Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Sydney Harbour: what we do and do not know about a highly diverse estuary

E. L. Johnston A B , M. Mayer-Pinto A B L , P. A. Hutchings C , E. M. Marzinelli A B D , S. T. Ahyong C , G. Birch E , D. J. Booth F , R. G. Creese G , M. A. Doblin H , W. Figueira I , P. E. Gribben B D , T. Pritchard J , M. Roughan K , P. D. Steinberg B D and L. H. Hedge A B
+ Author Affiliations
- Author Affiliations

A Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

B Sydney Institute of Marine Science, 19 Chowder Bay Road, Mosman, NSW 2088, Australia.

C Australian Museum Research Institute, Australian Museum, 6 College Street, Sydney, NSW 2010, Australia.

D Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia.

E School of GeoSciences, The University of Sydney, Sydney, NSW 2006, Australia.

F Centre for Environmental Sustainability, School of the Environment, University of Technology, Sydney, NSW 2007, Australia.

G New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Nelson Bay, NSW 2315, Australia.

H Plant Functional Biology and Climate Change Cluster, University of Technology, Sydney, NSW 2007, Australia.

I Centre for Research on Ecological Impacts of Coastal Cities, School of Biological Sciences, University of Sydney, NSW 2006, Australia.

J Water and Coastal Science Section, New South Wales Office of Environment and Heritage, PO Box A290, Sydney, NSW 1232, Australia.

K Coastal and Regional Oceanography Lab, School of Mathematics and Statistics, University of New South Wales, NSW 2052, Australia.

L Corresponding author. Email: m.mayerpinto@unsw.edu.au

Marine and Freshwater Research 66(12) 1073-1087 https://doi.org/10.1071/MF15159
Submitted: 20 April 2015  Accepted: 31 August 2015   Published: 16 November 2015

Abstract

Sydney Harbour is a global hotspot for marine and estuarine diversity. Despite its social, economic and biological value, the available knowledge has not previously been reviewed or synthesised. We systematically reviewed the published literature and consulted experts to establish our current understanding of the Harbour’s natural systems, identify knowledge gaps, and compare Sydney Harbour to other major estuaries worldwide. Of the 110 studies in our review, 81 focussed on ecology or biology, six on the chemistry, 10 on geology and 11 on oceanography. Subtidal rocky reef habitats were the most studied, with a focus on habitat forming macroalgae. In total 586 fish species have been recorded from the Harbour, which is high relative to other major estuaries worldwide. There has been a lack of process studies, and an almost complete absence of substantial time series that constrains our capacity to identify trends, environmental thresholds or major drivers of biotic interactions. We also highlight a lack of knowledge on the ecological functioning of Sydney Harbour, including studies on microbial communities. A sound understanding of the complexity, connectivity and dynamics underlying ecosystem functioning will allow further advances in management for the Harbour and for similarly modified estuaries around the world.

Additional keywords: Australia, biodiversity, harbours, Port Jackson, urbanisation.


References

Adam, P. (1990). ‘Saltmarsh Ecology.’ (Cambridge University Press: Cambridge, UK.)

Ajani, P., Hallegraeff, G., and Pritchard, T. (2001). Historic overview of algal blooms in marine and estuarine waters of New South Wales, Australia. Proceedings of the Linnean Society of New South Wales 123, 1–22.

AM (2002). ‘Port Surveys for Introduced Marine Species.’ (Australian Museum Business Centre: Sydney, NSW.)

Andrew, N. L. (1993). Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia. Ecology 74, 292–302.
Spatial heterogeneity, sea urchin grazing, and habitat structure on reefs in temperate Australia.Crossref | GoogleScholarGoogle Scholar |

Andrew, N. L., and Underwood, A. J. (1989). Patterns of abundance of the sea urchin Centrostephanus rodgersii (Agassiz) on the central coast of New South Wales, Australia. Journal of Experimental Marine Biology and Ecology 131, 61–80.
Patterns of abundance of the sea urchin Centrostephanus rodgersii (Agassiz) on the central coast of New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Azam, F., and Malfatti, F. (2007). Microbial structuring of marine ecosystems. Nature Reviews Microbiology 5, 782–791.
Microbial structuring of marine ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVeis7bM&md5=c45152f45879b1f1566b5819c5ce904bCAS | 17853906PubMed |

Birch, G. (2007). A short geological and environmental history of the Sydney estuary, Australia. Young 17, 2195–2217.

