Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Multisource data for seasonal variability analysis of cyanobacteria in a tropical inland aquatic environment

Rejane Ennes Cicerelli A B C , Maria de Lourdes B. Trindade Galo A and Henrique Llacer Roig B
+ Author Affiliations
- Author Affiliations

A Universidade Estadual Paulista, Departamento de Cartografia, Rua Roberto Símonsen, 305 – Centro Educacional, 19060-900, Presidente Prudente, São Paulo, Brazil.

B Universidade de Brasília, Instituto de Geociências, Campus Universitário Darcy Ribeiro ICC – Ala Central, 71910-900, Brasília, Distrito Federal, Brazil

C Corresponding author. Email address: rejaneig@unb.br

Marine and Freshwater Research 68(12) 2344-2354 https://doi.org/10.1071/MF16259
Submitted: 20 July 2016  Accepted: 11 May 2017   Published: 28 July 2017

Abstract

Cyanobacterial blooms are related to eutrophic conditions that compromise the many uses of reservoirs. Thus, quick and effective methods for detecting the abundance of cyanobacteria in waterbodies are needed to complement conventional laboratory methods. In addition, inadequate control techniques that are applied at times of high cyanobacterial concentrations can cause the cells to lyse and release toxins into the water. In the present study we investigated the behaviour of cyanobacteria by determining phycocyanin and chlorophyll concentrations, using spectroradiometric and fluorometric techniques, in three field campaigns performed at the Nova Avanhandava Reservoir, Brazil. The sampling rate and favourable season for data collected had been determined previously by remote sensing analysis. Seasonal estimates of cyanobacteria were made because fluorometric sensors were able to record low concentrations, whereas the spectral analyses only detected phycocyanin at higher concentrations. Results of spectral analyses highlighted the subtle spectral characteristics indicating the presence of phycocyanin, even without a clear definition of the diagnostic features in the reflectance curve. Therefore, multiscale remote sensing complemented by fluorometric analysis and relevant environmental variables is an effective approach for monitoring cyanobacteria in Brazilian inland waters.

Additional keywords: fluorescence, phycocyanin, reflectance, tropical freshwater, water quality monitoring.


References

Armitage, P., Berry, P. J., and Matthews, J. N. S. (2002). ‘Statistical Methods in Medical Research’, 4th edn. (Blackwell Publishing: Oxford, UK.)

Belzile, C., Vicent, W. F., Williams, C. H., Hawes, I., James, M. R., Kumagai, M., and Roesler, C. S. (2004). Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake. Water Resources Research 40, WR003090.
Relationships between spectral optical properties and optically active substances in a clear oligotrophic lake.Crossref | GoogleScholarGoogle Scholar |

Bracewell, R. N. (1989). The Fourier transform. Scientific American 260, 86–95.
The Fourier transform.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaL1M3ms1yntQ%3D%3D&md5=160266e5e42fd6d8f69f2d6e2d9686deCAS |

Brient, L., Lengronne, M., Bertrand, E., Rolland, D., Sipel, A., Steinmann, D., Baudin, I., Legeas, M., Le Rouzic, B., and Bormans, B. (2008). A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies. Journal of Environmental Monitoring 10, 248–255.
A phycocyanin probe as a tool for monitoring cyanobacteria in freshwater bodies.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtlyiu7o%3D&md5=08bf970d65beb49dc49acafad4faab39CAS |

Büchel, C., and Wilhelm, C. (1993). In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives. Photochemistry and Photobiology 58, 137–148.
In vivo analysis of slow chlorophyll fluorescence induction kinetics in algae: progress, problems and perspectives.Crossref | GoogleScholarGoogle Scholar |

Chelsea Technologies Ltd (2010). ‘Trilux Calibration Procedure 2125-080-CP.’ (Chelsea Technologies: West Molesey, UK.)

