Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Detection, dispersal and biogeochemical contribution of hydrothermal iron in the ocean

Thomas M. Holmes A B D , Zanna Chase B , Pier van der Merwe A , Ashley T. Townsend C and Andrew R. Bowie A B
+ Author Affiliations
- Author Affiliations

A Antarctic Climate and Ecosystems Cooperative Research Centre (ACE CRC), University of Tasmania, Private Bag 80, Hobart, Tas. 7001, Australia.

B Institute for Marine and Antarctic Studies (IMAS), University of Tasmania, Private Bag 129, Hobart, Tas. 7001, Australia.

C Central Science Laboratory (CSL), University of Tasmania, Private Bag 74, Hobart, Tas. 7001, Australia.

D Corresponding author. Email: thomas.holmes@utas.edu.au

Marine and Freshwater Research 68(12) 2184-2204 https://doi.org/10.1071/MF16335
Submitted: 27 September 2016  Accepted: 22 May 2017   Published: 28 July 2017

Abstract

This review aims to bring into focus the current understanding of hydrothermal systems and plume dynamics, tracers of hydrothermalism and the contribution of iron from hydrothermal vents to the global oceanic iron budget. The review then explores hydrothermal effect on surface ocean productivity. It is now well documented that scarcity of iron limits the production of chlorophyll-producing organisms in many regions of the ocean that are high in macronutrients. However, it is only recently that hydrothermal inputs have gained recognition as a source of Fe to the deep oceans that may potentially affect surface ocean productivity in some regions. A compilation of iron measurements from hydrothermal vents reveals that although hydrothermal studies measuring iron have increased significantly in recent years, there is still a dearth of data below 40°S. New analytical approaches for tracing iron sources, coupled with increasing sampling coverage of the oceans, is quickly improving knowledge of the effect of hydrothermal sources on biogeochemical cycles, a vital component in predicting future climate scenarios.

Additional keywords: biogeochemistry, hydrothermal activity, review.


References

Adams, D. K., McGillicuddy, D. J., Zamudio, L., Thurnherr, A. M., Liang, X., Rouxel, O., German, C. R., and Mullineaux, L. S. (2011). Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents. Science 332, 580–583.
Surface-generated mesoscale eddies transport deep-sea products from hydrothermal vents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXltFKgsrg%3D&md5=58f9ce39cb400a5bfcf95002eacda37bCAS |

Adcroft, A., Scott, J. R., and Marotzke, J. (2001). Impact of geothermal heating on the global ocean circulation. Geophysical Research Letters 28, 1735–1738.
Impact of geothermal heating on the global ocean circulation.Crossref | GoogleScholarGoogle Scholar |

Archer, D. E., and Johnson, K. (2000). A model of the iron cycle in the ocean. Global Biogeochemical Cycles 14, 269–279.
A model of the iron cycle in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhvVGmsrY%3D&md5=3e7c051dc8ae671f79a0478cac0b7c9aCAS |

Aumont, O., and Bopp, L. (2006). Globalizing results from ocean in situ iron fertilization studies. Global Biogeochemical Cycles 20, GB2017.
Globalizing results from ocean in situ iron fertilization studies.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T. (1994). A 6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge. Journal of Geophysical Research 99, 4889–4904.
A 6-year time series of hydrothermal plumes over the Cleft segment of the Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T. E., and German, C. C. R. (2004). On the global distribution of hydrothermal vent fields. Mid-Ocean Ridges 148, 1–18.
On the global distribution of hydrothermal vent fields.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., and Massoth, G. J. (1987). Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean. Earth and Planetary Science Letters 85, 59–73.
Characteristics of hydrothermal plumes from two vent fields on the Juan de Fuca Ridge, northeast Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1Sru70%3D&md5=5c362a8012d94da7b32ef219fb937758CAS |

Baker, E. T., Massoth, G. J., and Feely, R. A. (1987). Cataclysmic hydrothermal venting on the Juan de Fuca Ridge. Nature 329, 149–151.
Cataclysmic hydrothermal venting on the Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., Lavelle, J. W., Feely, R. A., Massoth, G. J., Walker, S. L., and Lupton, J. E. (1989). Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge. Journal of Geophysical Research 94, 9237–9250.
Episodic venting of hydrothermal fluids from the Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., Massoth, G. J., Walker, S. L., and Embley, R. W. (1993). A method for quantitatively estimating diffuse and discrete hydrothermal discharge. Earth and Planetary Science Letters 118, 235–249.
A method for quantitatively estimating diffuse and discrete hydrothermal discharge.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., German, C. R., and Elderfield, H. (1995). Hydrothermal plumes over spreading-centre axes: global distributions and geological inferences. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) Geophysical Monograph Series, pp. 47–71. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091

Baker, E. T., Massoth, G. J., Feely, R. A., Cannon, G. A., and Thomson, R. E. (1998). The rise and fall of the Coaxial hydrothermal site, 1993–1996. Journal of Geophysical Research 103, 9791–9806.
The rise and fall of the Coaxial hydrothermal site, 1993–1996.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., Edmonds, H. N., Michael, P. J., Bach, W., Dick, H. J. B., Snow, J. E., Walker, S. L., Banerjee, N. R., and Langmuir, C. H. (2004). Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian ridges. Geochemistry Geophysics Geosystems 5, 1–29.
Hydrothermal venting in magma deserts: the ultraslow-spreading Gakkel and Southwest Indian ridges.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., Embley, R. W., Walker, S. L., Resing, J. A., Lupton, J. E., Nakamura, K., de Ronde, C. E. J., and Massoth, G. J. (2008). Hydrothermal activity and volcano distribution along the Mariana arc. Journal of Geophysical Research 113, B08S09.
Hydrothermal activity and volcano distribution along the Mariana arc.Crossref | GoogleScholarGoogle Scholar |

Baker, E. T., Lupton, J. E., Resing, J. A., Baumberger, T., Lilley, M. D., Walker, S. L., and Rubin, K. H. (2011). Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center. Geochemistry Geophysics Geosystems 12, Q0AF02.
Unique event plumes from a 2008 eruption on the Northeast Lau Spreading Center.Crossref | GoogleScholarGoogle Scholar |

Baker, E., Chadwick, W., Cowen, J., Dziak, R., Rubin, K., and Fornari, D. (2012). Hydrothermal discharge during submarine eruptions: the importance of detection, response, and new technology. Oceanography 25, 128–141.
Hydrothermal discharge during submarine eruptions: the importance of detection, response, and new technology.Crossref | GoogleScholarGoogle Scholar |

Beaulieu, S. E., Baker, E. T., German, C. R., and Maffei, A. (2013). An authoritative global database for active submarine hydrothermal vent fields. Geochemistry Geophysics Geosystems 14, 4892–4905.
An authoritative global database for active submarine hydrothermal vent fields.Crossref | GoogleScholarGoogle Scholar |

Beaulieu, S. E., Baker, E. T., and German, C. R. (2015). Where are the undiscovered hydrothermal vents on oceanic spreading ridges? Deep-Sea Research – II. Topical Studies in Oceanography 121, 202–212.
Where are the undiscovered hydrothermal vents on oceanic spreading ridges?Crossref | GoogleScholarGoogle Scholar |

Belviso, S., Jean-Baptiste, P., Nguyen, B. C., Merlivat, L., Labeyrie, L., and Merliva, L. (1987). Deep methane maxima and 3He anomalies across the Pacific entrance to the Celebes Basin. Geochimica et Cosmochimica Acta 51, 2673–2680.
Deep methane maxima and 3He anomalies across the Pacific entrance to the Celebes Basin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXmt1Sru7g%3D&md5=fa427ef5c73b4ac9e1b82dc372a14e35CAS |

Bennett, S. A., Achterberg, E. P., Connelly, D. P., Statham, P. J., Fones, G. R., and German, C. R. (2008). The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes. Earth and Planetary Science Letters 270, 157–167.
The distribution and stabilisation of dissolved Fe in deep-sea hydrothermal plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvVOmtLY%3D&md5=ff77d7aa552fb5c0200b2a922fa20cb7CAS |

Bennett, S. A., Rouxel, O., Schmidt, K., Garbe-Schönberg, D., Statham, P. J., and German, C. R. (2009). Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 73, 5619–5634.
Iron isotope fractionation in a buoyant hydrothermal plume, 5°S Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKjsrfF&md5=c4e1774ae0eb6a48cf3496b0b4b2f193CAS |

Boyd, P. W., and Ellwood, M. J. (2010). The biogeochemical cycle of iron in the ocean. Nature Geoscience 3, 675–682.
The biogeochemical cycle of iron in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1ajtrbO&md5=2d3f3e2ab1be9cf95ff03e1af13fb4baCAS |

Boyd, P. W., Jickells, T., Law, C. S., Blain, S., Boyle, E. A., Buesseler, K. O., Coale, K. H., Cullen, J. J., de Baar, H. J. W., Follows, M., Harvey, M., Lancelot, C., Levasseur, M., Owens, N. P. J., Pollard, R., Rivkin, R. B., Sarmiento, J., Schoemann, V., Smetacek, V., Takeda, S., Tsuda, A., Turner, S., and Watson, A. J. (2007). Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions. Science 315, 612–617.
Mesoscale iron enrichment experiments 1993–2005: synthesis and future directions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyisLk%3D&md5=ea16bc5ac9a894fc55d9030daedf4322CAS |

Boyd, P. W., Ibisanmi, E., Sander, S. G., Hunter, K. A., and Jackson, G. A. (2010). Remineralization of upper ocean particles: implications for iron biogeochemistry. Limnology and Oceanography 55, 1271–1288.
Remineralization of upper ocean particles: implications for iron biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXotVWnsr0%3D&md5=b175b83f75391341df418271dab405adCAS |

Boyd, P. W., Arrigo, K. R., Strzepek, R., and van Dijken, G. L. (2012). Mapping phytoplankton iron utilization: insights into Southern Ocean supply mechanisms. Journal of Geophysical Research 117, C06009.
Mapping phytoplankton iron utilization: insights into Southern Ocean supply mechanisms.Crossref | GoogleScholarGoogle Scholar |

Boyle, E., and Jenkins, W. (2008). Hydrothermal iron in the deep western South Pacific. Geochimica et Cosmochimica Acta 72, 107.