Birch, G. F., and Rochford, L. (2010). Stormwater metal loading to a well-mixed/stratified estuary (Sydney Estuary, Australia) and management implications. Environmental Monitoring and Assessment 169, 531–551.
Stormwater metal loading to a well-mixed/stratified estuary (Sydney Estuary, Australia) and management implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtFSnt7zF&md5=fd0ed3c4ba2ad80f337a17f72e8790e0CAS | 19859822PubMed |

Birch, G., and Taylor, S. (1999). Source of heavy metals in sediments of the Port Jackson estuary, Australia. The Science of the Total Environment 227, 123–138.
Source of heavy metals in sediments of the Port Jackson estuary, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXislCgur0%3D&md5=b2a7b4624c01828b4e4e9e0ba3ed5cd3CAS |

Birch, G., and Taylor, S. (2000). Distribution and possible sources of organochlorine residues in sediments of a large urban estuary, Port Jackson, Sydney, Australia. Australian Journal Of Earth Sciences 47, 749–756.
Distribution and possible sources of organochlorine residues in sediments of a large urban estuary, Port Jackson, Sydney, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmsVSks74%3D&md5=0fcf35e155d06157165ff60982c21241CAS |

Birch, G. F., Eyre, B., and Taylor, S. E. (1999). The distribution of nutrients in bottom sediments of Port Jackson (Sydney Harbour), Australia. Marine Pollution Bulletin 38, 1247–1251.
The distribution of nutrients in bottom sediments of Port Jackson (Sydney Harbour), Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXjtlyhsg%3D%3D&md5=3e33951c085cbc6a3de7f280ee6051bcCAS |

Birch, G. F., McCready, S., Long, E. R., Taylor, S. S., and Spyrakis, G. (2008). Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: spatial extent and chemistry-toxicity relationships. Marine Ecology Progress Series 363, 71–88.
Contaminant chemistry and toxicity of sediments in Sydney Harbour, Australia: spatial extent and chemistry-toxicity relationships.Crossref | GoogleScholarGoogle Scholar |

Booth, D. (2010). Natural history of Sydney’s marine fishes: where south meets north. In ‘The Natural History of Sydney’. (Ed. R. Z. So.) pp. 143–153. (Royal Zoological Society of NSW: Sydney, NSW.)

Booth, D., Figueira, W., Gregson, M., Brown, L., and Beretta, G. (2007). Occurrence Of tropical fishes in temperate southeastern Australia: role of the East Australian Current. Estuarine, Coastal and Shelf Science 72, 102–114.
Occurrence Of tropical fishes in temperate southeastern Australia: role of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Bulleri, F. (2005a). Experimental evaluation of early patterns of colonisation of space on rocky shores and seawalls. Marine Environmental Research 60, 355–374.
Experimental evaluation of early patterns of colonisation of space on rocky shores and seawalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitlOhtLY%3D&md5=c8372cb3d2b8b08bc5b749b1916c82e7CAS | 15769504PubMed |

Bulleri, F. (2005b). Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores. Marine Ecology Progress Series 287, 53–64.
Role of recruitment in causing differences between intertidal assemblages on seawalls and rocky shores.Crossref | GoogleScholarGoogle Scholar |

