Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Alpha and beta diversity of freshwater meiofauna at different spatial scales in a Neotropical lotic system

T. Q. Araújo A B , H. H. Checon C and A. R. S. Garraffoni D E F
+ Author Affiliations
- Author Affiliations

A Programa de Pós-Graduação em Zoologia, Universidade Federal de Minas Gerais, Av. Antonio Carlos, 6627, CEP 31270-901 Belo Horizonte, MG, Brazil.

B Programa de Pós-Graduação em Ciências Florestais, Departamento de Ciências Florestais, Faculdade de Ciências Agrárias, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia BR-367, CEP 39.100-000, Diamantina, MG, Brazil.

C Programa de Pós-Graduação em Ecologia, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255, CEP 13083-970, Campinas, SP, Brazil.

D Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Rodovia BR-367, CEP 39.100-000, Diamantina, MG, Brazil.

E Present address: Laboratório de Evolução de Organismos Meiofaunais, Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas, R. Monteiro Lobato, 255, CEP 13083-970, Campinas, SP, Brazil.

F Corresponding author. Email: arsg@unicamp.br

Marine and Freshwater Research 68(3) 538-548 https://doi.org/10.1071/MF15408
Submitted: 29 October 2015  Accepted: 22 February 2016   Published: 3 June 2016

Abstract

Meiofaunal assemblages are important components of benthic communities in freshwater habitats, but studies about their ecology are scarce. In the present study we investigated the spatial and temporal distribution patterns of freshwater meiofaunal taxa, in a lotic system in south-eastern Brazil, assessing α and β diversities through additive partitioning of diversity. At each of six sampling sites, a 50-m transect was divided into five equal sections. Two random samples were collected in each section. Local spatial scales (α and β1) and among areas (β3) made the highest contribution to overall richness, but seasonal variation could be seen. Non-randomness patterns were observed, especially at the lowest and highest spatial scales, showing the effects of local intraspecific aggregation and environmental variability among areas. Temporal scale analysis showed that diversity was highly aggregated at the monthly scale, but sampling location affected these results. Community composition results highlighted the contrasting conditions found at the sampling sites, highlighting β3 as an important component of γ diversity across spatial scales. The effects of different levels of environmental degradation and precipitation on community composition and meiofaunal abundance affected the ability of the community to recover and recolonise the meiobenthos.

Additional keywords: additive partitioning, Copepoda, Gastrotricha, Rotifera, Tardigrada.


References

Acosta-González, G., Rodríguez-Zaragoza, F. A., Hérnandez-Lara, R. C., and Arias-González, J. E. (2013). Additive diversity partitioning of fish in Caribbean coral reef undergoing shift transition. PLoS One 8, e65665.
Additive diversity partitioning of fish in Caribbean coral reef undergoing shift transition.Crossref | GoogleScholarGoogle Scholar | 23776521PubMed |

Alvares, C. A., Stape, J. L., Sentelhas, P. C., De Moraes-Gonçalves, J. L., and Sparovek, G. (2013). Köppen’s climate classification map for Brazil. Meteorologische Zeitschrif 22, 711–728.
Köppen’s climate classification map for Brazil.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
A new method for non-parametric multivariate analysis of variance.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, B. D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, J. C., and Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28.
Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.Crossref | GoogleScholarGoogle Scholar | 21070562PubMed |

Argerich, A., Puig, M. A., and Pupilli, E. (2004). Effect of floods of different magnitude on the macroinvertebrate communities of Matarranya stream (Ebro river basin, NE Spain). Limnetica 23, 283–294.

