Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Riparian integrity affects diet and intestinal length of a generalist fish species

Renato Bolson Dala-Corte A D , Fernando Gertum Becker B and Adriano Sanches Melo C
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.

B Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970, Brazil.

C Departamento de Ecologia, Universidade Federal de Goiás, Goiânia, GO, 74001-970, Brazil.

D Corresponding author. Email: renatocorte@gmail.com

Marine and Freshwater Research 68(7) 1272-1281 https://doi.org/10.1071/MF16167
Submitted: 5 May 2016  Accepted: 15 September 2016   Published: 24 October 2016

Abstract

Human activities in the riparian zone can affect the feeding of stream fish because they alter autochthonous production (periphyton, macrophytes and aquatic insects) and allochthonous inputs (terrestrial insects, leaves, seeds and fruits). In the present study we investigated how the diet and intestinal length of a persistent and generalist fish species (Bryconamericus iheringii, Characidae) responds to riparian modifications in 31 subtropical streams in southern Brazil. We hypothesised that intestinal length would be longer in populations inhabiting streams with converted riparian vegetation as a consequence of greater consumption of an indigestible and low-protein diet. Populations of B. iheringii from streams with a degraded riparian zone and reduced canopy cover had longer intestinal length (after accounting for body size), which was associated with decreased consumption of terrestrial plants and invertebrates and increased ingestion of filamentous algae, macrophytes and detritus. These results indicate that anthropic alteration of riparian zones and increased canopy openness trigger shifts in the diet and intestinal length of B. iheringii. The findings suggest that plasticity in intestinal length is an important characteristic to determine whether fish populations can persist in a variety of habitat conditions and cope with the digestion of a greater proportion of low-quality and low-protein food items in human-altered environments.

Additional keywords: agriculture, gut, intraspecific, land use, omnivory, stomach.


References

Agostinho, A. A., and Zalewski, M. (1995). The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil. Hydrobiologia 303, 141–148.
The dependence of fish community structure and dynamics on floodplain and riparian ecotone zone in Parana River, Brazil.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D. (2004). Landscapes and riverscapes: The influence of land-use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35, 257–284.
Landscapes and riverscapes: The influence of land-use on stream ecosystems.Crossref | GoogleScholarGoogle Scholar |

Allan, J. D., Wipfli, M. S., Caouette, J. P., Prussian, A., and Rodgers, J. (2003). Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs. Canadian Journal of Fisheries and Aquatic Sciences 60, 309–320.
Influence of streamside vegetation on inputs of terrestrial invertebrates to salmonid food webs.Crossref | GoogleScholarGoogle Scholar |

Baxter, C. V., Fausch, K. D., Murakami, M., and Chapman, P. L. (2004). Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies. Ecology 85, 2656–2663.
Fish invasion restructures stream and forest food webs by interrupting reciprocal prey subsidies.Crossref | GoogleScholarGoogle Scholar |

Bertaco, V. A., and Azevedo, M. A. (2013). Fishes from Rio Ibirapuitã basin, environmental protection area of Ibirapuitã, Pampa biome. Check List 9, 966–972.
Fishes from Rio Ibirapuitã basin, environmental protection area of Ibirapuitã, Pampa biome.Crossref | GoogleScholarGoogle Scholar |

Bojsen, B. H. (2005). Diet and condition of three fish species (Characidae) of the Andean foothills in relation to deforestation. Environmental Biology of Fishes 73, 61–73.
Diet and condition of three fish species (Characidae) of the Andean foothills in relation to deforestation.Crossref | GoogleScholarGoogle Scholar |

Bunn, S. E., Davies, P. M., and Kellaway, D. M. (1997). Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Marine and Freshwater Research 48, 173–179.
Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFemur0%3D&md5=644b43744e785356db8e3be1f05e6d91CAS |