Broeker, W. S. (1991). The great ocean conveyor. Oceanography 4, 79–89.
The great ocean conveyor.Crossref | GoogleScholarGoogle Scholar |

Bruland, K. W., Middag, R., and Lohan, M. C. (2014). Controls of trace metals in seawater. In ‘Treatise on Geochemistry’. (Eds H. Holland and K. Turekian.) pp. 19–51. (Elsevier: Amsterdam, Netherlands.)10.1016/B978-0-08-095975-7.00602-1

Caprara, S., Buck, K. N., Gerringa, L. J. A., Rijkenberg, M. J. A., and Monticelli, D. (2016). A compilation of iron speciation data for open oceanic waters. Frontiers in Marine Science 3, 221.
A compilation of iron speciation data for open oceanic waters.Crossref | GoogleScholarGoogle Scholar |

Carazzo, G., Jellinek, A. M., and Turchyn, A. V. (2013). The remarkable longevity of submarine plumes: implications for the hydrothermal input of iron to the deep-ocean. Earth and Planetary Science Letters 382, 66–76.
The remarkable longevity of submarine plumes: implications for the hydrothermal input of iron to the deep-ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhs1yqtrjM&md5=da7e9b34f53d6e82f3fb22bebccdb93fCAS |

Chapin, T. P., Johnson, K. S., and Coale, K. H. (1991). Rapid determination of manganese in sea water by flow-injection analysis with chemiluminescence detection. Analytica Chimica Acta 249, 469–478.
Rapid determination of manganese in sea water by flow-injection analysis with chemiluminescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmtFCgur4%3D&md5=9ffe1360d7bac7a71a43a5ad52612fc6CAS |

Charlou, J., Fouquet, Y., Bougault, H., Donval, J. P., Etoubleau, J., Jean-Baptiste, P., Dapoigny, A., Appriou, P., and Rona, P. A. (1998). Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 62, 2323–2333.
Intense CH4 plumes generated by serpentinization of ultramafic rocks at the intersection of the 15°20′N fracture zone and the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXlvFWqtLs%3D&md5=418460e2a9a113bb4a79862f96918fd0CAS |

Charlou, J., Donval, J., Fouquet, Y., Jean-Baptiste, P., and Holm, N. (2002). Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR). Chemical Geology 191, 345–359.
Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XoslWjur4%3D&md5=ace47d2a2a24ecda4c0f8f13808d1148CAS |

Chase, Z., Johnson, K. S., Elrod, V. A., Plant, J. N., Fitzwater, S. E., Pickell, L., and Sakamoto, C. M. (2005). Manganese and iron distributions off central California influenced by upwelling and shelf width. Marine Chemistry 95, 235–254.
Manganese and iron distributions off central California influenced by upwelling and shelf width.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXkt1amu7k%3D&md5=d2082406d61e6478eedbea300b32e7a6CAS |

Chen, Y., and Morgan, W. J. (1990). Rift valley/no rift valley transition at mid-ocean ridges. Journal of Geophysical Research 95, 17571–17581.
Rift valley/no rift valley transition at mid-ocean ridges.Crossref | GoogleScholarGoogle Scholar |

Chin, C. S., Coale, K. H., Elrod, V. A., Johnson, K. S., Massoth, G. J., and Baker, E. T. (1994). In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge. Journal of Geophysical Research 99, 4969–4984.
In situ observations of dissolved iron and manganese in hydrothermal vent plumes, Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlyjtLc%3D&md5=5a286c6ff165a9f7382c7afbd15de019CAS |

Clarke, W. B., Beg, M. A., and Craig, H. (1969). Excess 3He in the sea: evidence for terrestrial primordial helium. Earth and Planetary Science Letters 6, 213–220.
Excess 3He in the sea: evidence for terrestrial primordial helium.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaF1MXks1eqt78%3D&md5=9ec2ca45ccb1374f54d9903c51be602fCAS |

Coale, K. K. H., Chin, C. C. S., Massoth, G. G. J., Johnson, K. S., and Baker, E. T. (1991). In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes. Nature 352, 325–328.
In situ chemical mapping of dissolved iron and manganese in hydrothermal plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXkvFyksb4%3D&md5=81817a3a2dee1ce0b997a3201d89cdcaCAS |

Coffin, M., Davies, H., and Haxby, W. (1986). Structure of the Kerguelen Plateau province from SEASAT altimetry and seismic reflection data. Nature 324, 134–136.
Structure of the Kerguelen Plateau province from SEASAT altimetry and seismic reflection data.Crossref | GoogleScholarGoogle Scholar |

Coffin, M. F., Gahagan, L. M., and Lawver, L. A. (1998). Present-day plate boundary digital data compilation. Institute for Geophysics technical report 174. University of Texas, Austin, TX.

Conway, T., and John, S. (2014). Quantification of dissolved iron sources to the North Atlantic Ocean. Nature 511, 212–215.
Quantification of dissolved iron sources to the North Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhtFehsL3F&md5=d4c927a6ea5b9893a74d91c88e3bb6a7CAS |

Cowen, J. P., and Hui Li, Y. (1991). The influence of a changing bacterial community on trace metal scavenging in a deep-sea particle plume. Journal of Marine Research 49, 517–542.
The influence of a changing bacterial community on trace metal scavenging in a deep-sea particle plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38Xms1Gitw%3D%3D&md5=45c9d3528478cc8c74cb477107650653CAS |

Cowen, J. P., Massoth, G. J., and Baker, E. T. (1986). Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume. Nature 322, 169–171.
Bacterial scavenging of Mn and Fe in a mid- to far-field hydrothermal particle plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XkvVCltb4%3D&md5=06e9f36667bbb3c4d8f5820ff04f377aCAS |

Cowen, J. P., Massoth, G. J., and Feely, R. A. (1990). Scavenging rates of dissolved manganese in a hydrothermal vent plume. Deep-Sea Research – A. Oceanographic Research Papers 37, 1619–1637.
Scavenging rates of dissolved manganese in a hydrothermal vent plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXktFCqsb4%3D&md5=49ff5ef122f5bde55640c9bb5afecc9dCAS |

Cowen, J. P., Bertram, M. A., Baker, E. T., Feely, R. A., Massoth, G. J., and Summit, M. (1998). Geomicrobial transformation of manganese in Gorda Ridge event plumes. Deep-Sea Research – II. Topical Studies in Oceanography 45, 2713–2737.
Geomicrobial transformation of manganese in Gorda Ridge event plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Clt7c%3D&md5=9b0fa01688e8e7016e092ce90ce6de29CAS |

Dauphas, N., and Rouxel, O. (2006). Mass spectrometry and natural variations of iron isotopes. Mass Spectrometry Reviews 25, 515–550.
Mass spectrometry and natural variations of iron isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XmslOqur8%3D&md5=b007fa23a742e376b5f4fa77e6e4628dCAS |

de Baar, H. J. W., de Jong, J. T. M., Bakker, D. C. E., Löscher, B. M., Veth, C., Bathmann, U., and Smetacek, V. (1995). Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean. Nature 373, 412–415.
Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXjsFCjs7w%3D&md5=e0bd99004f66955b4cd13b98337405a8CAS |

de Baar, H. J. W., Boyd, P. W., Coale, K. H., Landry, M. R., Tsuda, A., Assmy, P., Bakker, D. C. E., Bozec, Y., Barber, R. T., Brzezinski, M. A., Buesseler, K. O., Boyé, M., Croot, P. L., Gervais, F., Gorbunov, M. Y., Harrison, P. J., Hiscock, W. T., Laan, P., Lancelot, C., Law, C. S., Levasseur, M., Marchetti, A., Millero, F. J., Nishioka, J., Nojiri, Y., van Oijen, T., Riebesell, U., Rijkenberg, M. J., Saito, H., Takeda, S., Timmermans, K. R., Veldhuis, M. J. W., Waite, A. M., and Wong, C. S. (2005). Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment. Journal of Geophysical Research – C. Oceans 110, 1–24.
Synthesis of iron fertilization experiments: from the iron age in the age of enlightenment.Crossref | GoogleScholarGoogle Scholar |

de Ronde, C. E. J. (2011). Seafloor hydrothermal systems of intraoceanic arcs. Oceans 2011, 12–14.