Azevedo, P. G., Melo, R. M. C., and Young, R. J. (2011). Feeding and social behavior of the piabanha, Brycondevillei (Castelnau, 1855) (Characidae: Bryconinae) in the wild, with a note on following behavior. Neotropical Ichthyology 9, 807–814.
Feeding and social behavior of the piabanha, Brycondevillei (Castelnau, 1855) (Characidae: Bryconinae) in the wild, with a note on following behavior.Crossref | GoogleScholarGoogle Scholar |

Balian, E. V., Segers, H., Leveque, C., and Martens, C. K. (2008). The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595, 627–637.
The freshwater animal diversity assessment: an overview of the results.Crossref | GoogleScholarGoogle Scholar |

Barnes, N., Bamber, R. N., Moncrieff, C. B., Shader, M., and Ferrero, T. J. (2008). Meiofauna in closed coastal saline lagoons in the United Kingdom: structure and biodiversity of the Nematoda assemblage. Estuarine, Coastal and Shelf Science 79, 328–340.
Meiofauna in closed coastal saline lagoons in the United Kingdom: structure and biodiversity of the Nematoda assemblage.Crossref | GoogleScholarGoogle Scholar |

Bispo, P. C., Oliveira, L. G., Bini, L. M., and Sousa, K. G. (2006). Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: environmental factors influencing the distribution and abundance of immatures. Brazilian Journal of Biology 66, 611–622.
Ephemeroptera, Plecoptera and Trichoptera assemblages from riffles in mountain streams of central Brazil: environmental factors influencing the distribution and abundance of immatures.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD28vot1ekuw%3D%3D&md5=deeff57ed51fa7362fdaa08452a8d2bdCAS |

Boyero, L., and Bosch, J. (2002). Spatial and temporal variation of macroinvertebrate drift in two Neotropical streams. Biotropica 34, 567–574.
Spatial and temporal variation of macroinvertebrate drift in two Neotropical streams.Crossref | GoogleScholarGoogle Scholar |

Brittain, J. E., and Eikeland, T. J. (1988). Invertebrate drift: a review. Hydrobiologia 166, 77–93.
Invertebrate drift: a review.Crossref | GoogleScholarGoogle Scholar |

Brooks, S. S., and Boulton, A. J. (1991). Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream. Marine and Freshwater Research 42, 295–308.
Recolonization dynamics of benthic macroinvertebrates after artificial and natural disturbances in an Australian temporary stream.Crossref | GoogleScholarGoogle Scholar |

Bruno, M. C., Bottazzi, E., and Rossetti, G. (2012). Downward, upstream or downstream? Assessment of meio- and macrofaunal colonization patterns in a gravel-bed stream using artificial substrates. Annales de Limnologie – International Journal of Limnology 48, 371–381.
Downward, upstream or downstream? Assessment of meio- and macrofaunal colonization patterns in a gravel-bed stream using artificial substrates.Crossref | GoogleScholarGoogle Scholar |

Callisto, M., and Goulart, M. D. C. (2005). Invertebrate drift along a longitudinal gradient in a Neotropical stream in Serra do Cipó National Park, Brazil. Hydrobiologia 539, 47–56.
Invertebrate drift along a longitudinal gradient in a Neotropical stream in Serra do Cipó National Park, Brazil.Crossref | GoogleScholarGoogle Scholar |

Clarke, R. K., Somerfield, P. J., and Chapman, M. G. (2006). On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages. Journal of Experimental Marine Biology and Ecology 330, 55–80.
On resemblance measures for ecological studies, including taxonomic dissimilarities and a zero-adjusted Bray–Curtis coefficient for denuded assemblages.Crossref | GoogleScholarGoogle Scholar |

Collier, K. J., and Clements, B. L. (2011). Influences of catchment and corridor imperviousness on urban stream macroinvertebrate communities at multiple spatial scales. Hydrobiologia 664, 35–50.
Influences of catchment and corridor imperviousness on urban stream macroinvertebrate communities at multiple spatial scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKjtrw%3D&md5=32d3c32e4000ca07a984db215dffd5a2CAS |

Colwell, R. K., and Coddington, J. A. (1994). Estimating the extent of terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society – B. Biological Sciences 345, 101–118.
Estimating the extent of terrestrial biodiversity through extrapolation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2M%2Fmt1GltA%3D%3D&md5=6e3924ef6b63654adcd3a730fa29c0dbCAS |