Bulleri, F., Chapman, M. G., and Underwood, A. J. (2005). Intertidal assemblages on seawalls and vertical rocky shores in Sydney Harbour, Australia. Austral Ecology 30, 655–667.
Intertidal assemblages on seawalls and vertical rocky shores in Sydney Harbour, Australia.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G. (1998). Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution. Marine Ecology Progress Series 162, 71–78.
Relationships between spatial patterns of benthic assemblages in a mangrove forest using different levels of taxonomic resolution.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G. (2002). Early colonization of shallow subtidal boulders in two habitats. Journal of Experimental Marine Biology and Ecology 275, 95–116.
Early colonization of shallow subtidal boulders in two habitats.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G. (2003a). Paucity of mobile species on constructed seawalls: effects of urbanization on biodiversity. Marine Ecology Progress Series 264, 21–29.
Paucity of mobile species on constructed seawalls: effects of urbanization on biodiversity.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G. (2003b). The use of sandstone blocks to test hypotheses about colonization of intertidal boulders. Journal of the Marine Biological Association of the United Kingdom 83, 415–423.
The use of sandstone blocks to test hypotheses about colonization of intertidal boulders.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G. (2006). Intertidal seawalls as habitats for molluscs. The Journal of Molluscan Studies 72, 247–257.
Intertidal seawalls as habitats for molluscs.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G., and Bulleri, F. (2003). Intertidal seawalls – new features of landscape in intertidal environments. Landscape and Urban Planning 62, 159–172.
Intertidal seawalls – new features of landscape in intertidal environments.Crossref | GoogleScholarGoogle Scholar |

Chapman, M. G., Michie, K., and Lasiak, T. (2005). Responses of gastropods to changes in amounts of leaf litter and algae in mangrove forests. Journal of the Marine Biological Association of the United Kingdom 85, 1481–1488.
Responses of gastropods to changes in amounts of leaf litter and algae in mangrove forests.Crossref | GoogleScholarGoogle Scholar |

Chariton, A. A., Court, L. N., Hartley, D. M., Colloff, M. J., and Hardy, C. M. (2010). Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA. Frontiers in Ecology and the Environment 8, 233–238.
Ecological assessment of estuarine sediments by pyrosequencing eukaryotic ribosomal DNA.Crossref | GoogleScholarGoogle Scholar |

Christensen, N. L., Bartuska, A. M., Brown, J. H., Carpenter, S., Dantonio, C., Francis, R., Franklin, J. F., MacMahon, J. A., Noss, R. F., Parsons, D. J., Peterson, C. H., Turner, M. G., and Woodmansee, R. G. (1996). The report of the ecological society of America committee on the scientific basis for ecosystem management. Ecological Applications 6, 665–691.
The report of the ecological society of America committee on the scientific basis for ecosystem management.Crossref | GoogleScholarGoogle Scholar |

Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210, 223–253.
Our evolving conceptual model of the coastal eutrophication problem.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXisV2hsrw%3D&md5=f09e45e17e81dfb21e368b6667ca95a0CAS |

Cloern, J. E., Jassby, A. D., Thompson, J. K., and Hieb, K. A. (2007). A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay. Proceedings of the National Academy of Sciences of the United States of America 104, 18 561–18 565.
A cold phase of the East Pacific triggers new phytoplankton blooms in San Francisco Bay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtl2ku7jJ&md5=8227b52a4489f2c2338313d5ce0b852cCAS |

Clynick, B. G. (2008a). Characteristics of an urban fish assemblage: distribution of fish associated with coastal marinas. Marine Environmental Research 65, 18–33.
Characteristics of an urban fish assemblage: distribution of fish associated with coastal marinas.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtlGhsrrM&md5=f5dc7a1baa15cbbaf3b9fe42fae39e0fCAS | 17884158PubMed |

Clynick, B. G. (2008b). Harbour swimming nets: a novel habitat for seahorses. Aquatic Conservation: Marine and Freshwater Ecosystems 18, 483–492.
Harbour swimming nets: a novel habitat for seahorses.Crossref | GoogleScholarGoogle Scholar |

Clynick, B., and Chapman, M. G. (2002). Assemblages of small fish in patchy mangrove forests in Sydney Harbour. Marine and Freshwater Research 53, 669–677.
Assemblages of small fish in patchy mangrove forests in Sydney Harbour.Crossref | GoogleScholarGoogle Scholar |

Clynick, B. G., Chapman, M. G., and Underwood, A. J. (2008). Fish assemblages associated with urban structures and natural reefs in Sydney, Australia. Austral Ecology 33, 140–150.
Fish assemblages associated with urban structures and natural reefs in Sydney, Australia.Crossref | GoogleScholarGoogle Scholar |

Cole, V. J. (2009). Densities of polychaetes in habitat fragments depend on the surrounding matrix but not the complexity of the remaining fragment. Austral Ecology 34, 469–477.