Burdon, F. J., McIntosh, A. R., and Harding, J. S. (2013). Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams. Ecological Applications 23, 1036–1047.
Habitat loss drives threshold response of benthic invertebrate communities to deposited sediment in agricultural streams.Crossref | GoogleScholarGoogle Scholar | 23967573PubMed |

Burrell, T. K., O’Brien, J. M., Graham, S. E., Simon, K. S., Harding, J. S., and McIntosh, A. R. (2014). Riparian shading mitigates stream eutrophication in agricultural catchments. Freshwater Science 33, 73–84.
Riparian shading mitigates stream eutrophication in agricultural catchments.Crossref | GoogleScholarGoogle Scholar |

Casatti, L., Langeani, F., and Ferreira, C. P. (2006). Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region. Environmental Management 38, 974–982.
Effects of physical habitat degradation on the stream fish assemblage structure in a pasture region.Crossref | GoogleScholarGoogle Scholar | 16990983PubMed |

Casatti, L., de Paula Ferreira, C., and Carvalho, F. R. (2009). Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632, 273–283.
Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins.Crossref | GoogleScholarGoogle Scholar |

Chan, E. K., Zhang, Y., and Dudgeon, D. (2008). Arthropod ‘rain’ into tropical streams: the importance of intact riparian forest and influences on fish diets. Marine and Freshwater Research 59, 653–660.
Arthropod ‘rain’ into tropical streams: the importance of intact riparian forest and influences on fish diets.Crossref | GoogleScholarGoogle Scholar |

Dala-Corte, R. B., Silva, E. R. D., and Fialho, C. B. (2016a). Diet–morphology relationship in the stream-dwelling characid Deuterodon stigmaturus (Gomes, 1947) (Characiformes: Characidae) is partially conditioned by ontogenetic development. Neotropical Ichthyology 14, e150178.
Diet–morphology relationship in the stream-dwelling characid Deuterodon stigmaturus (Gomes, 1947) (Characiformes: Characidae) is partially conditioned by ontogenetic development.Crossref | GoogleScholarGoogle Scholar |

Dala-Corte, R. B., Giam, X., Olden, J. D., Becker, F. G., Guimarães, T. D. F., and Melo, A. S. (2016b). Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshwater Biology 61, 1921–1934.
Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands.Crossref | GoogleScholarGoogle Scholar |

Davis, A. M., and Pusey, B. J. (2010). Trophic polymorphism and water clarity in northern Australian Scortum (Pisces: Terapontidae). Ecology Freshwater Fish 19, 638–643.
Trophic polymorphism and water clarity in northern Australian Scortum (Pisces: Terapontidae).Crossref | GoogleScholarGoogle Scholar |

Davis, A. M., Unmack, P. J., Pusey, B. J., Pearson, R. G., and Morgan, D. L. (2013). Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae). BMC Evolutionary Biology 13, 53.
Ontogenetic development of intestinal length and relationships to diet in an Australasian fish family (Terapontidae).Crossref | GoogleScholarGoogle Scholar | 23441994PubMed |

Dodds, W. K. (2007). Trophic state, eutrophication and nutrient criteria in streams. Trends in Ecology & Evolution 22, 669–676.
Trophic state, eutrophication and nutrient criteria in streams.Crossref | GoogleScholarGoogle Scholar |

England, L. E., and Rosemond, A. D. (2004). Small reductions in forest cover weaken terrestrial–aquatic linkages in headwater streams. Freshwater Biology 49, 721–734.
Small reductions in forest cover weaken terrestrial–aquatic linkages in headwater streams.Crossref | GoogleScholarGoogle Scholar |

Fernández, E., Ferriz, R., Bentos, C., and López, G. (2008). Ichthyofauna of two streams in the high basin of the Samborombón River, Buenos Aires province, Argentina. Revista del Museo Argentino de Ciencias Naturales, nueva serie 10, 147–154.