Costa, S. S., and Melo, A. S. (2008). Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components. Hydrobiologia 598, 131–138.
Beta diversity in stream macroinvertebrate assemblages: among-site and among-microhabitat components.Crossref | GoogleScholarGoogle Scholar |

Crist, T. O., Veech, J. A., Gering, J. C., and Summerville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity. American Naturalist 162, 734–743.
Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β, and γ diversity.Crossref | GoogleScholarGoogle Scholar | 14737711PubMed |

de Oliveira, F. F. R., and Eterovick, P. C. (2009). The role of river longitudinal gradients, local and regional attributes in shaping frog assemblages. Acta Oecologica 35, 727–738.
The role of river longitudinal gradients, local and regional attributes in shaping frog assemblages.Crossref | GoogleScholarGoogle Scholar |

Erös, T. (2007). Partitioning the diversity of stream fish: the role of habitat type and non-native species. Freshwater Biology 52, 1400–1415.
Partitioning the diversity of stream fish: the role of habitat type and non-native species.Crossref | GoogleScholarGoogle Scholar |

Finlay, B. J., and Fenchel, T. F. (2004). Cosmopolitan metapopulations of free-living microbial eukaryotes. Protist 155, 237–244.
Cosmopolitan metapopulations of free-living microbial eukaryotes.Crossref | GoogleScholarGoogle Scholar | 15305798PubMed |

Flach, P. Z. S., Ozorio, C. P., and Melo, A. S. (2012). Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes. Fundamental and Applied Limnology 180, 249–258.
Alpha and beta components of diversity of freshwater nematodes at different spatial scales in subtropical coastal lakes.Crossref | GoogleScholarGoogle Scholar |

Flecker, A. S., and Feifarek, B. (1994). Disturbance and temporal variability of invertebrate assemblages in two Andean streams. Freshwater Biology 31, 131–142.
Disturbance and temporal variability of invertebrate assemblages in two Andean streams.Crossref | GoogleScholarGoogle Scholar |

Fontaneto, D., Ficetola, G. F., Ambrosini, R., and Ricci, C. (2006). Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals? Global Ecology and Biogeography 15, 153–162.
Patterns of diversity in microscopic animals: are they comparable to those in protists or in larger animals?Crossref | GoogleScholarGoogle Scholar |

Gaudes, A., Artigas, J., and Muñoz, I. (2010). Species traits and resilience of meiofauna to floods and drought in a Mediterranean stream. Marine and Freshwater Research 61, 1336–1347.
Species traits and resilience of meiofauna to floods and drought in a Mediterranean stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsVagt73E&md5=66ea4ab2eb742ae502ea5d7c31c1eb11CAS |

Gering, J. C., Crist, T. O., and Veech, J. A. (2003). Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity. Conservation Biology 17, 488–499.
Additive partitioning of species diversity across multiple spatial scales: implications for regional conservation of biodiversity.Crossref | GoogleScholarGoogle Scholar |

Giere, O. (2009). ‘Meiobenthology. The Microscopic Motile Fauna of Aquatic Sediments’, 2nd edn. (Springer: Berlin.)

Hakenkamp, C. C., and Morin, A. (2000). The importance of meiofauna to lotic ecosystem functioning. Freshwater Biology 44, 165–175.
The importance of meiofauna to lotic ecosystem functioning.Crossref | GoogleScholarGoogle Scholar |

Hayek, L. C., and Buzas, M. (2006). The martyrdom of St. Lucie: decimation of a meiofauna. Bulletin of Marine Science 79, 341–352.

