Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

More (or less?) bounce for the ounce: a comparison of environmental DNA and classical approaches for bioassessment

Paul J. McInerney A C and Gavin N. Rees B
+ Author Affiliations
- Author Affiliations

A The Murray–Darling Freshwater Research Centre, School of Life Sciences, La Trobe University, PO Box 821, Wodonga, Vic. 3689, Australia.

B CSIRO Land and Water and The Murray–Darling Freshwater Research Centre, School of Life Sciences, La Trobe University, Wodonga, Vic. 3689, Australia.

C Corresponding author. Email: p.mcinerney@latrobe.edu.au

Marine and Freshwater Research 69(6) 992-996 https://doi.org/10.1071/MF17250
Submitted: 23 August 2017  Accepted: 28 November 2017   Published: 22 February 2018

Abstract

Next-generation sequencing (NGS) techniques are revolutionising the bioassessment of ecosystems. Herein we use a case study to compare environmental (e)DNA and classical sampling and laboratory identification approaches to assess biotic communities in streams. Both techniques were successful in detecting changes to biotic communities following invasion by a non-native riparian plant. The cost of the eDNA methods was one-sixth that of the classical approach and provided a coarse qualitative assessment of overall eukaryotic structure. Classical macroinvertebrate techniques, although they assess only a subset of eukaryotes, provided high-resolution quantitative information that could be applied to assess functional aspects of the ecosystem. Selection of one method in preference over the other is highly dependent on the nature of the hypothesis to be tested.

Additional keywords: ecogenomics, metabarcoding, next-generation sequencing, river monitoring, 18S rRNA, willows.


References

Aguiar, F. C., Feio, M. J., and Ferreira, M. T. (2011). Choosing the best method for stream bioassessment using macrophyte communities: Indices and predictive models. Ecological Indicators 11, 379–388.
Choosing the best method for stream bioassessment using macrophyte communities: Indices and predictive models.Crossref | GoogleScholarGoogle Scholar |

Alberdi, A., Aizpurua, O., Gilbert, M. T. P., and Bohmann, K. (2018). Scrutinizing key steps for reliable metabarcoding of environmental samples. Methods in Ecology and Evolution 9, 134–147.
Scrutinizing key steps for reliable metabarcoding of environmental samples.Crossref | GoogleScholarGoogle Scholar |

Amend, A. S., Seifert, K. A., and Bruns, T. D. (2010). Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Molecular Ecology 19, 5555–5565.
Quantifying microbial communities with 454 pyrosequencing: does read abundance count?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagsb0%3D&md5=c35f8858654e34d1e76fa779216016aaCAS |

Anderson, M., Gorley, R. N., and Clarke, R. K. (2008). ‘PERMANOVA+ for Primer: Guide to Software and Statistical Methods.’ (PRIMER-E: Plymouth, UK.)

Baldwin, D. S., Colloff, M. J., Rees, G. N., Chariton, A. A., Watson, G. O., Court, L. N., Hartley, D. M., King, A. J., Wilson, J. S., and Hodda, M. (2013). Impacts of inundation and drought on eukaryote biodiversity in semi‐arid floodplain soils. Molecular Ecology 22, 1746–1758.
Impacts of inundation and drought on eukaryote biodiversity in semi‐arid floodplain soils.Crossref | GoogleScholarGoogle Scholar |

Begerow, D., Nilsson, H., Unterseher, M., and Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification procedures. Applied Microbiology and Biotechnology 87, 99–108.
Current state and perspectives of fungal DNA barcoding and rapid identification procedures.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtFKrs7c%3D&md5=75cf27d0ef169cd20ccec7d580a96240CAS |

Berry, D., Mahfoudh, K. B., Wagner, M., and Loy, A. (2011). Barcoded primers used in multiplex amplicon pyrosequencing bias amplification. Applied and Environmental Microbiology 77, 7846–7849.
Barcoded primers used in multiplex amplicon pyrosequencing bias amplification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhs1Ors7bO&md5=e00061aecf50bc6a1c76f21631284280CAS |

Carew, M., Pettigrove, V., Metzeling, L., and Hoffmann, A. (2013). Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species. Frontiers in Zoology 10, 45.
Environmental monitoring using next generation sequencing: rapid identification of macroinvertebrate bioindicator species.Crossref | GoogleScholarGoogle Scholar |

Carew, M. E., Nichols, S. J., Batovska, J., St Clair, R., Murphy, N. P., Blacket, M. J., and Shackleton, M. E. (2017). A DNA barcode database of Australia’s freshwater macroinvertebrate fauna. Marine and Freshwater Research 68, 1788–1802.
A DNA barcode database of Australia’s freshwater macroinvertebrate fauna.Crossref | GoogleScholarGoogle Scholar |

Chain, F. J. J., Brown, E. A., MacIsaac, H. J., and Cristescu, M. E. (2016). Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports. Diversity & Distributions 22, 493–504.
Metabarcoding reveals strong spatial structure and temporal turnover of zooplankton communities among marine and freshwater ports.Crossref | GoogleScholarGoogle Scholar |

Chariton, A., Court, L., Hartley, D., Colloff, M., and Hardy, C. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.
Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA.Crossref | GoogleScholarGoogle Scholar |

Chessman, B. C. (2003). New sensitivity grades for Australian river macroinvertebrates. Marine and Freshwater Research 54, 95–103.
New sensitivity grades for Australian river macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Gorley, R. N. (2015). ‘PRIMER v7: User Manual/Tutorial.’ (PRIMER-E: Plymouth, UK.)