Cole, V. J., Glasby, T. M., and Holloway, M. G. (2005). Extending the generality of ecological models to artificial floating habitats. Marine Environmental Research 60, 195–210.
Extending the generality of ecological models to artificial floating habitats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitFCjsLY%3D&md5=ea3d53676e968460ee328715566014a8CAS | 15757749PubMed |

Cole, V. J., Chapman, M. G., and Underwood, A. J. (2007). Landscapes and life-histories influence colonisation of polychaetes to intertidal biogenic habitats. Journal of Experimental Marine Biology and Ecology 348, 191–199.
Landscapes and life-histories influence colonisation of polychaetes to intertidal biogenic habitats.Crossref | GoogleScholarGoogle Scholar |

Coleman, M. A. (2002). Small-scale spatial variability in intertidal and subtidal turfing algal assemblages and the temporal generality of these patterns. Journal of Experimental Marine Biology and Ecology 267, 53–74.
Small-scale spatial variability in intertidal and subtidal turfing algal assemblages and the temporal generality of these patterns.Crossref | GoogleScholarGoogle Scholar |

Coll, M., Piroddi, C., Steenbeek, J., Kaschner, K., Lasram, F. B. R., Aguzzi, J., Ballesteros, E., Bianchi, C. N., Corbera, J., Dailianis, T., Danovaro, R., Estrada, M., Froglia, C., Galil, B. S., Gasol, J. M., Gertwagen, R., Gil, J., Guilhaumon, F., Kesner-Reyes, K., Kitsos, M.-S., Koukouras, A., Lampadariou, N., Laxamana, E., Lopez-Fe de la Cuadra, C. M., Lotze, H. K., Martin, D., Mouillot, D., Oro, D., Raicevich, S., Rius-Barile, J., Ignacio Saiz-Salinas, J., San Vicente, C., Somot, S., Templado, J., Turon, X., Vafidis, D., Villanueva, R., and Voultsiadou, E. (2010). The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5, e11842.
The biodiversity of the Mediterranean Sea: estimates, patterns, and threats.Crossref | GoogleScholarGoogle Scholar | 20689844PubMed |

Connell, S. D., and Glasby, T. M. (1999). Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia. Marine Environmental Research 47, 373–387.
Do urban structures influence local abundance and diversity of subtidal epibiota? A case study from Sydney Harbour, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhvVyksLY%3D&md5=6200160ef45a3aa1e5955901b78ad652CAS |

Connolly, R. M., and Lee, S. Y. (2007). Mangroves and saltmarshes. In ‘Marine Ecology’, 1st edn. (Eds S. Connell and B. Gillanders.) pp. 485–512. (Oxford University Press: Oxford, UK.)

Connolly, R. M., Gorman, D., and Guest, M. A. (2005). Movement of carbon among estuarine habitats and its assimilation by invertebrates. Oecologia 144, 684–691.
Movement of carbon among estuarine habitats and its assimilation by invertebrates.Crossref | GoogleScholarGoogle Scholar | 16001216PubMed |

Costanza, R., dArge, R., deGroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., Oneill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., and vandenBelt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature 387, 253–260.
The value of the world’s ecosystem services and natural capital.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtlShtbs%3D&md5=25828f5b7a831e14a9c671e6ca22d945CAS |

Costanza, R., de Groot, R., Sutton, P., van der Ploeg, S., Anderson, S. J., Kubiszewski, I., Farber, S., and Turner, R. K. (2014). Changes in the global value of ecosystem services. Global Environmental Change 26, 152–158.
Changes in the global value of ecosystem services.Crossref | GoogleScholarGoogle Scholar |

Creese, R., Glasby, T., West, G., and Gallen, C. (2009). ‘Mapping the habitats of NSW estuaries.’ (Port Stephens Fisheries Institute: Sydney, NSW.)