Ferreira, A., Cyrino, J. E. P., Duarte-Neto, P. J., and Martinelli, L. A. (2012a). Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil. Marine and Freshwater Research 63, 1272–1282.
Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Ferreira, A., de Paula, F. R., Ferraz, S. F. de B., Gerhard, P., Kashiwaqui, E. A. L., Cyrino, J. E. P., and Martinelli, L. A. (2012b). Riparian coverage affects diets of characids in neotropical streams. Ecology Freshwater Fish 21, 12–22.
Riparian coverage affects diets of characids in neotropical streams.Crossref | GoogleScholarGoogle Scholar |

German, D. P., and Horn, M. H. (2006). Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects. Marine Biology 148, 1123–1134.
Gut length and mass in herbivorous and carnivorous prickleback fishes (Teleostei: Stichaeidae): ontogenetic, dietary, and phylogenetic effects.Crossref | GoogleScholarGoogle Scholar |

Hynes, H. B. N. (1950). The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes. Journal of Animal Ecology 19, 36–58.
The food of fresh-water sticklebacks (Gasterosteus aculeatus and Pygosteus pungitius), with a review of methods used in studies of the food of fishes.Crossref | GoogleScholarGoogle Scholar |

Hyslop, E. J. (1980). Stomach contents analysis – a review of methods and their application. Journal of Fish Biology 17, 411–429.
Stomach contents analysis – a review of methods and their application.Crossref | GoogleScholarGoogle Scholar |

Karr, J. R. (1991). Biological integrity: a long-neglected aspect of water resource management. Ecological Applications 1, 66–84.
Biological integrity: a long-neglected aspect of water resource management.Crossref | GoogleScholarGoogle Scholar | 27755684PubMed |

Karr, J. R., Fausch, K. D., Angermeier, P. L., Yant, P. R., and Schlosser, I. J. (1986). Assessing biological integrity in running waters: a method and its rationale. Special Publication 5, Illinois Natural History Survey, Champaign, IL, USA.

Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., and Peck, D. V. (1999). Quantifying physical habitat in wadeable streams. EPA/620/R-99/003. US Environmental Protection Agency, Washington, DC, USA.

Kawaguchi, Y., and Nakano, S. (2001). Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream. Freshwater Biology 46, 303–316.
Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream.Crossref | GoogleScholarGoogle Scholar |

Kramer, D. L., and Bryant, M. J. (1995a). Intestine length in the fishes of a tropical stream: 1. Ontogenetic allometry. Environmental Biology of Fishes 42, 115–127.
Intestine length in the fishes of a tropical stream: 1. Ontogenetic allometry.Crossref | GoogleScholarGoogle Scholar |

Kramer, D. L., and Bryant, M. J. (1995b). Intestine length in the fishes of a tropical stream: 2. Relationships to diet – the long and short of a convoluted issue. Environmental Biology of Fishes 42, 129–141.
Intestine length in the fishes of a tropical stream: 2. Relationships to diet – the long and short of a convoluted issue.Crossref | GoogleScholarGoogle Scholar |

Lampert, V. R. (2003). Biologia reprodutiva de duas espécies do gênero Bryconamericus (Characidae: Tetragonopterinae) dos sistemas dos rios Jacuí e Uruguai, RS. M.Sc. Thesis, Universidade Federal do Rio Grande do Sul, Porto Alegre.

Lampert, V. R., Azevedo, M. A., and Fialho, C. B. (2004). Reproductive biology of Bryconamericus iheringii (Ostariophysi: Characidae) from Rio Vacacaí, RS, Brazil. Neotropical Ichthyology 2, 209–215.
Reproductive biology of Bryconamericus iheringii (Ostariophysi: Characidae) from Rio Vacacaí, RS, Brazil.Crossref | GoogleScholarGoogle Scholar |