de Ronde, C. E. J., and Stucker, V. K. (2015). Seafloor hydrothermal venting at volcanic arcs and backarcs. In ‘The Encyclopedia of Volcanoes’. (Eds H. Sigurdsson, B. Houghton, S. R. McNutt, H. Rymer, and J. Stix.) pp. 823–849. (Academic Press: London, UK.)10.1016/B978-0-12-385938-9.00047-X

de Ronde, C. E. J., Baker, E. T., Massoth, G. J., Lupton, J. E., Wright, I. C., Feely, R. A., and Greene, R. R. (2001). Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand. Earth and Planetary Science Letters 193, 359–369.
Intra-oceanic subduction-related hydrothermal venting, Kermadec volcanic arc, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovFymtro%3D&md5=be2afd5564b52fc503ac50304bb0b977CAS |

Dick, G. J., Anantharaman, K., Baker, B. J., Li, M., Reed, D. C., and Sheik, C. S. (2013). The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Frontiers in Microbiology 4, 1–16.
The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats.Crossref | GoogleScholarGoogle Scholar |

Dideriksen, K., Baker, J. A., and Stipp, S. L. S. (2008). Equilibrium Fe isotope fractionation between inorganic aqueous FeIII and the siderophore complex, FeIII-desferrioxamine B. Earth and Planetary Science Letters 269, 280–290.
Equilibrium Fe isotope fractionation between inorganic aqueous FeIII and the siderophore complex, FeIII-desferrioxamine B.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlsFCls70%3D&md5=62332c0087cfb79afadbe29d026e4d57CAS |

Douville, E., Charlou, J. L., Oelkers, E. H., Bienvenu, P., Jove Colon, C., Donval, J., Fouquet, Y., Prieur, D., Appriou, P., and Colon, C. F. J. (2002). The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids. Chemical Geology 184, 37–48.
The Rainbow vent fluids (36°14′N, MAR): the influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XhsV2rt7k%3D&md5=a45fcab66941f12afb0b71296017aa89CAS |

Dymond, J., Cobler, K., Gordon, L., Biscayne, P. E., and Mathieu, G. (1983). 226Ra and 222Rn contents of Galapagos Rift hydrothermal waters: the importance of low-temperature interactions with crustal rocks. Earth and Planetary Science Letters 64, 417–429.
226Ra and 222Rn contents of Galapagos Rift hydrothermal waters: the importance of low-temperature interactions with crustal rocks.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlsl2nsLc%3D&md5=53503d6be524121cc5f7d84e516c5adfCAS |

Edmond, J. M., Von Damm, K. L., McDuff, R. E., Measures, C. I., and Group, N. P. (1982). Chemistry of hot springs on the East Pacific Rise and their effluent dispersal. Nature 297, 187–191.
Chemistry of hot springs on the East Pacific Rise and their effluent dispersal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL38XkslGktbk%3D&md5=520400ff06025e827debca9c7693a5f8CAS |

Elderfield, H., and Schultz, A. (1996). Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean. Annual Review of Earth and Planetary Sciences 24, 191–224.
Mid-ocean ridge hydrothermal fluxes and the chemical composition of the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtFWqu78%3D&md5=480781f99faf2befda426563deb2125aCAS |

Ellwood, M. J., Hutchins, D. A., Lohan, M. C., Milne, A., Nasemann, P., Nodder, S. D., Sander, S. G., Strzepek, R., Wilhelm, S. W., and Boyd, P. W. (2015). Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom. Proceedings of the National Academy of Sciences of the United States of America 112, E15–E20.
Iron stable isotopes track pelagic iron cycling during a subtropical phytoplankton bloom.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFCqs77K&md5=e2577039cbb5749cfbec9c54965dbd34CAS |

Farley, K. A., Maier‐Reimer, E., Maier-Reimer, E., Schlosser, P., and Broeker, W. S. (1995). Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model. Journal of Geophysical Research 100, 3829–3839.
Constraints on mantle 3He fluxes and deep-sea circulation from an oceanic general circulation model.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXlsVCjtLk%3D&md5=fb51c5b7222a78e636523fa9d836a963CAS |

Feely, R. A., Massoth, G. J., Trefry, J. H., Baker, E. T., Paulson, A. J., and Lebon, G. T. (1994). Composition and sedimentation of hydrothermal plume particles from north Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research 99, 4985–5006.
Composition and sedimentation of hydrothermal plume particles from north Cleft segment, Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlOruro%3D&md5=168d99cc2b0baef0330765a6a512850dCAS |

Field, M. P., and Sherrell, R. M. (2000). Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: slow FeII oxidation kinetics in Pacific plumes. Geochimica et Cosmochimica Acta 64, 619–628.
Dissolved and particulate Fe in a hydrothermal plume at 9°45′N, East Pacific Rise: slow FeII oxidation kinetics in Pacific plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXht1ersbc%3D&md5=4d4415b13c554a42e460022743abcbc8CAS |

Fitzsimmons, J. N., Boyle, E. A., and Jenkins, W. J. (2014). Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America 111, 16654–16661.
Distal transport of dissolved hydrothermal iron in the deep South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhvVWmsLrL&md5=65d7245a17d80b33126a0d05346aae95CAS |

Fitzsimmons, J. N., Carrasco, G. G., Wu, J., Roshan, S., Hatta, M., Measures, C. I., Conway, T. M., John, S. G., and Boyle, E. A. (2015). Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect. Deep-Sea Research – II. Topical Studies in Oceanography 116, 130–151.
Partitioning of dissolved iron and iron isotopes into soluble and colloidal phases along the GA03 GEOTRACES North Atlantic Transect.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVelsb8%3D&md5=4c0a24629c178c38ec25835ef82d2aabCAS |

Fitzsimmons, J. N., Conway, T. M., Lee, J.-M., Kayser, R., Thyng, K. M., John, S. G., and Boyle, E. A. (2016). Dissolved iron and iron isotopes in the southeastern Pacific Ocean. Global Biogeochemical Cycles 30, 1372–1395.
Dissolved iron and iron isotopes in the southeastern Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xhs1emtr%2FI&md5=105e8400531d7514f460008ff8dd530dCAS |

Fitzsimmons, J. N., John, S. G., Marsay, C. M., Hoffman, C. L., Nicholas, S. L., Toner, B. M., German, C. R., Sherrell, R. M., Ho, C. L., Nicholas, S. L., Toner, B. M., German, C. R., and Sherrell, R. M. (2017). Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange. Nature Geoscience 10, 195–201.
Iron persistence in a distal hydrothermal plume supported by dissolved-particulate exchange.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXislGlt7k%3D&md5=7ef5350a44c8fe7c9f316d9fd615a4dfCAS |

Gallant, R. M., and Von Damm, K. L. (2006). Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge. Geochemistry, Geophysics, Geosystems 7, Q06018.
Geochemical controls on hydrothermal fluids from the Kairei and Edmond Vent Fields, 23°–25°S, Central Indian Ridge.Crossref | GoogleScholarGoogle Scholar |

Gamo, T., Okamura, K., Hatanaka, H., Hasumoto, H., Komatsu, D., Chinen, M., Mori, M., Tanaka, J., Hirota, A., Tsunogai, U., and Tamaki, K. (2015). Hydrothermal plumes in the Gulf of Aden, as characterized by light transmission, Mn, FE, CH4 and δ13C–CH4 anomalies. Deep-Sea Research – II. Topical Studies in Oceanography 121, 62–70.
Hydrothermal plumes in the Gulf of Aden, as characterized by light transmission, Mn, FE, CH4 and δ13C–CH4 anomalies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhtVOhs7rK&md5=f033eab02b629db4c26a9e88f2350a0fCAS |

Gartman, A. (2013). The formation, oxidation and distribution of pyrite nanoparticles emitted from hydrothermal vents: a laboratory and field based approach. Ph.D. Thesis, University of Delaware, Newark, DE, USA.