Crowe, T. P., Thompson, R. C., Bray, S., and Hawkins, S. J. (2000). Impacts of anthropogenic stress on rocky intertidal communities. Journal of Aquatic Ecosystem Stress and Recovery 7, 273–297.
Impacts of anthropogenic stress on rocky intertidal communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXhtlGgtA%3D%3D&md5=889d4029cf8a38bfa9ed8922a195228fCAS |

Dafforn, K. A., Simpson, S. L., Kelaher, B. P., Clark, G. F., Komyakova, V., Wong, C. K. C., and Johnston, E. L. (2012). The challenge of choosing environmental indicators of anthropogenic impacts in estuaries. Environmental Pollution 163, 207–217.
The challenge of choosing environmental indicators of anthropogenic impacts in estuaries.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XitFKqsbg%3D&md5=d51701bd1c2d286e80b62cf3923ed6faCAS | 22265759PubMed |

Dafforn, K. A., Kelaher, B. P., Simpson, S. L., Coleman, M. A., Hutchings, P. A., Clark, G. F., Knott, N. A., Doblin, M. A., and Johnston, E. L. (2013). Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants. PLoS One 8, e77018.
Polychaete richness and abundance enhanced in anthropogenically modified estuaries despite high concentrations of toxic contaminants.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFOrtrzO&md5=abadc9843e1433013e3f005efb4f1d49CAS | 24098816PubMed |

Das, P., Marchesiello, P., and Middleton, J. H. (2000). Numerical modelling of tide-induced residual circulation in Sydney Harbour. Marine and Freshwater Research 51, 97–112.
Numerical modelling of tide-induced residual circulation in Sydney Harbour.Crossref | GoogleScholarGoogle Scholar |

Denman, K. L., and Gargett, A. E. (1995). Biological-physical interactions in the upper ocean: the role of vertical and small scale transport processes. In ‘Annual Review of Fluid Mechanics’, Vol. 27. (Eds J. L. Lumley and M. Van Dyke.) pp. 225–255. (Annual Reviews Inc.: Palo Alto, CA.)

Dexter, D. M. (1983a). Community structure on intertidal sandy beaches in New South Wales, Australia. Developments in Hydrobiology 19, 461–472.
Community structure on intertidal sandy beaches in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Dexter, D. M. (1983b). A guide to the sandy beach fauna of New South Wales. Wetlands 3, 94–104.

Duarte, C. M. (2002). The future of seagrass meadows. Environmental Conservation 29, 192–206.
The future of seagrass meadows.Crossref | GoogleScholarGoogle Scholar |

Eliot, M., and Eliot, I. (2008). A compendium of ecological information on Australia’s northern tropical rivers. Sub-project 1 of Australia’s Tropical Rivers – an integrated data assessment and analysis (DET18). Land & Water Australia. National Centre for Tropical Wetland Research: Townsville, Qld, Australia.

Everett, J. D., Baird, M. E., Oke, P. R., and Suthers, I. M. (2012). An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea. Geophysical Research Letters 39, L16608.
An avenue of eddies: quantifying the biophysical properties of mesoscale eddies in the Tasman Sea.Crossref | GoogleScholarGoogle Scholar |

Everett, J. D., Macdonald, H. S., Baird, M. E., Humphries, J., Roughan, M., and Suthers, I. M. (2015). Cyclonic entrainment of pre-conditioned shelf waters into a frontal eddy. Journal of Geophysical Research-Ocean , 120.
Cyclonic entrainment of pre-conditioned shelf waters into a frontal eddy.Crossref | GoogleScholarGoogle Scholar |

Fan, L., Liu, M., Simister, R., Webster, N. S., and Thomas, T. (2013). Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress. The ISME Journal 7, 991–1002.
Marine microbial symbiosis heats up: the phylogenetic and functional response of a sponge holobiont to thermal stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXms1Wit7w%3D&md5=487c2887faf3a24e14a2f528a866b3e5CAS | 23283017PubMed |

Feary, D. A., Pratchett, M. S., Emslie, M. J., Fowler, A. M., Figueira, W. F., Luiz, O. J., Nakamura, Y., and Booth, D. J. (2014). Latitudinal shifts in coral reef fishes: why some species do and others do not shift. Fish and Fisheries 15, 593–615.
Latitudinal shifts in coral reef fishes: why some species do and others do not shift.Crossref | GoogleScholarGoogle Scholar |