Chen, Z. (1992). Derivative reflectance spectroscopy to estimate suspended sediment concentration. Remote Sensing of Environment 40, 67–77.
Derivative reflectance spectroscopy to estimate suspended sediment concentration.Crossref | GoogleScholarGoogle Scholar |

Clark, R. N., and Roush, T. L. (1984). Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. Journal of Geophysical Research 89, 6329–6340.
Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXltF2ru7w%3D&md5=3713b7db9885f4e2360ee5693d49b9ccCAS |

Coles, J. F., and Jones, R. C. (2000). Effect of temperature on photosynthesis–light response and growth of four phytoplankton species isolated from a tidal freshwater river. Journal of Phycology 36, 7–16.
Effect of temperature on photosynthesis–light response and growth of four phytoplankton species isolated from a tidal freshwater river.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmslSmsbo%3D&md5=4fc6aaebf430feb4a4e35be98459f140CAS |

Companhia Ambiental do Estado de São Paulo (2016). Relatório de qualidade das águas superficiais do Estado de São Paulo, 2015. (CETESB: São Paulo, Brazil.)

Dekker, A. G. (1993). Detection of optical water quality parameters for eutrophic waters by high resolution remote sensing. Ph.D. Thesis, Vrije Universiteit, Amsterdam, Netherlands.

Dongpo, S., Ruili, L., Youngjun, S., and Jun, Y. (2008). Impact of hydroelectric projects on river environment: analysis of water quality changes in Ningxia Reach of Yellow River. Water Science and Engineering 2, 66–75.

Figueredo, C. C., and Giani, A. (2001). Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir. Hydrobiologia 445, 165–174.
Seasonal variation in the diversity and species richness of phytoplankton in a tropical eutrophic reservoir.Crossref | GoogleScholarGoogle Scholar |

Goodin, D. G., Han, L., Fraser, R. N., Rundquist, D. C., Stebbins, W. A., and Schalles, J. F. (1993). Analysis of suspended solids in water using remotely sensed high resolution derivate spectra. Photogrammetric Engineering and Remote Sensing 59, 505–510.

Goterman, H. L. (1978). ‘Methods for Physical and Chemical Analysis of Fresh Waters.’ (Limnological Institute: Oxford, UK.)

Kiefer, D. A. (1973). Chlorophyll-a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress. Marine Biology 23, 39–46.
Chlorophyll-a fluorescence in marine centric diatoms: responses of chloroplasts to light and nutrient stress.Crossref | GoogleScholarGoogle Scholar |

Kirk, J. T. O. (1994). ‘Light and Photosynthesis in Aquatic Ecosystems.’ (Cambridge University Press: Cambridge, UK.)

Kutser, T., Metsamaa, L., and Dekker, A. G. (2008). Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal. Estuarine, Coastal and Shelf Science 78, 649–654.
Influence of the vertical distribution of cyanobacteria in the water column on the remote sensing signal.Crossref | GoogleScholarGoogle Scholar |

Le, C., Li, Y., Zha, Y., Wang, Q., Zhang, H., and Yin, B. (2011). Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China. International Journal of Remote Sensing 32, 8253–8269.
Remote sensing of phycocyanin pigment in highly turbid inland waters in Lake Taihu, China.Crossref | GoogleScholarGoogle Scholar |

Li, L., Lin, L., and Song, K. (2015). Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin. Remote Sensing of Environment 157, 9–23.
Remote sensing of freshwater cyanobacteria: an extended IOP inversion model of inland waters (IIMIW) for partitioning absorption coefficient and estimating phycocyanin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXhsVajtbrO&md5=e2babcbe28afed9bb2432eb3969c3bfaCAS |

Mutanga, O., Skidmore, A. K., and Prins, H. H. T. (2004). Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features. Remote Sensing of Environment 89, 393–408.
Predicting in situ pasture quality in the Kruger National Park, South Africa, using continuum-removed absorption features.Crossref | GoogleScholarGoogle Scholar |

Novo, E. M. L. M., Barbosa, C. C. F., Freitas, R. F., Shimabukuro, Y. E., Melack, J. M., and Filho, W. O. (2006). Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images. Limnology 7, 153–161.
Seasonal changes in chlorophyll distributions in Amazon floodplain lakes derived from MODIS images.Crossref | GoogleScholarGoogle Scholar |

Novo, E. M. L. M., Londe, L. R., Barbosa, C. C. F., Araujo, C. A. S., and Rennó, C. D. (2013). Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images. Revista Ambiente & Água 8, 65–82.
Proposal for a remote sensing trophic state index based upon Thematic Mapper/Landsat images.Crossref | GoogleScholarGoogle Scholar |

Rede Paulista de Educação Ambiental (2005). Orientação para educação ambiental nas bacias hidrográficas do Estado de São Paulo: origem e caminhos. In ‘Origem e caminhos da REPEA-Rede Paulista de Educação Ambiental’. (Eds M. P. Borba, P. Otero, and C. H. R. Pinheiro.) pp. 81–126. (Imprensa Oficial do Estado de São Paulo: São Paulo, Brazil.)