Gartman, A., Findlay, A. J., and Luther, G. W. (2014). Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions. Chemical Geology 366, 32–41.
Nanoparticulate pyrite and other nanoparticles are a widespread component of hydrothermal vent black smoker emissions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslSqsLs%3D&md5=10675c87fd104cfacdf80028f1ebb5eaCAS |

German, C. R., and Lin, J. (2004). The thermal structure of the oceanic crust, ridge-spreading and hydrothermal circulation: how well do we understand their inter-connections? In ‘Mid-Ocean Ridges’. (Eds C. R. German, J. Lin, and L. M. Parson.) pp. 1–18. (American Geophysical Union: Washington, DC, USA.)10.1029/148GM01

German, C. R., and Seyfried, W. E. (2014). Hydrothermal processes. In ‘Treatise on Geochemistry’. (Eds H. Holland and K. Turekian.) pp. 191–233. (Elsevier: Amsterdam, Netherlands.)10.1016/B978-0-08-095975-7.00607-0

German, C., Campbell, A., and Edmond, J. (1991). Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes. Earth and Planetary Science Letters 107, 101–114.
Hydrothermal scavenging at the Mid-Atlantic Ridge: modification of trace element dissolved fluxes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XisFSlug%3D%3D&md5=12922f7b76ecf836ee65a6a1c5239e01CAS |

German, C. R., Thurnherr, A. M., Knoery, J., Charlou, J.-L., Jean-Baptiste, P., and Edmonds, H. N. (2010). Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36°N MAR. Deep-Sea Research – I. Oceanographic Research Papers 57, 518–527.
Heat, volume and chemical fluxes from submarine venting: a synthesis of results from the Rainbow hydrothermal field, 36°N MAR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvF2ju70%3D&md5=60d345fadbcc3bfcdf47eed2ba371ad8CAS |

German, C. R., Legendre, L. L., Sander, S. G., Niquil, N., Luther, G. W., Bharati, L., Han, X., and Le Bris, N. (2015). Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments. Earth and Planetary Science Letters 419, 143–153.
Hydrothermal Fe cycling and deep ocean organic carbon scavenging: model-based evidence for significant POC supply to seafloor sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXksl2ru7Y%3D&md5=0e3f584355228179d8914bdc138c0238CAS |

German, C. R., Petersen, S., and Hannington, M. D. (2016). Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming? Chemical Geology 420, 114–126.
Hydrothermal exploration of mid-ocean ridges: where might the largest sulfide deposits be forming?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhvVyrsbzJ&md5=5b080d17f41701bb2c34f59efe0cebe0CAS |

Gledhill, M., and Buck, K. N. (2012). The organic complexation of iron in the marine environment: a review. Frontiers in Microbiology 3, 69.
The organic complexation of iron in the marine environment: a review.Crossref | GoogleScholarGoogle Scholar |

Gledhill, M., and van den Berg, C. M. G. (1994). Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry. Marine Chemistry 47, 41–54.
Determination of complexation of iron(III) with natural organic complexing ligands in seawater using cathodic stripping voltammetry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtFansbc%3D&md5=ad4cdf7cf0b5ecc98de6c3bcbc831d89CAS |

Gran, H. H. (1931). On the conditions for the production of plankton in the sea. Rapports et Proces-Verbaux des Reunions - Conseil International pour L’Exploration de la Mer 75, 37–46.

Haase, K. M., Koschinsky, A., Petersen, S., Devey, C. W., German, C., Lackschewitz, K. S., Melchert, B., Seifert, R., Borowski, C., Giere, O., and Paulick, H. (2009). Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: the Lilliput field at 9°33′S. Marine Geology 266, 52–64.
Diking, young volcanism and diffuse hydrothermal activity on the southern Mid-Atlantic Ridge: the Lilliput field at 9°33′S.Crossref | GoogleScholarGoogle Scholar |

Hahm, D., Baker, E. T., Rhee, T. S., Won, Y.-J., Resing, J. A., Lupton, J. E., Lee, W.-K., Kim, M., and Park, S.-H. (2015). First hydrothermal discoveries on the Australian–Antarctic Ridge: discharge sites, plume chemistry, and vent organisms. Geochemistry, Geophysics, Geosystems 16, 3061–3075.
First hydrothermal discoveries on the Australian–Antarctic Ridge: discharge sites, plume chemistry, and vent organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhs1CnsrbL&md5=46764e0e76656311b10f93d07df526f2CAS |

Hart, T. J. (1934). On the phytoplankton of the Southwest Atlantic and the Bellinghausen Sea, 1929–1931. Discovery Reports 8, 1–268.

Hatta, M., Measures, C. I., Wu, J., Roshan, S., Fitzsimmons, J. N., Sedwick, P., and Morton, P. (2015). An overview of dissolved Fe and Mn distributions during the 2010–2011 US GEOTRACES north Atlantic cruises: GEOTRACES GA03. Deep-Sea Research – II. Topical Studies in Oceanography 116, 117–129.
An overview of dissolved Fe and Mn distributions during the 2010–2011 US GEOTRACES north Atlantic cruises: GEOTRACES GA03.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVertbrL&md5=4ab829bf43fc6d0d801b1d763201ba4cCAS |

Hautala, S. L., and Riser, S. C. (1989). A simple model of abyssal circulation, including effects of wind, buoyancy and topography. Journal of Physical Oceanography 19, 596–611.
A simple model of abyssal circulation, including effects of wind, buoyancy and topography.Crossref | GoogleScholarGoogle Scholar |

Hawkes, J. A., Connelly, D. P., Gledhill, M., and Achterberg, E. P. (2013). The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems. Earth and Planetary Science Letters 375, 280–290.
The stabilisation and transportation of dissolved iron from high temperature hydrothermal vent systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtVKntr7I&md5=46ebf75e7dd770bd31bd96a93a8066b3CAS |

Hawkes, J. J. A., Connelly, D. P., Rijkenberg, M. J. A., and Achterberg, E. P. (2014). The importance of shallow hydrothermal island arc systems in ocean biogeochemistry. Geophysical Research Letters 41, 942–947.
The importance of shallow hydrothermal island arc systems in ocean biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslCrtLg%3D&md5=2881f1dcfd4d4a3307ecd48e552a656dCAS |

Helfrich, K. R., and Speer, K. G. (1995). Oceanic hydrothermal circulation: mesoscale and basin-scale flow. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) pp. 347–356. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091P0347

Hochella, M. M. F., Lower, S. S. K., Maurice, P. A., Penn, R. L., Sahai, N., Sparks, D. L., and Twining, B. S. (2008). Nanominerals, mineral nanoparticles, and earth systems. Science 319, 1631–1635.
Nanominerals, mineral nanoparticles, and earth systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXjsVamur8%3D&md5=e744d013528d87687438eed9258e1dd4CAS |

Horibe, Y., Kim, K.-R., and Craig, H. (1986). Hydrothermal methane plumes in the Mariana back-arc spreading centre. Nature 324, 131–133.
Hydrothermal methane plumes in the Mariana back-arc spreading centre.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXnslGl&md5=d750bb773f2e33c1d12bdbe6aeb957f7CAS |

Ibisanmi, E., Sander, S. G., Boyd, P. W., Bowie, A. R., and Hunter, K. A. (2011). Vertical distributions of iron(III) complexing ligands in the Southern Ocean. Deep-sea Research – II. Topical Studies in Oceanography 58, 2113–2125.
Vertical distributions of iron(III) complexing ligands in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1WksbnE&md5=a9c72e15bbf99575408849f8cbd8c222CAS |

Jean-Baptiste, P., Belviso, S., Alaux, G., Nguyen, B. C., and Mihalopoulos, N. (1990). 3He and methane in the Gulf of Aden. Geochimica et Cosmochimica Acta 54, 111–116.
3He and methane in the Gulf of Aden.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXht1amtr8%3D&md5=f9caabf384b77b14aad430458dcc890eCAS |

Jean-Baptiste, P., Charlou, J. L., Stievenard, M., Donval, J. P., Bougault, H., and Mevel, C. (1991). Helium and methane measurements in hydrothermal fluids from the Mid-Atlantic Ridge: the Snake Pit site at 23°N. Earth and Planetary Science Letters 106, 17–28.
Helium and methane measurements in hydrothermal fluids from the Mid-Atlantic Ridge: the Snake Pit site at 23°N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXmvVCjtr4%3D&md5=2b87e24fa821dd25def9aba2d40b0f46CAS |

Jenkins, W. J. 2014. Tracers of ocean mixing. In ‘Treatise on Geochemistry’. (Eds H. Holland and K. Turekian.) pp. 235–257. (Elsevier: Amsterdam, Netherlands.)10.1016/B978-0-08-095975-7.00608-2

Johnson, K. S., Gordon, R. M., and Coale, K. H. (1997). What controls dissolved iron concentrations in the world ocean? Marine Chemistry 57, 137–161.
What controls dissolved iron concentrations in the world ocean?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXks12msbg%3D&md5=cce94f2c38ef910782b13639c6476984CAS |

Johnson, C. M., Beard, B. L., and Roden, E. E. (2008). The iron isotope fingerprints of redox and biogeochemical cycling in Modern and Ancient Earth. Annual Review of Earth and Planetary Sciences 36, 457–493.
The iron isotope fingerprints of redox and biogeochemical cycling in Modern and Ancient Earth.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmvFWmu7s%3D&md5=0fccdef4a540b4e079fb8a0588933b54CAS |

Joyce, T. M., and Speer, K. G. (1987). Modeling the large-scale influence of geothermal sources on abyssal flow. Journal of Geophysical Research 92, 2843–2850.
Modeling the large-scale influence of geothermal sources on abyssal flow.Crossref | GoogleScholarGoogle Scholar |

Kadko, D., and Johns, W. (2011). Inferring upwelling rates in the equatorial Atlantic using 7Be measurements in the upper ocean. Deep-Sea Research – I. Oceanographic Research Papers 58, 647–657.
Inferring upwelling rates in the equatorial Atlantic using 7Be measurements in the upper ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXmsVClurs%3D&md5=8b22ba929bc321507719f908cf6e4571CAS |