Layman, C. A., Araujo, M. S., Boucek, R., Hammerschlag-Peyer, C. M., Harrison, E., Jud, Z. R., Matich, P., Rosenblatt, A. E., Vaudo, J. J., Yeager, L. A., Post, D. M., and Bearhop, S. (2012). Applying stable isotopes to examine food-web structure: an overview of analytical tools. Biological Reviews of the Cambridge Philosophical Society 87, 545–562.
Applying stable isotopes to examine food-web structure: an overview of analytical tools.Crossref | GoogleScholarGoogle Scholar | 22051097PubMed |

Legendre, P., and Gallagher, E. D. (2001). Ecologically meaningful transformations for ordination of species data. Oecologia 129, 271–280.
Ecologically meaningful transformations for ordination of species data.Crossref | GoogleScholarGoogle Scholar |

Leite, G. F., Silva, F. T. C., Gonçalves, J. F. J., and Salles, P. (2015). Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams. Hydrobiologia 762, 223–238.
Effects of conservation status of the riparian vegetation on fish assemblage structure in neotropical headwater streams.Crossref | GoogleScholarGoogle Scholar |

Lima, F. C. T., Malabarba, L. R., Buckup, P. A., Silva, J. F. P., Vari, R. P., Harold, A., Benine, R., Oyakawa, O. T., Pavanelli, C. S., Menezes, N. A., Lucena, C. A. S., Malabarba, M. C., Lucena, Z. M., Reis, R. E., Langeani, F., Cassati, L., Bertaco, V. A., Moreira, C., and Lucinda, P. H. F. (2003). Genera Incertae sedis in Characidae. In ‘Check List of the Freshwater Fishes of South and Central America’, 1st edn. (Eds R. E. Reis, S. O. Kullander, and C. J. Ferraris Jr.) pp. 106–169. (Edipucrs: Porto Alegre, Brazil.)

Lobón-Cerviá, J., Mazzoni, R., and Rezende, C. F. (2016). Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage. Journal of Fish Biology 89, 50–64.
Effects of riparian forest removal on the trophic dynamics of a Neotropical stream fish assemblage.Crossref | GoogleScholarGoogle Scholar | 27220656PubMed |

Lowrance, R., Altier, L. S., Newbold, J. D., Schnabel, R. R., Groffman, P. M., Denver, J. M., Correll, D. L., Gilliam, J. W., Robinson, J. L., Brinsfield, R. B., Staver, K. W., Lucas, W., and Todd, A. H. (1997). Water quality functions of riparian forest buffers in Chesapeake Bay watersheds. Environmental Management 21, 687–712.
Water quality functions of riparian forest buffers in Chesapeake Bay watersheds.Crossref | GoogleScholarGoogle Scholar | 9236284PubMed |

Lujan, N. K., German, D. P., and Winemiller, K. O. (2011). Do wood-grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae. Functional Ecology 25, 1327–1338.
Do wood-grazing fishes partition their niche? Morphological and isotopic evidence for trophic segregation in Neotropical Loricariidae.Crossref | GoogleScholarGoogle Scholar |

Majdi, N., Boiche, A., Traunspurger, W., and Lecerf, A. (2015). Community patterns and ecosystem processes in forested headwater streams along a gradient of riparian canopy openness. Fundamental and Applied Limnology 187, 63–78.
Community patterns and ecosystem processes in forested headwater streams along a gradient of riparian canopy openness.Crossref | GoogleScholarGoogle Scholar |

Manna, L. R., Rezende, C. F., and Mazzoni, R. (2012). Plasticity in the diet of Astyanax taeniatus in a coastal stream from south-east Brazil. Brazilian Journal of Biology 72, 919–928.
Plasticity in the diet of Astyanax taeniatus in a coastal stream from south-east Brazil.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3s3ntlOkuw%3D%3D&md5=fb63ba3d055661096482f5e3b889e10aCAS |