Field, C. B., Whittaker, R. J., Hoffman, L. L., Osborn, J. G., Polsenberg, J. F., Ackerly, D. D., Berry, J. A., Bjorkman, O., Held, A., Matson, P. A., and Mooney, H. A. (1998). Biodiversity and function of mangrove ecosystems. Global Ecology and Biogeography Letters 7, 3–14.
Biodiversity and function of mangrove ecosystems.Crossref | GoogleScholarGoogle Scholar |

Fletcher, W. J. (1987). Interactions among subtidal Australian sea urchins, gastropods and algae – effects of experimental removals. Ecological Monographs 57, 89–109.
Interactions among subtidal Australian sea urchins, gastropods and algae – effects of experimental removals.Crossref | GoogleScholarGoogle Scholar |

Fletcher, W. J., and Day, R. W. (1983). The distribution of epifauna on Ecklonia radiata (Agardh, C.) and the effect of disturbance. Journal of Experimental Marine Biology and Ecology 71, 205–220.
The distribution of epifauna on Ecklonia radiata (Agardh, C.) and the effect of disturbance.Crossref | GoogleScholarGoogle Scholar |

Foster, N. M., Hudson, M. D., Bray, S., and Nicholls, R. J. (2013). Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: a review. Journal of Environmental Management 126, 96–104.
Intertidal mudflat and saltmarsh conservation and sustainable use in the UK: a review.Crossref | GoogleScholarGoogle Scholar | 23669560PubMed |

Fraser, C., Hutchings, P. A., and Williamson, J. (2006). Long-term changes in polychaete assemblages of Botany Bay (NSW, Australia) following a dredging event. Marine Pollution Bulletin 52, 997–1010.
Long-term changes in polychaete assemblages of Botany Bay (NSW, Australia) following a dredging event.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValtLbF&md5=b4e82e6c7b567d754a99d78e75223ce8CAS | 16487983PubMed |

Freckman, D. W., Blackburn, T. H., Brussaard, L., Hutchings, P., Palmer, M. A., and Snelgrove, P. V. R. (1997). Linking biodiversity and ecosystem functioning of soils and sediments. Ambio 26, 556–562.

Gadd, G. M., and Griffiths, A. J. (1977). Microorganisms and heavy metal toxicity. Microbial Ecology 4, 303–317.
Microorganisms and heavy metal toxicity.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC2c7mvVCnsA%3D%3D&md5=6c7acf5d38d039dc2bd71436b4a7c78cCAS | 24232222PubMed |

Gaos, A. R., Lewison, R. L., Wallace, B. P., Yanez, I. L., Liles, M. J., Nichols, W. J., Baquero, A., Hasbun, C. R., Vasquez, M., Urteaga, J., and Seminoff, J. A. (2012). Spatial ecology of critically endangered hawksbill turtles Eretmochelys imbricata: implications for management and conservation. Marine Ecology Progress Series 450, 181–194.
Spatial ecology of critically endangered hawksbill turtles Eretmochelys imbricata: implications for management and conservation.Crossref | GoogleScholarGoogle Scholar |

Gillanders, B. M., Elsdon, T. S., Halliday, I. A., Jenkins, G. P., Robins, J. B., and Valesini, F. J. (2011). Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review. Marine and Freshwater Research 62, 1115–1131.
Potential effects of climate change on Australian estuaries and fish utilising estuaries: a review.Crossref | GoogleScholarGoogle Scholar |

Glasby, T. M. (1999). Differences between subtidal epibiota on pier pilings and rocky reefs at marinas in Sydney, Australia. Estuarine, Coastal and Shelf Science 48, 281–290.
Differences between subtidal epibiota on pier pilings and rocky reefs at marinas in Sydney, Australia.Crossref | GoogleScholarGoogle Scholar |

Glibert, P. M., Magnien, R., Lomas, M. W., Alexander, J., Fan, C. L., Haramoto, E., Trice, M., and Kana, T. M. (2001). Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events. Estuaries 24, 875–883.
Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: comparison of 1997, 1998, and 1999 events.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xit1aru7w%3D&md5=fad51a07fcd4b7a3de68631090ced6d7CAS |