Kadko, D., and Moore, W. (1988). Radiochemical constraints on the crustal residence time of submarine hydrothermal fluids: Endeavour Ridge. Geochimica et Cosmochimica Acta 52, 659–668.
Radiochemical constraints on the crustal residence time of submarine hydrothermal fluids: Endeavour Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXhslWitbc%3D&md5=f0562aeac73c2324971ff7662bed94b3CAS |

Kadko, D. C., Rosenberg, N. D., Lupton, J. E., Collier, R. W., and Lilley, M. D. (1990). Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume. Earth and Planetary Science Letters 99, 315–335.
Chemical reaction rates and entrainment within the Endeavour Ridge hydrothermal plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXmtlCqsbY%3D&md5=f88a61bc4a29184d87dc06dd7b1f3982CAS |

Kadko, D., Baross, J., and Alt, J. (1995). The magnitude and global implications of hydrothermal flux. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) Geophysical Monograph Series, pp. 446–466. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091

Kelley, D. S., Lilley, M. D., Lupton, J. E., and Olson, E. J. (1998). Enriched H2, CH4, and 3He concentrations in hydrothermal plumes associated with the 1996 Gorda Ridge eruptive event. Deep-sea Research – II. Topical Studies in Oceanography 45, 2665–2682.
Enriched H2, CH4, and 3He concentrations in hydrothermal plumes associated with the 1996 Gorda Ridge eruptive event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXis1Clt7k%3D&md5=fe80206e1c0ef6ba8a528a58c82022cfCAS |

Kipp, L. E., Sanial, V., Henderson, P. B., van Beek, P., Reyss, J.-L., Hammond, D. E., Moore, W. S., and Charette, M. A. (2017). Radium isotopes as tracers of hydrothermal inputs and neutrally buoyant plume dynamics in the deep ocean. Marine Chemistry. [Published online early 30 June 2017]10.1016/j.marchem.2017.06.011

Kleint, C., Hawkes, J. A., Sander, S. G., and Koschinsky, A. (2016). Voltammetric investigation of hydrothermal iron speciation. Frontiers in Marine Science 3, 1–11.
Voltammetric investigation of hydrothermal iron speciation.Crossref | GoogleScholarGoogle Scholar |

Klinkhammer, G. P. (1994). Fiber optic spectrometers for in situ measurements in the oceans: the ZAPS probe. Marine Chemistry 47, 13–20.
Fiber optic spectrometers for in situ measurements in the oceans: the ZAPS probe.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXmtlOqtrc%3D&md5=758742b90a7aff1dd99f252e16202f43CAS |

Koschinsky, A., Garbe-Schönberg, D., Sander, S., Schmidt, K., Gennerich, H.-H., and Strauss, H. (2008). Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge. Geology 36, 615–618.
Hydrothermal venting at pressure-temperature conditions above the critical point of seawater, 5°S on the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXislOgtL0%3D&md5=8e31aa57c85bd6eff6cc94f92753d1d8CAS |

Koski, R. A., German, C. R., and Hein, J. R. (2003). Fate of hydrothermal products from mid-ocean ridge hydrothermal systems: near-field to global perspectives. In ‘Energy and Mass Transfer in Marine Hydrothermal Systems’. (Eds P. E. Halbach, V. Tunnicliffe, and J. R. Hein.) pp. 317–335. (Dahlem University Press: Berlin, Germany.)

Lang, S. Q., Butterfield, D. A., Lilley, M. D., Paul Johnson, H., and Hedges, J. I. (2006). Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems. Geochimica et Cosmochimica Acta 70, 3830–3842.
Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsFGhsr8%3D&md5=355dda26f19c6fa22ece4db8d6c1bbf6CAS |

Langmuir, C., Humphris, S., Fornari, D., Van Dover, C., Von Damm, K., Tivey, M. K., Colodner, D., Charlou, J.-L., Desonie, D., Wilson, C., Fouquet, Y., Klinkhammer, G., and Bougault, H. (1997). Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge. Earth and Planetary Science Letters 148, 69–91.
Hydrothermal vents near a mantle hot spot: the Lucky Strike vent field at 37°N on the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXivV2mtb4%3D&md5=39e87b9f39ae257b647cb764ff34aeb2CAS |

Ledwell, J. R., Ledwell, J. R., Montgomery, E. T., Montgomery, E. T., Polzin, K. L., Polzin, K. L., St Laurent, L. C., St Laurent, L. C., Schmitt, R. W., Schmitt, R. W., Toole, J. M., and Toole, J. M. (2000). Evidence for enhanced mixing over rough topography in the abyssal ocean. Nature 403, 179–182.
Evidence for enhanced mixing over rough topography in the abyssal ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXms1ahsw%3D%3D&md5=4f07fcb7923c2c1fee7ba74dfd0e3a75CAS |

Li, M., Toner, B. M., Baker, B. J., Breier, J. A., Sheik, C. S., and Dick, G. J. (2014). Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents. Nature Communications 5, 3192.
Microbial iron uptake as a mechanism for dispersing iron from deep-sea hydrothermal vents.Crossref | GoogleScholarGoogle Scholar |

Lilley, M. D., Feely, R. A., and Trefry, J. H. (1995). Chemical and biochemical transformations in hydrothermal plumes. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) Geophysical Monograph Series, pp. 369–391. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091

Lister, C. R. B. (1972). On the thermal balance of a mid-ocean ridge. Geophysical Journal International 26, 515–535.
On the thermal balance of a mid-ocean ridge.Crossref | GoogleScholarGoogle Scholar |

Lough, A. J. M., Klar, J. K., Homoky, W. B., Comer-Warner, S. A., Milton, J. A., Connelly, D. P., James, R. H., and Mills, R. A. (2017). Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes. Geochimica et Cosmochimica Acta 202, 1–20.
Opposing authigenic controls on the isotopic signature of dissolved iron in hydrothermal plumes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXmsFWlsg%3D%3D&md5=5d94b4fea58f58a58c600cdd06f3e7c0CAS |

Love, B. A., Resing, J. A., Cowen, J. P., Lupton, J. E., Fornari, D. J., Shank, T. M., and Biller, D. (2008). Methane, manganese, and helium in hydrothermal plumes following volcanic eruptions on the East Pacific Rise near 9°50′N. Geochemistry, Geophysics, Geosystems 9, Q06T01.
Methane, manganese, and helium in hydrothermal plumes following volcanic eruptions on the East Pacific Rise near 9°50′N.Crossref | GoogleScholarGoogle Scholar |

Lupton, J. E. (1995). Hydrothermal plumes: near and far field. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) Geophysical Monograph Series, pp. 317–346. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091

Lupton, J. E. (1996). A far-field hydrothermal plume from Loihi Seamount. Science 272, 976–979.
A far-field hydrothermal plume from Loihi Seamount.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XjtVaqu74%3D&md5=0a6be1fda0a59792fdbb35c52243d60fCAS |

Lupton, J. (1998). Hydrothermal helium plumes in the Pacific Ocean. Journal of Geophysical Research 103, 15853–15868.
Hydrothermal helium plumes in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXltVyit70%3D&md5=01bc4d01120988364ca96f6342239ab1CAS |

Lupton, J. E., and Craig, H. (1981). A major helium-3 source at 15°S on the East Pacific Rise. Science 214, 13–18.
A major helium-3 source at 15°S on the East Pacific Rise.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFSnt7o%3D&md5=b0b2d53a3ebf83438d94e6fa17d0d54fCAS |

Lupton, J. E., Delaney, J. R., Johnson, H. P., and Tivey, M. K. (1985). Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes. Nature 316, 621–623.
Entrainment and vertical transport of deep-ocean water by buoyant hydrothermal plumes.Crossref | GoogleScholarGoogle Scholar |

Lupton, J., de Ronde, C., Sprovieri, M., Baker, E. T., Bruno, P. P., Italiano, F., Walker, S., Faure, K., Leybourne, M., Britten, K., and Greene, R. (2011). Active hydrothermal discharge on the submarine Aeolian Arc. Journal of Geophysical Research 116, B02102.
Active hydrothermal discharge on the submarine Aeolian Arc.Crossref | GoogleScholarGoogle Scholar |

Mackey, D. J., O’Sullivan, J. E., and Watson, R. J. (2002). Iron in the western Pacific: a riverine or hydrothermal source for iron in the Equatorial Undercurrent? Deep-Sea Research – I. Oceanographic Research Papers 49, 877–893.
Iron in the western Pacific: a riverine or hydrothermal source for iron in the Equatorial Undercurrent?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XjtVehsbg%3D&md5=b2b988a3be369dff209c3a2ebcd193a4CAS |

Marshall, J., and Speer, K. (2012). Closure of the meridional overturning circulation through Southern Ocean upwelling. Nature Geoscience 5, 171–180.
Closure of the meridional overturning circulation through Southern Ocean upwelling.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XivVertbk%3D&md5=8c8099eef9774f10bb4c95a1edc5b734CAS |

Martin, J. (1990). Glacial-interglacial CO2 change: the iron hypothesis. Paleoceanography 5, 1–13.
Glacial-interglacial CO2 change: the iron hypothesis.Crossref | GoogleScholarGoogle Scholar |