Cummins, K. W. (1973). Trophic relations of aquatic insects. Annual Review of Entomology 18, 183–206.
Trophic relations of aquatic insects.Crossref | GoogleScholarGoogle Scholar |

Darling, J. A., and Mahon, A. R. (2011). From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments. Environmental Research 111, 978–988.
From molecules to management: adopting DNA-based methods for monitoring biological invasions in aquatic environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Kmt77E&md5=ae51b9f3fa6e9748b2ee797bb89c1186CAS |

Deagle, B. E., Thomas, A. C., Shaffer, A. K., Trites, A. W., and Jarman, S. N. (2013). Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count? Molecular Ecology Resources 13, 620–633.
Quantifying sequence proportions in a DNA-based diet study using Ion Torrent amplicon sequencing: which counts count?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXpvVaqtrY%3D&md5=455d13139054cc8fe2f13d646ca44e49CAS |

Diaz-Real, J., Serrano, D., Piriz, A., and Jovani, R. (2015). NGS metabarcoding proves successful for quantitative assessment of symbiont abundance: the case of feather mites on birds. Experimental & Applied Acarology 67, 209–218.
NGS metabarcoding proves successful for quantitative assessment of symbiont abundance: the case of feather mites on birds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2MbpsFKjuw%3D%3D&md5=02aa4b75d647907f00500a4986536e0fCAS |

Dodson, S. I., and Lillie, R. A. (2001). Zooplankton communities of restored depressional wetlands in Wisconsin, USA. Wetlands 21, 292–300.
Zooplankton communities of restored depressional wetlands in Wisconsin, USA.Crossref | GoogleScholarGoogle Scholar |

Evans, N. T., Shirey, P. D., Wieringa, J. G., Mahon, A. R., and Lamberti, G. A. (2017). Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing. Fisheries (Bethesda, Md.) 42, 90–99.
Comparative cost and effort of fish distribution detection via environmental DNA analysis and electrofishing.Crossref | GoogleScholarGoogle Scholar |

Furlan, E. M., and Gleeson, D. (2017). Improving reliability in environmental DNA detection surveys through enhanced quality control. Marine and Freshwater Research 68, 388–395.
Improving reliability in environmental DNA detection surveys through enhanced quality control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXit1Sisbs%3D&md5=6427ececd65149b8193101fe0c9a2b58CAS |

Furlan, E. M., Gleeson, D., Hardy, C. M., and Duncan, R. P. (2016). A framework for estimating the sensitivity of eDNA surveys. Molecular Ecology Resources 16, 641–654.
A framework for estimating the sensitivity of eDNA surveys.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XlslWjs7s%3D&md5=a50eb343670a81f69f6bcd2a0fc9aa8dCAS |

Hajibabaei, M., Shokralla, S., Zhou, X., Singer, G. A. C., and Baird, D. J. (2011). Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos. PLoS One 6, e17497.
Environmental barcoding: a next-generation sequencing approach for biomonitoring applications using river benthos.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltV2rt7c%3D&md5=c76942233a9db6f15429de0fd39ccfc3CAS |

Hambrook, J. A. (2002). Bioassessment of stream-water quality using benthic and planktonic algae collected along an urban intensity gradient in the eastern cornbelt plains ecoregion, Ohio, USA. Journal of Phycology 38, 14–15.
Bioassessment of stream-water quality using benthic and planktonic algae collected along an urban intensity gradient in the eastern cornbelt plains ecoregion, Ohio, USA.Crossref | GoogleScholarGoogle Scholar |

Hänfling, B., Lawson Handley, L., Read, D. S., Hahn, C., Li, J., Nichols, P., Blackman, R. C., Oliver, A., and Winfield, I. J. (2016). Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods. Molecular Ecology 25, 3101–3119.
Environmental DNA metabarcoding of lake fish communities reflects long-term data from established survey methods.Crossref | GoogleScholarGoogle Scholar |

Harvey, J. B. J., Johnson, S. B., Fisher, J. L., Peterson, W. T., and Vrijenhoek, R. C. (2017). Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages. Journal of Experimental Marine Biology and Ecology 487, 113–126.
Comparison of morphological and next generation DNA sequencing methods for assessing zooplankton assemblages.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XitVyqsr3O&md5=69df0d50e025b816e7ec120554f16c28CAS |

Hawking, J. H., and Smith, F. J. (1997). ‘Colour Guide to Invertebrates of Australian Inland Waters.’ (Co-operative Research Centre for Freshwater Ecology: Albury, NSW, Australia.)