Goodsell, P. J. (2009). Diversity in fragments of artificial and natural marine habitats. Marine Ecology Progress Series 384, 23–31.
Diversity in fragments of artificial and natural marine habitats.Crossref | GoogleScholarGoogle Scholar |

Goodsell, P. J., Chapman, M. G., and Underwood, A. J. (2007). Differences between biota in anthropogenically fragmented habitats and in naturally patchy habitats. Marine Ecology Progress Series 351, 15–23.
Differences between biota in anthropogenically fragmented habitats and in naturally patchy habitats.Crossref | GoogleScholarGoogle Scholar |

Hedge, L. H., Turnbull, J., Hoisington, C., and Johnston, E. L. (2014). Sydney Harbour Background Report 2014. Sydney Institute of Marine Science, Sydney.

Hewitt, C. L., Campbell, M. L., Thresher, R. E., Martin, R. B., Boyd, S., Cohen, B. F., Currie, D. R., Gomon, M. F., Keough, M. J., Lewis, J. A., Lockett, M. M., Mays, N., McArthur, M. A., O’Hara, T. D., Poore, G. C. B., Ross, D. J., Storey, M. J., Watson, J. E., and Wilson, R. S. (2004). Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia. Marine Biology 144, 183–202.
Introduced and cryptogenic species in Port Phillip Bay, Victoria, Australia.Crossref | GoogleScholarGoogle Scholar |

Holmes, N. T. H. (2006). The importance of long-term data sets in science and river management. Aquatic Conservation: Marine and Freshwater Ecosystems 16, 329–333.
The importance of long-term data sets in science and river management.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P. A. (Ed.) (1996). The ecology and management of shorebirds (Aves; Charadrii). In ‘Homebush Bay Ecological Studies 1993–1995’. pp. 55–142. (CSIRO: Sydney, NSW.)

Hutchings, P. (1998). Biodiversity and functioning of polychaetes in benthic sediments. Biodiversity and Conservation 7, 1133–1145.
Biodiversity and functioning of polychaetes in benthic sediments.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P. A., and Murray, A. (1984). A taxonomic account of the Polychaetes from the Hawkesbury River and some other estuarine areas in central and southern New South Wales, Australia. Australian Museum Supplement 3, 1–118.
A taxonomic account of the Polychaetes from the Hawkesbury River and some other estuarine areas in central and southern New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Hutchings, P., Ahyong, S. T., Ashcroft, M. B., McGrouther, M. A., and Reid, A. L. (2013). Sydney Harbour: its diverse biodiversity. Australian Zoologist 36, 257–320.

Jones, A. R. (2003). Ecological recovery of amphipods on sandy beaches following oil pollution: An interim assessment. Journal of Coastal Research SI 35, 66–73.

Josselyn, M. N., and West, J. A. (1985). The distribution and temporal dynamics of the estuarine macroalgal community of San Francisco Bay. Hydrobiologia 129, 139–152.
The distribution and temporal dynamics of the estuarine macroalgal community of San Francisco Bay.Crossref | GoogleScholarGoogle Scholar |

Keats, M. (1997). A cautionary tale: a study of the macro bivalve and gastropod molluscan fauna of Spectacle Island, Sydney Harbour. Wetlands 16, 72–82.

Kelleway, J., Williams, R. J., and Allen, C. B. (2007). An assessment of the saltmarsh of the Parramatta River and Sydney Harbour. Fisheries Final Report Series 90, NSW Department of Primary Industries, Sydney.

Kemp, W. M., Boynton, W. R., Adolf, J. E., Boesch, D. F., Boicourt, W. C., Brush, G., Cornwell, J. C., Fisher, T. R., Glibert, P. M., Hagy, J. D., Harding, L. W., Houde, E. D., Kimmel, D. G., Miller, W. D., Newell, R. I. E., Roman, M. R., Smith, E. M., and Stevenson, J. C. (2005). Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series 303, 1–29.
Eutrophication of Chesapeake Bay: historical trends and ecological interactions.Crossref | GoogleScholarGoogle Scholar |

Kench, P. S. (1999). Geomorphology of Australian estuaries: review and prospect. Australian Journal of Ecology 24, 367–380.
Geomorphology of Australian estuaries: review and prospect.Crossref | GoogleScholarGoogle Scholar |