Heino, J. (2002). Concordance of species richness patterns among multiple freshwater taxa: a regional perspective. Biodiversity and Conservation 11, 137–147.
Concordance of species richness patterns among multiple freshwater taxa: a regional perspective.Crossref | GoogleScholarGoogle Scholar |

Hepp, L. U., and Melo, A. S. (2013). Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703, 239–246.
Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances.Crossref | GoogleScholarGoogle Scholar |

Hewitt, J. E., Thrush, S. F., Halliday, J., and Duffy, C. (2005). The importance of small-scale biogenic habitat structure for maintaining beta diversity. Ecology 86, 1619–1626.
The importance of small-scale biogenic habitat structure for maintaining beta diversity.Crossref | GoogleScholarGoogle Scholar |

Higgins, R. P., and Thiel, H. (1988). ‘Introduction to the Study of Meiofauna.’ (Smithsonian Institution Press: Washington, DC.)

Hirao, T., Murakami, M., Kashizaki, A., and Tanabe, S. (2007). Additive apportioning of lepidopteran and coleopteran species diversity across spatial and temporal scales in a cool-temperate deciduous forest in Japan. Ecological Entomology 32, 627–636.
Additive apportioning of lepidopteran and coleopteran species diversity across spatial and temporal scales in a cool-temperate deciduous forest in Japan.Crossref | GoogleScholarGoogle Scholar |

Lake, P. S. (2000). Disturbance, patchiness, and diversity in streams. Journal of the North American Benthological Society 19, 573–592.
Disturbance, patchiness, and diversity in streams.Crossref | GoogleScholarGoogle Scholar |

Lake, P. S., Bond, N., and Reich, P. (2007). Linking ecological theory with stream restoration. Freshwater Biology 52, 597–615.
Linking ecological theory with stream restoration.Crossref | GoogleScholarGoogle Scholar |

Lande, R. (1996). Statistics and partitioning of species diversity and similarity along multiple communities. Oikos 76, 5–39.
Statistics and partitioning of species diversity and similarity along multiple communities.Crossref | GoogleScholarGoogle Scholar |

Legendre, P., Borcard, D., and Peres-Neto, P. R. (2005). Analyzing beta diversity: partitioning the spatial variation of community composition data. Ecological Monographs 75, 435–450.
Analyzing beta diversity: partitioning the spatial variation of community composition data.Crossref | GoogleScholarGoogle Scholar |

Ligeiro, R., Melo, A. S., and Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology 55, 424–435.
Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment.Crossref | GoogleScholarGoogle Scholar |

Ligeiro, R., Robert, M., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, D., Melo, A. S., and Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25, 45–57.
Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness.Crossref | GoogleScholarGoogle Scholar |

Lindo, Z., and Winchester, N. N. (2008). Scale dependent diversity patterns in arboreal and terrestrial oribatid mites (Acari: Oribatida) communities. Ecography 31, 53–60.
Scale dependent diversity patterns in arboreal and terrestrial oribatid mites (Acari: Oribatida) communities.Crossref | GoogleScholarGoogle Scholar |

Maré, M. F. (1942). A study o f a marine benthic community with special reference to the micro-organisms. Journal of the Marine Biological Association of the United Kingdom 25, 517–554.
A study o f a marine benthic community with special reference to the micro-organisms.Crossref | GoogleScholarGoogle Scholar |

Martello, A. R., Hepp, L. U., and Kotzian, C. B. (2014). Distribution and additive partitioning of diversity in freshwater mollusk communities in Southern Brazilian streams. Revista de Biologia Tropical 62, 33–44.
Distribution and additive partitioning of diversity in freshwater mollusk communities in Southern Brazilian streams.Crossref | GoogleScholarGoogle Scholar | 24912341PubMed |

Mesa, L. M. (2010). Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams. Hydrobiologia 641, 85–95.
Effect of spates and land use on macroinvertebrate community in Neotropical Andean streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKjtr0%3D&md5=2246a2e99484108493d49c22bc6f705aCAS |

Moreno, M., Vezzulli, L., Marin, V., Laconi, P., Albertelli, G., and Fabiano, M. (2008). The use of meiofauna diversity as an indicator of pollution in harbors. ICES Journal of Marine Science 65, 1428–1435.
The use of meiofauna diversity as an indicator of pollution in harbors.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsVeiu7rN&md5=cccd38f304f8dccf9b153c1b7357da0cCAS |

Neves, S. C., Abreu, P. A., and Fraga, L. M. S. (2005). Fisiografia. In ‘Serra do Espinhaço Meridional: Paisagem e ambiente’. (Eds A. C. Silva, L. C. V. S. F. Pedreira and A. O. Abreu.) pp. 137–147. (O Lutador: Belo Horizonte.)