Martin, J. H., Knauer, G. A., and Broenkow, W. W. (1985). VERTEX: the lateral transport of manganese in the northeast Pacific. Deep-Sea Research – A. Oceanographic Research Papers 32, 1405–1427.
VERTEX: the lateral transport of manganese in the northeast Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhslCjs7Y%3D&md5=ddc445a0716c60f926ecedbc4fac9e4aCAS |

Martin, J. H., Gordon, R. M., and Fitzwater, S. E. (1990). Iron in Antarctic waters. Nature 345, 156–158.
Iron in Antarctic waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksVGrtb0%3D&md5=f867b47f00735ee92086863b8c4b2a21CAS |

Massoth, G. J., Baker, E. T., Lupton, J. E., Feely, R. A., Butterfield, D. A., Von Damm, K. L., Roe, K. K., Lebon, G. T., Massoth, J., Baker, T., Lupton, E., Feely, A., Von Damm, L., and Lebon, T. (1994). Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research 99, 4905–4923.
Temporal and spatial variability of hydrothermal manganese and iron at Cleft segment, Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltlOku7k%3D&md5=0549c8b43827159f35b330d809f31be5CAS |

Massoth, G. J., De Ronde, C. E. J., Lupton, J. E., Feely, R. A., Baker, E. T., Lebon, G. T., and Maenner, S. M. (2003). Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc (New Zealand). Geological Society of London, Special Publications 219, 119–139.
Chemically rich and diverse submarine hydrothermal plumes of the southern Kermadec volcanic arc (New Zealand).Crossref | GoogleScholarGoogle Scholar |

Massoth, G., Baker, E., Worthington, T., Lupton, J., de Ronde, C., Arculus, R., Walker, S., Nakamura, K., Ishibashi, J., Stoffers, P., Resing, J., Greene, R., and Lebon, G. (2007). Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge. Geochemistry, Geophysics, Geosystems 8, Q11008.
Multiple hydrothermal sources along the south Tonga arc and Valu Fa Ridge.Crossref | GoogleScholarGoogle Scholar |

Mercier, H., and Speer, K. G. (1998). Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone. Journal of Physical Oceanography 28, 779–790.
Transport of bottom water in the Romanche Fracture Zone and the Chain Fracture Zone.Crossref | GoogleScholarGoogle Scholar |

Middag, R., de Baar, H. J. W., Laan, P., Cai, P. H., and van Ooijen, J. C. (2011). Dissolved manganese in the Atlantic sector of the Southern Ocean. Deep-Sea Research – II. Topical Studies in Oceanography 58, 2661–2677.
Dissolved manganese in the Atlantic sector of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlagu7bP&md5=51ee9fe0cab756d84778c56bd01240ebCAS |

Mitarai, S., Watanabe, H., Nakajima, Y., Shchepetkin, A. F., and McWilliams, J. C. (2016). Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean. Proceedings of the National Academy of Sciences of the United States of America 113, 2976–2981.
Quantifying dispersal from hydrothermal vent fields in the western Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28Xjt12iurc%3D&md5=5473cae5fea1cecb60329c4775c8843aCAS |

Moore, J. K., and Braucher, O. (2008). Sedimentary and mineral dust sources of dissolved iron to the world ocean. Biogeosciences 5, 631–656.
Sedimentary and mineral dust sources of dissolved iron to the world ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVCqsL3K&md5=1cbad83be0f1959cc017694653c6e8f4CAS |

Moore, J. K., Doney, S. C., Glover, D. M., and Fung, I. Y. (2001). Iron cycling and nutrient-limitation patterns in surface waters of the world ocean. Deep-Sea Research – II. Topical Studies in Oceanography 49, 463–507.
Iron cycling and nutrient-limitation patterns in surface waters of the world ocean.Crossref | GoogleScholarGoogle Scholar |

Moore, C. M., Mills, M. M., Achterberg, E. P., Geider, R. J., LaRoche, J., Lucas, M. I., McDonagh, E. L., Pan, X., Poulton, A. J., Rijkenberg, M. J. A., Suggett, D. J., Ussher, S. J., and Woodward, E. M. S. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geoscience 2, 867–871.
Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVyqsbrL&md5=cbff96c76ef0587cd03c10fa931a0661CAS |

Morgan, J. L. L., Wasylenki, L. E., Nuester, J., and Anbar, A. D. (2010). Fe isotope fractionation during equilibration of Fe–organic complexes. Environmental Science & Technology 44, 6095–6101.
Fe isotope fractionation during equilibration of Fe–organic complexes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXpt1ClsbY%3D&md5=03811e9daff67a0de294bf3ab6c797b5CAS |

Mottl, M. J., and McConachy, T. F. (1990). Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N. Geochimica et Cosmochimica Acta 54, 1911–1927.
Chemical processes in buoyant hydrothermal plumes on the East Pacific Rise near 21°N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXlvFGis7c%3D&md5=56156d80efad25102c64ab35640da657CAS |

Mullaugh, K. M., and Luther, G. W. (2011). Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions. Journal of Nanoparticle Research 13, 393–404.
Growth kinetics and long-term stability of CdS nanoparticles in aqueous solution under ambient conditions.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1Skt7g%3D&md5=cddadc4ce29dbef8c6e606fe92442556CAS |

Nishioka, J., Obata, H., and Tsumune, D. (2013). Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean. Earth and Planetary Science Letters 361, 26–33.
Evidence of an extensive spread of hydrothermal dissolved iron in the Indian Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXntF2rtw%3D%3D&md5=f18339d7d860ec5f9fe1e329e37583e2CAS |

Okamura, K., Kimoto, H., Saeki, K., Ishibashi, J., Obata, H., Maruo, M., Gamo, T., Nakayama, E., and Nozaki, Y. (2001). Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation. Marine Chemistry 76, 17–26.
Development of a deep-sea in situ Mn analyzer and its application for hydrothermal plume observation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXntlKnsrY%3D&md5=9da9382611505e35dea68ec713d98f90CAS |

Parekh, P. (2004). Modeling the global ocean iron cycle. Global Biogeochemical Cycles 18, GB1002.
Modeling the global ocean iron cycle.Crossref | GoogleScholarGoogle Scholar |

Pester, N. J., Ding, K., and Seyfried, W. E. (2014). Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids. Geology 42, 255–258.
Magmatic eruptions and iron volatility in deep-sea hydrothermal fluids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXntlWhs7s%3D&md5=fe13c4a792c5b956b6823cfac7d5dd85CAS |

Polzin, K. L., Toole, J. M., Ledwell, J. R., and Schmitt, R. (1997). Spatial variability of turbulent mixing in the spatial variability abyssal ocean. Science 276, 93–96.
Spatial variability of turbulent mixing in the spatial variability abyssal ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXitlyqurw%3D&md5=2e214cc05cca0c825ee55e1546227364CAS |

Poorvin, L., Sander, S. G., Velasquez, I., Ibisanmi, E., LeCleir, G. R., and Wilhelm, S. W. (2011). A comparison of Fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from the marine bacterium Vibrio alginolyticus PWH3a. Journal of Experimental Marine Biology and Ecology 399, 43–47.
A comparison of Fe bioavailability and binding of a catecholate siderophore with virus-mediated lysates from the marine bacterium Vibrio alginolyticus PWH3a.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFWmtr0%3D&md5=35b6e2b741a166d795f907decafc8680CAS |

Ramsay, D. C. D., Colwell, J. B. J., Coffin, M. F., Davies, H. L., Hill, P. J., Pigram, C. J., and Stagg, H. M. J. (1986). New findings from the Kerguelen Plateau. Geology 14, 589–593.
New findings from the Kerguelen Plateau.Crossref | GoogleScholarGoogle Scholar |

Ray, D., Kamesh Raju, K. A., Baker, E. T., Srinivas Rao, A., Mudholkar, A. V., Lupton, J. E., Surya Prakash, L., Gawas, R. B., and Vijaya Kumar, T. (2012). Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean. Geochemistry Geophysics Geosystems 13, Q01009.
Hydrothermal plumes over the Carlsberg Ridge, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Reid, J. L. (1982). Evidence of an effect of heat flux from the East Pacific Rise upon the characteristics of the mid-depth waters. Geophysical Research Letters 9, 381–384.
Evidence of an effect of heat flux from the East Pacific Rise upon the characteristics of the mid-depth waters.Crossref | GoogleScholarGoogle Scholar |

Resing, J. A., Sedwick, P. N., German, C. R., Jenkins, W. J., Moffett, J. W., Sohst, B. M., and Tagliabue, A. (2015). Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean. Nature 523, 200–203.
Basin-scale transport of hydrothermal dissolved metals across the South Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXht1ensbfP&md5=3d1f2dd418f3c65039f80fe8fc2c38a9CAS |

Richardson, P. L. (2008). On the history of meridional overturning circulation schematic diagrams. Progress in Oceanography 76, 466–486.
On the history of meridional overturning circulation schematic diagrams.Crossref | GoogleScholarGoogle Scholar |

Rona, P. A., Devey, C. W., Dyment, J., and Murton, B. J. (2010). ‘Diversity of Hydrothermal Systems on Slow Spreading Ocean Ridges.’ Geophysical Monograph Series 188. (American Geophysical Union: Washington, DC, USA.)

