crossref | GoogleScholarGoogle Scholar |
Manzo, V. (2005). Key to the South America genera of Elmidae (Insecta: Coleoptera) with distributional data. Studies on Neotropical Fauna and Environment 40, 201–208.
| Key to the South America genera of Elmidae (Insecta: Coleoptera) with distributional data.Crossref | GoogleScholarGoogle Scholar |
McCune, B., Grace, J. B., and Urban, D. L. (2002). ‘Analysis of Ecological Communities (Vol. 28).’ (MjM Software Design: Gleneden Beach, OR, USA.)
McNie, P. M., and Death, R. G. (2017). The effect of agriculture on cave-stream invertebrate communities. Marine and Freshwater Research 68, 1999–2007.
| The effect of agriculture on cave-stream invertebrate communities.Crossref | GoogleScholarGoogle Scholar |
Merritt, R. W., Cummins, K. W., and Berg, M. B. (2008). ‘An Introduction to the Aquatic Insects of North America’, 4th edn. (Hunt Publishing Company: Kendal, Dubuque, IA, USA.)
Michat, M. C., Archangelsky, M., and Bachmann, A. O. (2008). Generic keys for the identification of larval Dytiscidae from Argentina (Coleoptera: Adephaga). Revista de la Sociedad Entomológica Argentina 67, 17–36.
Miller, T. E. (1996). Geologic and hydrologic controls on karst and cave development in Belize. Journal of Caves and Karst Studies 58, 100–120.
Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010). ‘Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro’, 1st edn. (Technical Books: Rio de Janeiro, Brazil.)
Nakamura, F., and Swanson, F. (2003). Dynamics of wood in rivers in the context of ecological disturbance. In ‘The Ecology and Management of Wood in World Rivers, Symposium 37’. (Eds S. Gregory, K. Boyer, and A. Gurnell.) pp. 279–297. (American Fisheries Society: Bethesda, MD, USA.)
Olifiers, M. H., Dorvillé, L. F. M., Nessimian, J. L., and Hamada, N. (2004). A key to Brazilian genera of Plecoptera (Insecta) based on nymphs. Zootaxa 651, 1–15.
| A key to Brazilian genera of Plecoptera (Insecta) based on nymphs.Crossref | GoogleScholarGoogle Scholar |
Palmer, M. A., Allan, J. D., and Butman, C. A. (1996). Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates. Trends in Ecology & Evolution 11, 322–326.
| Dispersal as a regional process affecting the local dynamics of marine and stream benthic invertebrates.Crossref | GoogleScholarGoogle Scholar |
Palmer, M. A., Menninger, H. L., and Bernhardt, E. (2010). River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice? Freshwater Biology 55, 205–222.
| River restoration, habitat heterogeneity and biodiversity: a failure of theory or practice?Crossref | GoogleScholarGoogle Scholar |
Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazorchak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., and Cappaert, M. (2006). Environmental monitoring and assessment program – surface waters western pilot study: field operations manual for wadeable streams. EPA/620/R-06/003, US Environmental Protection Agency, Office of Research and Development, Washington, DC, USA.
Poulson, T. L., and White, W. B. (1969). The cave environment. Science 165, 971–981.
| The cave environment.Crossref | GoogleScholarGoogle Scholar |
Rodrigues, S., Bueno, A., and Ferreira, R. (2012). The first hypothelminorheic Crustacea (Amphipoda, Dogielinotidae, Hyalella) from South America. ZooKeys 236, 65–80.
| The first hypothelminorheic Crustacea (Amphipoda, Dogielinotidae, Hyalella) from South America.Crossref | GoogleScholarGoogle Scholar |
Salles, F. F., Da-Silva, E. R., Serrão, J. E., and Francischetti, C. N. (2004). Baetidae (Ephemeroptera) na região sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal. Neotropical Entomology 33, 725–735.
| Baetidae (Ephemeroptera) na região sudeste do Brasil: novos registros e chave para os gêneros no estágio ninfal.Crossref | GoogleScholarGoogle Scholar |
Sarbu, S. M., Kane, T. C., and Kinkle, B. K. (1996). A chemoautotrophically based cave ecosystem. Science 272, 1953–1955.
| A chemoautotrophically based cave ecosystem.Crossref | GoogleScholarGoogle Scholar |
Segura, M. O., Valente-Neto, F., and Fonseca-Gessner, A. A. (2011). Family level key to aquatic Coleoptera (Insecta) of São Paulo State, Brazil. Biota Neotropica 11, 393–412.
| Family level key to aquatic Coleoptera (Insecta) of São Paulo State, Brazil.Crossref | GoogleScholarGoogle Scholar |
Simon, K. S., and Benfield, E. F. (2001). Leaf and wood breakdown in cave streams. Journal of the North American Benthological Society 20, 550–563.
| Leaf and wood breakdown in cave streams.Crossref | GoogleScholarGoogle Scholar |
Simon, K. S., Benfield, E. F., and Macko, S. A. (2003). Food web structure and the role of epilithic biofilms in cave streams. Ecology 84, 2395–2406.
| Food web structure and the role of epilithic biofilms in cave streams.Crossref | GoogleScholarGoogle Scholar |
Souza-Silva, M., Martins, R. P., and Ferreira, R. L. (2011). Trophic dynamics in a neotropical limestone cave. Subterranean Biology 9, 127–138.
| Trophic dynamics in a neotropical limestone cave.Crossref | GoogleScholarGoogle Scholar |
Souza-Silva, M., Júnior, A. S., and Ferreira, R. L. (2013). Food resource availability in a quartzite cave in the Brazilian montane Atlantic Forest. Journal of Caves and Karst Studies 75, 177–188.
| Food resource availability in a quartzite cave in the Brazilian montane Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |
Taylor, E. L. S., and Ferreira, R. L. (2012). Determinants on the structure of an aquatic invertebrate community in a Neotropical limestone cave. Revista Brasileira de Espeleologia 2, 1–12.
Tobler, M., Schlupp, I., Heubel, K. U., Riesch, R., De León, F. J. G., Giere, O., and Plath, M. (2006). Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters. Extremophiles 10, 577–585.
| Life on the edge: hydrogen sulfide and the fish communities of a Mexican cave and surrounding waters.Crossref | GoogleScholarGoogle Scholar |
Tupinambás, T. H., Cortes, R., Hughes, S. J., Varandas, S. G., and Callisto, M. (2016). Macroinvertebrate responses to distinct hydrological patterns in a tropical regulated river. Ecohydrology 9, 460–471.
| Macroinvertebrate responses to distinct hydrological patterns in a tropical regulated river.Crossref | GoogleScholarGoogle Scholar |
Watson, T. N. (2010). The structuring of aquatic macroinvertebrate communities within cave streams. M.Sc. Thesis, University of Canterbury, Christchurch, New Zealand.
Wood, P. J., and Armitage, P. D. (1997). Biological effects of fine sediment in the lotic environment. Environmental Management 21, 203–217.
| Biological effects of fine sediment in the lotic environment.Crossref | GoogleScholarGoogle Scholar |
Wood, P. J., Gunn, J., and Rundle, S. D. (2008). Response of benthic cave invertebrates to organic pollution events. Aquatic Conservation 18, 909–922.
| Response of benthic cave invertebrates to organic pollution events.Crossref | GoogleScholarGoogle Scholar |