O’Neill, K. P., Godwin, H. W., and Esquilin, A. E. J. (2010). Reducing the dimensionality of soil microinvertebrate community datasets using indicator species analysis: implications for ecosystem monitoring and soil management. Soil Biology & Biochemistry 42, 145–154.
Reducing the dimensionality of soil microinvertebrate community datasets using indicator species analysis: implications for ecosystem monitoring and soil management.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFyku7bK&md5=46e47c50e74e0a0b6481f08179bbbdb0CAS |

Oksanen, J., Blanchet, F. G., Kindt, R., Legendre, P., Minchin, P. R., O’Hara, R. B., Simpson, G. L., Solymos, P., Stevens, M. H. H., and Wagner, H. (2013). vegan: community ecology package. R package ver. 2.0–10. Available at http:// CRAN.R-project.org/package=vegan [Verified 29 September 2015].

Palmer, M. A., Arensburger, P., Martin, A. P., and Denman, D. W. (1996). Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates. Oecologia 105, 247–257.
Disturbance and patch-specific responses: the interactive effects of woody debris and floods on lotic invertebrates.Crossref | GoogleScholarGoogle Scholar |

Powers, T. (2004). Nematode molecular diagnostics: from bands to barcodes. Annual Review of Phytopathology 42, 367–383.
Nematode molecular diagnostics: from bands to barcodes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotFyrur8%3D&md5=d441761e0213431340809039d533d741CAS | 15497206PubMed |

Raghukumar, C., Loka-Bharathi, P. A., Ansari, Z. A., Nair, S., Ingole, B., Sheelu, G., Mohandass, C., Nagender-Nath, B., and Rodrigues, N. (2001). Bacterial standing stock, meiofauna and sedimentnutrient characteristics: indicators of benthic disturbance in the Central Indian Bassin. Deep-sea Research. Part II, Topical Studies in Oceanography 48, 3381–3399.
Bacterial standing stock, meiofauna and sedimentnutrient characteristics: indicators of benthic disturbance in the Central Indian Bassin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmt1Gnur4%3D&md5=98cdfa2d7d1777d08803bbf36bf3353bCAS |

Ramírez, A., and Pringle, C. M. (2001). Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape. Freshwater Biology 46, 47–62.
Spatial and temporal patterns of invertebrate drift in streams draining a Neotropical landscape.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, D. B., Prado, P. I., Brown, K. S., and Freitas, A. V. L. (2010). Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic Forest. Biotropica 42, 710–716.
Temporal diversity patterns and phenology in fruit-feeding butterflies in the Atlantic Forest.Crossref | GoogleScholarGoogle Scholar |

Robertson, A. L. (2000). Lotic meiofaunal community dynamics: colonization, resilience and persistence in spatially and temporally heterogeneous environment. Freshwater Biology 44, 135–147.
Lotic meiofaunal community dynamics: colonization, resilience and persistence in spatially and temporally heterogeneous environment.Crossref | GoogleScholarGoogle Scholar |

Robinson, C. T., Aebischer, S., and Uehlinger, U. (2004). Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods. Journal of the North American Benthological Society 23, 853–867.
Immediate and habitat-specific responses of macroinvertebrates to sequential, experimental floods.Crossref | GoogleScholarGoogle Scholar |