Matthaei, C. D., Weller, F., Kelly, D. W., and Townsend, C. R. (2006). Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand. Freshwater Biology 51, 2154–2172.
Impacts of fine sediment addition to tussock, pasture, dairy and deer farming streams in New Zealand.Crossref | GoogleScholarGoogle Scholar |

Minshall, G. W. (1978). Autotrophy in stream ecosystems. Bioscience 28, 767–771.
Autotrophy in stream ecosystems.Crossref | GoogleScholarGoogle Scholar |

Nakagawa, S., and Schielzeth, H. (2013). A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4, 133–142.
A general and simple method for obtaining R2 from generalized linear mixed-effects models.Crossref | GoogleScholarGoogle Scholar |

Nakano, S., Miyasaka, H., and Kuhara, N. (1999). Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80, 2435–2441.

Oliveira, D. C. D., and Bennemann, S. T. (2005). Ictiofauna, recursos alimentares e relações com as interferências antrópicas em um riacho urbano no sul do Brasil. Biota Neotropica 5, 95–107.
Ictiofauna, recursos alimentares e relações com as interferências antrópicas em um riacho urbano no sul do Brasil.Crossref | GoogleScholarGoogle Scholar |

Oricolli, M. C. G., and Bennemann, S. T. (2006). Dieta de Bryconamericus iheringii (Ostariophysi: Characidae) em riachos da bacia do Rio Tibagi, Estado do Paraná. Acta Scientiarum. Biological Sciences 28, 59–63.

Overbeck, G. E., Müller, S. C., Fidelis, A., Pfadenhauer, J., Pillar, V. D., Blanco, C. C., Boldrinic, I. I., Bothd, R., and Forneck, E. D. (2007). Brazil’s neglected biome: the South Brazilian campos. Perspectives in Plant Ecology, Evolution and Systematics 9, 101–116.
Brazil’s neglected biome: the South Brazilian campos.Crossref | GoogleScholarGoogle Scholar |

Pringle, C. M., Naiman, R. J., Bretschko, G., Karr, J. R., Oswood, M. W., Webster, J. R., Welcomme, R. L., and Winterbourn, M. J. (1988). Patch dynamics in lotic systems: the stream as a mosaic. Journal of the North American Benthological Society 7, 503–524.
Patch dynamics in lotic systems: the stream as a mosaic.Crossref | GoogleScholarGoogle Scholar |

Pusey, B. J., and Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54, 1–16.
Importance of the riparian zone to the conservation and management of freshwater fish: a review.Crossref | GoogleScholarGoogle Scholar |

Pusey, B. J., Arthington, A. H., Stewart-Koster, B., Kennard, M. J., and Read, M. G. (2010). Widespread omnivory and low temporal and spatial variation in the diet of fishes in a hydrologically variable northern Australian river. Journal of Fish Biology 77, 731–753.
| 1:STN:280:DC%2BC3cjktFOnuw%3D%3D&md5=a4b35f8cfd387aecf4ff9cd05cf2e4d8CAS | 20701651PubMed |

Scharnweber, K., Plath, M., Winemiller, K. O., and Tobler, M. (2011). Dietary niche overlap in sympatric asexual and sexual livebearing fishes Poecilia spp. Journal of Fish Biology 79, 1760–1773.
Dietary niche overlap in sympatric asexual and sexual livebearing fishes Poecilia spp.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC387ktVWqsw%3D%3D&md5=b9809840c89ef95f3bf9ba902afef67dCAS | 22141886PubMed |

Schmitter-Soto, J. J., Ruiz-Cauich, L. E., Herrera, R. L., and González-Solís, D. (2011). An index of biotic integrity for shallow streams of the Hondo River basin, Yucatan Peninsula. The Science of the Total Environment 409, 844–852.
An index of biotic integrity for shallow streams of the Hondo River basin, Yucatan Peninsula.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjsVGrtA%3D%3D&md5=dcefdbc0d45bdb7ff026927e5c2cace9CAS | 21146199PubMed |