Rouxel, O., Fouquet, Y., and Ludden, J. N. (2004). Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium, and iron isotopes. Geochimica et Cosmochimica Acta 68, 2295–2311.
Subsurface processes at the lucky strike hydrothermal field, Mid-Atlantic Ridge: evidence from sulfur, selenium, and iron isotopes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsFOhsbs%3D&md5=7ea86a98767b4275a3f134b9d55fe89dCAS |

Rouxel, O., Shanks, W. C., Bach, W., and Edwards, K. (2008). Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N. Chemical Geology 252, 214–227.
Integrated Fe- and S-isotope study of seafloor hydrothermal vents at East Pacific Rise 9–10°N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXnsFeju7c%3D&md5=7edec8a094e53627d954eefb92bfbccfCAS |

Rouxel, O., Toner, B. M., Manganini, S. J., and German, C. R. (2016). Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N. Chemical Geology 441, 212–234.
Geochemistry and iron isotope systematics of hydrothermal plume fall-out at East Pacific Rise 9°50′N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC28XhsVWku7fO&md5=7652faf590ee69392cb89009fb259044CAS |

Rudnicki, M. D., and Elderfield, H. (1993). A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge. Geochimica et Cosmochimica Acta 57, 2939–2957.
A chemical model of the buoyant and neutrally buoyant plume above the TAG vent field, 26 degrees N, Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXlvVGitbY%3D&md5=015eaa0d079f40505e9aba1af131a4fcCAS |

Rudnicki, M. D., and German, C. R. (2002). Temporal variability of the hydrothermal plume above the Kairei vent field, 25°S, Central Indian Ridge. Geochemistry Geophysics Geosystems 3, GC000240.
Temporal variability of the hydrothermal plume above the Kairei vent field, 25°S, Central Indian Ridge.Crossref | GoogleScholarGoogle Scholar |

Rue, E. E. L., and Bruland, K. K. W. (1995). Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping. Marine Chemistry 50, 117–138.
Complexation of iron(III) by natural organic ligands in the Central North Pacific as determined by a new competitive ligand equilibration/adsorptive cathodic stripping.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXotVaqu74%3D&md5=a4a35cf52b7d2fd8ead2cb087bccc876CAS |

Ruud, J. T. (1930). Nitrates and phosphates in the southern seas. Rapports et Proces-Verbaux des Reunions - Conseil International pour L’Exploration de la Mer 5, 347–360.
Nitrates and phosphates in the southern seas.Crossref | GoogleScholarGoogle Scholar |

Saito, M. A., Noble, A. E., Tagliabue, A., Goepfert, T. J., Lamborg, C. H., and Jenkins, W. J. (2013). Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source. Nature Geoscience 6, 775–779.
Slow-spreading submarine ridges in the South Atlantic as a significant oceanic iron source.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXht1yktrzM&md5=c4d508af5900ec6d0fe8f13d38bb471eCAS |

Sander, S. G., and Koschinsky, A. (2011). Metal flux from hydrothermal vents increased by organic complexation. Nature Geoscience 4, 145–150.
Metal flux from hydrothermal vents increased by organic complexation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisFarsbw%3D&md5=9a34b01db89780a002b76e92ae150e49CAS |

Sander, S. G., and Koschinsky, A. (2016). The export of iron and other trace metals from hydrothermal vents and the impact on their marine biogeochemical cycle. In ‘Trace Metal Biogeochemistry and Ecology of Deep-Sea Hydrothermal Vent Systems’. (Eds L. L. Demina and S. V. Galkin.) pp. 9–24. (Springer International Publishing: Cham, Switzerland.)10.1007/698_2016_4

Sands, C. M., Connelly, D. P., Statham, P. J., and German, C. R. (2012). Size fractionation of trace metals in the Edmond hydrothermal plume, central Indian Ocean. Earth and Planetary Science Letters 319–320, 15–22.
Size fractionation of trace metals in the Edmond hydrothermal plume, central Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Scheirer, D. S., Baker, E. T., and Johnson, K. T. M. (1998). Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam–St. Paul Plateau. Geophysical Research Letters 25, 97–100.
Detection of hydrothermal plumes along the Southeast Indian Ridge near the Amsterdam–St. Paul Plateau.Crossref | GoogleScholarGoogle Scholar |

Schmidt, K., Garbe-Schönberg, D., Koschinsky, A., Strauss, H., Jost, C. L., Klevenz, V., and Königer, P. (2011). Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): constraints on fluid–rock interaction in heterogeneous lithosphere. Chemical Geology 280, 1–18.
Fluid elemental and stable isotope composition of the Nibelungen hydrothermal field (8°18′S, Mid-Atlantic Ridge): constraints on fluid–rock interaction in heterogeneous lithosphere.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGhtQ%3D%3D&md5=d78d6e72e1c60cf86d416b71e02b06aeCAS |

Sedwick, P., Sohst, B. M., Ussher, S. J., and Bowie, A. R. (2015). A zonal picture of the water column distribution of dissolved iron(II) during the US GEOTRACES North Atlantic transect cruise (GEOTRACES GA03). Deep-Sea Research – II. Topical Studies in Oceanography 116, 166–175.
A zonal picture of the water column distribution of dissolved iron(II) during the US GEOTRACES North Atlantic transect cruise (GEOTRACES GA03).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitFSnsLfI&md5=3b5bf1528b836b1a1ba78d259691215fCAS |

Severmann, S., Johnson, C. M., Beard, B. L., German, C. R., Edmonds, H. N., Chiba, H., and Green, D. R. H. (2004). The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N. Earth and Planetary Science Letters 225, 63–76.
The effect of plume processes on the Fe isotope composition of hydrothermally derived Fe in the deep ocean as inferred from the Rainbow vent site, Mid-Atlantic Ridge, 36°14′N.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmslWitrY%3D&md5=c2866c3eeac32e1bb13ad5ee22226912CAS |

Sharma, M. Y. Y., Polizzotto, M., and Anbar, A. D. D. Y. (2001). Iron isotopes in hot springs along the Juan de Fuca Ridge. Earth and Planetary Science Letters 194, 39–51.
Iron isotopes in hot springs along the Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit12lsw%3D%3D&md5=d6f68c1fb8450bdaa2097eb04a9b449fCAS |

Shock, E. L. (1992). Chemical Environments of Submarine Hydrothermal Systems. In ‘Marine Hydrothermal Systems and the Origin of Life’. (Ed. N. G. Holm.) pp. 67–107. (Springer: Dordrecht, Netherlands.)10.1007/978-94-011-2741-7_5

Shock, E. L., and Schulte, M. D. (1998). Organic synthesis during fluid mixing in hydrothermal systems. Journal of Geophysical Research 103, 28513–28527.
Organic synthesis during fluid mixing in hydrothermal systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXotFSrtLc%3D&md5=d711a53b258063adb2ff3a182f5512e7CAS |

Speer, K. G. (1989). The Stommel and Arons model and geothermal heating in the South Pacific. Earth and Planetary Science Letters 95, 359–366.
The Stommel and Arons model and geothermal heating in the South Pacific.Crossref | GoogleScholarGoogle Scholar |

Speer, K. G., and Rona, P. A. (1989). A model of an Atlantic and Pacific hydrothermal plume. Journal of Geophysical Research 94, 6213–6220.
A model of an Atlantic and Pacific hydrothermal plume.Crossref | GoogleScholarGoogle Scholar |

Speer, K., Rintoul, S. R., and Sloyan, B. (2000). The diabatic deacon cell. Journal of Physical Oceanography 30, 3212–3222.
The diabatic deacon cell.Crossref | GoogleScholarGoogle Scholar |

Speer, K. G., Maltrud, M., and Thurberr, A. (2003). A global view of dispersion above the mid-ocean ridge. In ‘Energy and Mass Transfer in Marine Hydrothermal Systems’. (Eds P. E. Halbach, V. Tunnicliffe, and J. R. Hein.) pp. 287–302. (Dahlem University Press: Berlin, Germany.)