Richardson, L. L. (1996). Remote sensing of algal bloom dynamics; new research fuses remote sensing of aquatic ecosystems with algal accessory pigment analysis. Bioscience 46, 492–501.
Remote sensing of algal bloom dynamics; new research fuses remote sensing of aquatic ecosystems with algal accessory pigment analysis.Crossref | GoogleScholarGoogle Scholar |

Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., and Martonchik, L. V. (2006). Reflectance quantities in optical remote sensing – definitions and case studies. Remote Sensing of Environment 103, 27–42.
Reflectance quantities in optical remote sensing – definitions and case studies.Crossref | GoogleScholarGoogle Scholar |

Schalles, J. F., Gitelson, A. A., Yacobi, Y. Z., and Kroenke, A. E. (1998). Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake. Journal of Phycology 34, 383–390.
Estimation of chlorophyll a from time series measurements of high spectral resolution reflectance in an eutrophic lake.Crossref | GoogleScholarGoogle Scholar |

Seppälä, J., Ylöstalob, P., and Kuosac, H. (2005). Spectral absorption and fluorescence characteristics of phytoplankton in different size fractions across a salinity gradient in the Baltic Sea. International Journal of Remote Sensing 26, 387–414.
Spectral absorption and fluorescence characteristics of phytoplankton in different size fractions across a salinity gradient in the Baltic Sea.Crossref | GoogleScholarGoogle Scholar |

Shi, K., Zhang, Y., Li, Y., Li, L., Lv, H., and Liu, X. (2015). Remote estimation of cyanobacteria-dominance in inland waters. Water Research 68, 217–226.
Remote estimation of cyanobacteria-dominance in inland waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXhslOis7%2FJ&md5=65552db861d2b4f75fa92a01b0cd9f89CAS |

Sivonen, K., and Jones, G. (1999). Cyanobacterial toxins. In ‘Toxic Cyanobacteria in Water: a Guide to their Public Health Consequences, Monitoring and Management’. (Eds I. Chorus and J. Bartram.) pp. 290–307. (E & FN Spon: London, UK.)

Smith, R. C., Baker, K. S., and Dustan, P. (1981). ‘Fluorometric Techniques for the Measurement of Oceanic Chlorophyll in the Support of Remote Sensing.’ (Scripps Institution of Oceanography: San Diego, CA, USA.)

Tsai, F., and Philpot, W. (1998). Derivative analyses of hyperspectral data. Remote Sensing of Environment 66, 41–51.
Derivative analyses of hyperspectral data.Crossref | GoogleScholarGoogle Scholar |

Tundisi, J. G., Matsumura-Tundisi, T., Pereira, K. C., Luzia, A. P., Passerini, M. D., Chiba, W. A. C., Morais, M. A., and Sebastien, N. Y. (2010). Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems. Brazilian Journal of Biology 70, 815–824.
Cold fronts and reservoir limnology: an integrated approach towards the ecological dynamics of freshwater ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M%2FgtlOhsQ%3D%3D&md5=16a3d44a4e91a86df8c4650ffbed8b8fCAS |

Uhelinger, V. (1964). Étude statistique des méthodes de dénobrement planctonique. Archives des Sciences 17, 121–123.

Utsumi, A. G., Galo, M. L. B. T., and Tachibana, V. M. (2015). Mapeamento de cianobactérias por meio da fluorescência da ficocianina e de análise geoestatística. Revista Brasileira de Engenharia Agrícola e Ambiental 19, 273–279.
Mapeamento de cianobactérias por meio da fluorescência da ficocianina e de análise geoestatística.Crossref | GoogleScholarGoogle Scholar |

Wen, X., Zhou, Z., Chen, B., Li, Z., and Tang, X. (2014). Research on the features of chlorophyll-a derived from Rapideye and EOS/MODIS data in Chaohu Lake. IOP Conference Series: Earth and Environmental Science 17, 1–5.
Research on the features of chlorophyll-a derived from Rapideye and EOS/MODIS data in Chaohu Lake.Crossref | GoogleScholarGoogle Scholar |