Sullivan, M. L., Zhang, Y., and Bonner, T. H. (2012). Terrestrial subsidies in the diets of stream fishes of the USA: comparisons among taxa and morphology. Marine and Freshwater Research 63, 409–414.
Terrestrial subsidies in the diets of stream fishes of the USA: comparisons among taxa and morphology.Crossref | GoogleScholarGoogle Scholar |

Teresa, F. B., Casatti, L., and Cianciaruso, M. V. (2015). Functional differentiation between fish assemblages from forested and deforested streams. Neotropical Ichthyology 13, 361–370.
Functional differentiation between fish assemblages from forested and deforested streams.Crossref | GoogleScholarGoogle Scholar |

Vitule, J. R. S., Braga, M. R., and Aranha, J. M. R. (2008). Ontogenetic, spatial and temporal variations in the feeding ecology of Deuterodon langei Travassos, 1957 (Teleostei: Characidae) in a Neotropical stream from the Atlantic rainforest, southern Brazil. Neotropical Ichthyology 6, 211–222.
Ontogenetic, spatial and temporal variations in the feeding ecology of Deuterodon langei Travassos, 1957 (Teleostei: Characidae) in a Neotropical stream from the Atlantic rainforest, southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Volcan, M. V., Lanés, L. E. K., Gonçalves, Â. C., Fonseca, A. P., and Cirne, M. P. (2012). The fish fauna of the Corrientes stream basin, Patos lagoon system, state of Rio Grande do Sul, southern Brazil. Check List 8, 077–082.
The fish fauna of the Corrientes stream basin, Patos lagoon system, state of Rio Grande do Sul, southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Wagner, C. E., McIntyre, P. B., Buels, K. S., Gilbert, D. M., and Michel, E. (2009). Diet predicts intestine length in Lake Tanganyika’s cichlid fishes. Functional Ecology 23, 1122–1131.
Diet predicts intestine length in Lake Tanganyika’s cichlid fishes.Crossref | GoogleScholarGoogle Scholar |

Wallace, J. B., Eggert, S. L., Meyer, J. L., and Webster, J. R. (1997). Multiple trophic levels of a forest stream linked to terrestrial litter inputs. Science 277, 102–104.
Multiple trophic levels of a forest stream linked to terrestrial litter inputs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXksVygsL0%3D&md5=fec03ce7caeb7d35c8a8ce2e2eb0804eCAS |

Ward-Campbell, B. M. S., and Beamish, F. W. H. (2005). Ontogenetic changes in morphology and diet in the snakehead, Channa limbata, a predatory fish in western Thailand. Environmental Biology of Fishes 72, 251–257.
Ontogenetic changes in morphology and diet in the snakehead, Channa limbata, a predatory fish in western Thailand.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O. (1989). Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan Llanos. Environmental Biology of Fishes 26, 177–199.
Ontogenetic diet shifts and resource partitioning among piscivorous fishes in the Venezuelan Llanos.Crossref | GoogleScholarGoogle Scholar |

Wootton, J. T. (2012). River food web response to large-scale riparian zone manipulations. PLoS One 7, e51839.
River food web response to large-scale riparian zone manipulations.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXlsVCltQ%3D%3D&md5=7d41f36e865d32efe4a6ed4144467afaCAS | 23284786PubMed |

Zandonà, E., Auer, S. K., Kilham, S. S., and Reznick, D. N. (2015). Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata). PLoS One 10, e0136079.
Contrasting population and diet influences on gut length of an omnivorous tropical fish, the Trinidadian guppy (Poecilia reticulata).Crossref | GoogleScholarGoogle Scholar | 26360601PubMed |

Zeni, J. O., and Casatti, L. (2014). The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams. Hydrobiologia 726, 259–270.
The influence of habitat homogenization on the trophic structure of fish fauna in tropical streams.Crossref | GoogleScholarGoogle Scholar |