St Laurent, L. C., and Thurnherr, A. M. (2007). Intense mixing of lower thermocline water on the crest of the Mid-Atlantic Ridge. Nature 448, 680–683.
Intense mixing of lower thermocline water on the crest of the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXos1yksLc%3D&md5=1dd99d40ef0c4ade590730feac3918a4CAS |

Stommel, H. (1982). Is the South Pacific helium-3 plume dynamically active? Earth and Planetary Science Letters 61, 63–67.
Is the South Pacific helium-3 plume dynamically active?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlslGlsQ%3D%3D&md5=334881953a96ea7888d5333756c7ad5aCAS |

Stranne, C., Sohn, R. A., Liljebladh, B., and Nakamura, K. I. (2010). Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge. Journal of Geophysical Research – Oceans 115, 1–17.
Analysis and modeling of hydrothermal plume data acquired from the 85°E segment of the Gakkel Ridge.Crossref | GoogleScholarGoogle Scholar |

Tagliabue, A., and Resing, J. (2016). Impact of hydrothermalism on the ocean iron cycle. Philosophical Transactions of the Royal Society of London – A. Mathematical, Physical and Engineering Sciences 374, 20150291.
Impact of hydrothermalism on the ocean iron cycle.Crossref | GoogleScholarGoogle Scholar |

Tagliabue, A., Bopp, L., and Aumont, O. (2009). Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry. Geophysical Research Letters 36, L13601.
Evaluating the importance of atmospheric and sedimentary iron sources to Southern Ocean biogeochemistry.Crossref | GoogleScholarGoogle Scholar |

Tagliabue, A., Bopp, L., Dutay, J.-C., Bowie, A. R., Chever, F., Jean-Baptiste, P., Bucciarelli, E., Lannuzel, D., Remenyi, T., Sarthou, G., Aumont, O., Gehlen, M., and Jeandel, C. (2010). Hydrothermal contribution to the oceanic dissolved iron inventory. Nature Geoscience 3, 252–256.
Hydrothermal contribution to the oceanic dissolved iron inventory.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXktVWru74%3D&md5=cf90225228264a97813801ec8108f595CAS |

Tagliabue, A., Mtshali, T., Aumont, O., Bowie, R., Klunder, M. B., Roychoudhury, N., and Swart, S. (2012). A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean. Biogeosciences 9, 2333–2349.
A global compilation of dissolved iron measurements: focus on distributions and processes in the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVagu7bF&md5=b791364c33a0b5e55b719b499a8271d7CAS |

Tagliabue, A., Williams, R. G., Rogan, N., Achterberg, E. P., and Boyd, P. W. (2014a). A ventilation-based framework to explain the regeneration–scavenging balance of iron in the ocean. Geophysical Research Letters 41, 7227–7236.
A ventilation-based framework to explain the regeneration–scavenging balance of iron in the ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXitVaqsrvE&md5=c6e104e6585a22eb4b42f032e67e34fdCAS |

Tagliabue, A., Aumont, O., and Bopp, L. (2014b). The impact of different external sources of iron on the global carbon cycle. Geophysical Research Letters 41, 920–926.
The impact of different external sources of iron on the global carbon cycle.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXjslCrtbY%3D&md5=c23ed1ea60051d7d6feb7f4dd74df581CAS |

Tagliabue, A., Sallée, J.-B., Bowie, A. R., Lévy, M., Swart, S., and Boyd, P. W. (2014c). Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing. Nature Geoscience 7, 314–320.
Surface-water iron supplies in the Southern Ocean sustained by deep winter mixing.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXktlGltbo%3D&md5=fd10d1d3a81c719afe29ab0a6ceffd6dCAS |

Tagliabue, A., Bowie, A. R., Boyd, P. W., Buck, K. N., Johnson, K. S., and Saito, M. A. (2017). The integral role of iron in ocean biogeochemistry. Nature 543, 51–59.
The integral role of iron in ocean biogeochemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2sXks1GmtL0%3D&md5=9f091eb2a551d1e7ee2be8afcc7b07d1CAS |

Tian, F., Frew, R. D., Sander, S., Hunter, K. A., and Ellwood, M. J. (2006). Organic iron(III) speciation in surface transects across a frontal zone: the Chatham Rise, New Zealand. Marine and Freshwater Research 57, 533–544.
Organic iron(III) speciation in surface transects across a frontal zone: the Chatham Rise, New Zealand.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFCnt70%3D&md5=a491be2367c1823ca6592db7a8d4bf5bCAS |

Toner, B. M., Fakra, S. C., Manganini, S. J., Santelli, C. M., Marcus, M. A., Moffett, J. W., Rouxel, O., German, C. R., and Edwards, K. J. (2009). Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume. Nature Geoscience 2, 197–201.
Preservation of iron(II) by carbon-rich matrices in a hydrothermal plume.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXisVCgt7Y%3D&md5=0ee3cb3070d6fa59cc31d33b202e84ffCAS |

Toner, B., Marcus, M., Edwards, K., Rouxel, O., and German, C. (2012). Measuring the form of iron in hydrothermal plume particles. Oceanography 25, 209–212.
Measuring the form of iron in hydrothermal plume particles.Crossref | GoogleScholarGoogle Scholar |

Trull, T., Rintoul, S. R., Hadfield, M., and Abraham, E. R. (2001). Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean. Deep-sea Research – II. Topical Studies in Oceanography 48, 2439–2466.
Circulation and seasonal evolution of polar waters south of Australia: implications for iron fertilization of the Southern Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXlt1entrg%3D&md5=9a860f18b8ae46732e371b8c0232ca05CAS |

Tyler, P. A. (2011). RRS James Cook Cruise JC55, 13 Jan–22 Feb 2011. Bransfield Strait, the East Scotia Ridge and the Kemp Seamount Calderas, Cruise 3 of the NERC Consortium Grant Chemosynthetically driven ecosystems in the Southern Ocean: Ecology and Biogeography (ChEsSo). National Oceanography Centre Cruise Report 05, 74, National Oceanography Centre, Southampton, UK.

Völker, C., and Tagliabue, A. (2015). Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model. Marine Chemistry 173, 67–77.
Modeling organic iron-binding ligands in a three-dimensional biogeochemical ocean model.Crossref | GoogleScholarGoogle Scholar |

Von Damm, K. (1990). Seafloor hydrothermal activity: black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences 18, 173–204.
Seafloor hydrothermal activity: black smoker chemistry and chimneys.Crossref | GoogleScholarGoogle Scholar |

Von Damm, K. L. (1995). Controls on the chemistry and temporal variability of seafloor hyrdrothermal fluids. In ‘Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions’. (Eds S. E. Humphris, R. A. Zierenberg, L. S. Mullineaux, and R. E. Thomson.) Geophysical Monograph Series, pp. 222–247. (American Geophysical Union: Washington, DC, USA.)10.1029/GM091

Von Damm, K. L., and Bischoff, J. L. (1987). Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge. Journal of Geophysical Research 92, 11334.
Chemistry of hydrothermal solutions from the southern Juan de Fuca Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXnvFWjug%3D%3D&md5=9de139c8a23e576fe6212850a7b612d1CAS |

Von Damm, K., and Lilley, M. (2004). Diffuse flow hydrothermal fluids from 9°50′N East Pacific Rise: Origin, evolution and biogeochemical controls. In ‘The Subseafloor Biosphere at Mid-Ocean Ridges’. (Eds W. S. D. Wilcock, E. F. DeLong, D. S. Kelley, J. A. Baross, and S. Craig Cary.) pp. 245–268. (American Geophysical Union: Washington, DC, USA.)10.1029/GM144

von Langen, P. J., Johnson, K. S., Coale, K. H., and Elrod, V. A. (1997). Oxidation kinetics of manganese(II) in seawater at nanomolar concentrations. Geochimica et Cosmochimica Acta 61, 4945–4954.
Oxidation kinetics of manganese(II) in seawater at nanomolar concentrations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXjsVer&md5=a2b8c3dc5ff37b57ea5fcce9fe78164eCAS |

Weber, L., Völker, C., Schartau, M., and Wolf-Gladrow, D. A. (2005). Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic time-series study site. Global Biogeochemical Cycles 19, 1–23.
Modeling the speciation and biogeochemistry of iron at the Bermuda Atlantic time-series study site.Crossref | GoogleScholarGoogle Scholar |

Weis, D., Frey, F. A., Schlich, R., Schaming, M., Montigny, R., Damasceno, D., Mattielli, N., Nicolaysen, K. E., and Scoates, J. S. (2002). Trace of the Kerguelen mantle plume: evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean. Geochemistry Geophysics Geosystems 3, 1–27.
Trace of the Kerguelen mantle plume: evidence from seamounts between the Kerguelen Archipelago and Heard Island, Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Welhan, J. A. (1988). Origins of methane in hydrothermal systems. Chemical Geology 71, 183–198.
Origins of methane in hydrothermal systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXpvFaisw%3D%3D&md5=66b3ba8930ea5d959d120001b33e95aaCAS |

Wells, M., Vallis, G., and Silver, E. (1999). Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean. Nature 398, 601–604.
Tectonic processes in Papua New Guinea and past productivity in the eastern equatorial Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislyktrY%3D&md5=8f6ca21eb95b102606f0798a9eaaeb94CAS |

Wu, J., Wells, M. L., and Rember, R. (2011). Dissolved iron anomaly in the deep tropical–subtropical Pacific: evidence for long-range transport of hydrothermal iron. Geochimica et Cosmochimica Acta 75, 460–468.
Dissolved iron anomaly in the deep tropical–subtropical Pacific: evidence for long-range transport of hydrothermal iron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFyjurrM&md5=8ecd2d1b349e955ffd3701a987e0b8cbCAS |

Yücel, M., Gartman, A., Chan, C. S., and Luther, G. W. (2011). Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean. Nature Geoscience 4, 367–371.
Hydrothermal vents as a kinetically stable source of iron-sulphide-bearing nanoparticles to the ocean.Crossref | GoogleScholarGoogle Scholar |