Hering, D., Johnson, R. K., Kramm, S., Schmutz, S., Szoszkiewicz, K., and Verdonschot, P. F. M. (2006). Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress. Freshwater Biology 51, 1757–1785.
Assessment of European streams with diatoms, macrophytes, macroinvertebrates and fish: a comparative metric-based analysis of organism response to stress.Crossref | GoogleScholarGoogle Scholar |

Hinlo, R., Gleeson, D., Lintermans, M., and Furlan, E. (2017). Methods to maximise recovery of environmental DNA from water samples. PLoS One 12, e0179251.
Methods to maximise recovery of environmental DNA from water samples.Crossref | GoogleScholarGoogle Scholar |

Hitt, N. P., and Angermeier, P. L. (2011). Fish community and bioassessment responses to stream network position. Journal of the North American Benthological Society 30, 296–309.
Fish community and bioassessment responses to stream network position.Crossref | GoogleScholarGoogle Scholar |

Ji, Y., Ashton, L., Pedley, S. M., Edwards, D. P., Tang, Y., Nakamura, A., Kitching, R., Dolman, P. M., Woodcock, P., Edwards, F. A., Larsen, T. H., Hsu, W. W., Benedick, S., Hamer, K. C., Wilcove, D. S., Bruce, C., Wang, X., Levi, T., Lott, M., Emerson, B. C., and Yu, D. W. (2013). Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding. Ecology Letters 16, 1245–1257.
Reliable, verifiable and efficient monitoring of biodiversity via metabarcoding.Crossref | GoogleScholarGoogle Scholar |

MacDonald, A. J., and Sarre, S. D. (2017). A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA. Molecular Ecology Resources 17, 708–720.
A framework for developing and validating taxon-specific primers for specimen identification from environmental DNA.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXhtVaktbrO&md5=b5a057368677c1a04e66b49e123c40acCAS |

McInerney, P. J., and Rees, G. N. (2017). Co-invasion hypothesis explains microbial community structure changes in upland streams affected by riparian invader. Freshwater Science 36, 297–306.
Co-invasion hypothesis explains microbial community structure changes in upland streams affected by riparian invader.Crossref | GoogleScholarGoogle Scholar |

McInerney, P. J., Rees, G. N., Gawne, B., Suter, P., Watson, G., and Stoffels, R. J. (2016). Invasive willows drive instream community structure. Freshwater Biology 61, 1379–1391.
Invasive willows drive instream community structure.Crossref | GoogleScholarGoogle Scholar |

Norris, R. H., and Hawkins, C. P. (2000). Monitoring river health. Hydrobiologia 435, 5–17.
Monitoring river health.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Alp, M., Bálint, M., Bernabò, P., Čiampor, F., Čiamporová-Zaťovičová, Z., Finn, D. S., Kohout, J., Leese, F., Lencioni, V., Paz-Vinas, I., and Monaghan, M. T. (2014). Integrating molecular tools into freshwater ecology: developments and opportunities. Freshwater Biology 59, 1559–1576.
Integrating molecular tools into freshwater ecology: developments and opportunities.Crossref | GoogleScholarGoogle Scholar |

Rees, H. C., Maddison, B. C., Middleditch, D. J., Patmore, J. R. M., and Gough, K. C. (2014). The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology. Journal of Applied Ecology 51, 1450–1459.
The detection of aquatic animal species using environmental DNA – a review of eDNA as a survey tool in ecology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhs1eisr%2FP&md5=d02f795959ebdf2d7ba155735392053bCAS |

Shackleton, M., and Rees, G. N. (2016). DNA barcoding Australian macroinvertebrates for monitoring programs: benefits and current short comings. Marine and Freshwater Research 67, 380–390.

Shaw, J. L. A., Clarke, L. J., Wedderburn, S. D., Barnes, T. C., Weyrich, L. S., and Cooper, A. (2016). Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system. Biological Conservation 197, 131–138.
Comparison of environmental DNA metabarcoding and conventional fish survey methods in a river system.Crossref | GoogleScholarGoogle Scholar |

Sloane, P. I. W., and Norris, R. H. (2003). Relationship of AUSRIVAS-based macroinvertebrate predictive model outputs to a metal pollution gradient. Journal of the North American Benthological Society 22, 457–471.
Relationship of AUSRIVAS-based macroinvertebrate predictive model outputs to a metal pollution gradient.Crossref | GoogleScholarGoogle Scholar |

Smith, D. P., and Peay, K. G. (2014). Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing. PLoS One 9, e90234.
Sequence depth, not PCR replication, improves ecological inference from next generation DNA sequencing.Crossref | GoogleScholarGoogle Scholar |

Stein, L. D. (2010). The case for cloud computing in genome informatics. Genome Biology 11, 207–213.
The case for cloud computing in genome informatics.Crossref | GoogleScholarGoogle Scholar |

Taylor, H. R., and Harris, W. E. (2012). An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding. Molecular Ecology Resources 12, 377–388.
An emergent science on the brink of irrelevance: a review of the past 8 years of DNA barcoding.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38vjvVynug%3D%3D&md5=634a8d10749489d5e224a9f2beece58cCAS |