Shorrocks, B., and Sevenster, J. G. (1995). Explaining local species diversity. Proceedings of the Royal Society of London – B. Biological Sciences 260, 305–309.
Explaining local species diversity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaK2MzlsleltQ%3D%3D&md5=9ec36a8c01ab9f7cd6c4555eba252f34CAS |

Soininen, J., McDonald, R., and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 3–12.
The distance decay of similarity in ecological communities.Crossref | GoogleScholarGoogle Scholar |

Stendera, S. E. S., and Johnson, R. K. (2005). Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales. Freshwater Biology 50, 1360–1375.
Additive partitioning of aquatic invertebrate species diversity across multiple spatial scales.Crossref | GoogleScholarGoogle Scholar |

Strayer, D. L. (2006). Challenges for freshwater invertebrate conservation. Journal of the North American Benthological Society 25, 271–287.
Challenges for freshwater invertebrate conservation.Crossref | GoogleScholarGoogle Scholar |

Swan, C. M., and Palmer, M. A. (2000). What drives small-scale spatial patterns in lotic meiofauna communities. Freshwater Biology 44, 109–121.
What drives small-scale spatial patterns in lotic meiofauna communities.Crossref | GoogleScholarGoogle Scholar |

Townsend, C. R. (1989). The patch dynamics concept of stream community ecology. Journal of the North American Benthological Society 8, 36–50.
The patch dynamics concept of stream community ecology.Crossref | GoogleScholarGoogle Scholar |

Underwood, A. J., and Chapman, M. G. (1996). Scales of spatial patterns of distribution of intertidal invertebrates. Oecologia 107, 212–224.
Scales of spatial patterns of distribution of intertidal invertebrates.Crossref | GoogleScholarGoogle Scholar |

Veech, J. A. (2005). Analyzing patterns of species diversity as departures from random expectations. Oikos 108, 149–155.
Analyzing patterns of species diversity as departures from random expectations.Crossref | GoogleScholarGoogle Scholar |

Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C. (2002). The additive partitioning of species diversity: recent revival of an old idea. Oikos 99, 3–9.
The additive partitioning of species diversity: recent revival of an old idea.Crossref | GoogleScholarGoogle Scholar |

Vicente, F. (2010). Micro-invertebrates conservation: forgotten biodiversity. Biodiversity and Conservation 19, 3629–3634.
Micro-invertebrates conservation: forgotten biodiversity.Crossref | GoogleScholarGoogle Scholar |

Vincx, M. (1996). Meiofauna in marine and fresh water sediments. In ‘Methods for the Examination of Organismal Diversity in Soils and Sediments’. (Ed. G. S. Hall.) p. 214–248. (CAB International University Press: Cambridge, UK.)

Walther, B. A., and Moore, J. L. (2005). The definitions of bias, precision, and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28, 815–829.
The definitions of bias, precision, and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance.Crossref | GoogleScholarGoogle Scholar |

Ward, J. V., and Palmer, M. A. (1994). Distribution patterns of interstitial freshwater meiofauna over range of spatial scales, with emphasis on alluvial river–aquifer systems. Hydrobiologia 287, 147–156.
Distribution patterns of interstitial freshwater meiofauna over range of spatial scales, with emphasis on alluvial river–aquifer systems.Crossref | GoogleScholarGoogle Scholar |

Whittaker, R. H. (1960). Vegetation of the Siskitou Mountains, Oregon and California. Ecological Monographs 30, 279–338.
Vegetation of the Siskitou Mountains, Oregon and California.Crossref | GoogleScholarGoogle Scholar |

Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 21, 213–251.
Evolution and measurement of species diversity.Crossref | GoogleScholarGoogle Scholar |

Winemiller, K. O., Flecker, A. S., and Hoeinghaus, D. J. (2010). Patch dynamics and environmental heterogeneity in lotic ecosystems. Journal of the North American Benthological Society 29, 84–99.
Patch dynamics and environmental heterogeneity in lotic ecosystems.Crossref | GoogleScholarGoogle Scholar |