Kennelly, S. J. (1987a). Physical disturbances in an Australian kelp community. 1. Temporal effects Marine Ecology Progress Series 40, 145–153.
Physical disturbances in an Australian kelp community. 1. Temporal effectsCrossref | GoogleScholarGoogle Scholar |

Kennelly, S. J. (1987b). Physical disturbances in an Australian kelp community. 2. Effects of understorey species due to differences in kelp cover. Marine Ecology Progress Series 40, 155–165.
Physical disturbances in an Australian kelp community. 2. Effects of understorey species due to differences in kelp cover.Crossref | GoogleScholarGoogle Scholar |

Kennelly, S. J. (1991). Caging experiments to examine the effects of fishes on understorey species in a sublittoral kelp community. Journal of Experimental Marine Biology and Ecology 147, 207–230.
Caging experiments to examine the effects of fishes on understorey species in a sublittoral kelp community.Crossref | GoogleScholarGoogle Scholar |

Kogure, K., and Wada, M. (2005). Impacts of macrobenthic bioturbation in marine sediment on bacterial metabolic activity. Microbes and Environments 20, 191–199.
Impacts of macrobenthic bioturbation in marine sediment on bacterial metabolic activity.Crossref | GoogleScholarGoogle Scholar |

Larkum, A. W. D. (1986). A study of growth and primary production in Ecklonia radiata (J Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales. Journal of Experimental Marine Biology and Ecology 96, 177–190.
A study of growth and primary production in Ecklonia radiata (J Agardh (Laminariales) at a sheltered site in Port Jackson, New South Wales.Crossref | GoogleScholarGoogle Scholar |

Lee, S. B., Birch, G. F., and Lemckert, C. J. (2011). Field and modelling investigations of fresh-water plume behaviour in response to infrequent high-precipitation events, Sydney Estuary, Australia. Estuarine, Coastal and Shelf Science 92, 389–402.
Field and modelling investigations of fresh-water plume behaviour in response to infrequent high-precipitation events, Sydney Estuary, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsV2murY%3D&md5=3190690ea71af61b526fd21933ccb350CAS |

Lenihan, H. S., and Micheli, F. (2001). Soft-sediment communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines, and M. E. Hay.) pp. 253–287. (Sinauer Associates, Inc.: Sunderland, MA, USA.)

Mann, K. H., and Breen, P. A. (1972). The relation between lobster abundance, sea urchins and kelp beds. Journal of the Fisheries Research Board of Canada 29, 603–605.
The relation between lobster abundance, sea urchins and kelp beds.Crossref | GoogleScholarGoogle Scholar |

Marshall, J. A., and Hallegraeff, G. M. (1999). Comparative ecophysiology of the harmful alga Chattonella marina (Raphidophyceae) from South Australian and Japanese waters. Journal of Plankton Research 21, 1809–1822.
Comparative ecophysiology of the harmful alga Chattonella marina (Raphidophyceae) from South Australian and Japanese waters.Crossref | GoogleScholarGoogle Scholar |

Marzinelli, E. M., Underwood, A. J., and Coleman, R. A. (2011). Modified habitats influence kelp epibiota via direct and indirect effects. PLoS One 6, e21936.
Modified habitats influence kelp epibiota via direct and indirect effects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFChsLg%3D&md5=12ef4935d28a016c2fa89bac045f759dCAS | 21755011PubMed |

Matias, M. G., Underwood, A. J., and Coleman, R. A. (2010). Effects of structural diversity and identity of patches of habitat on diversity of benthic assemblages. Austral Ecology 35, 743–751.
Effects of structural diversity and identity of patches of habitat on diversity of benthic assemblages.Crossref | GoogleScholarGoogle Scholar |

Mayer-Pinto, M., Johnston, E. L., Hutchings, P., Marzinelli, E. M., Birch, G., Booth, D., Creese, R. G., Doblin, M. A., Figueira, W., Gribben, P. E., Pritchard, T., Roughan, M., Ahyong, S., Steinberg, P. D., and Hedge, L. H. (2015). Sydney Harbour: a review of anthropogenic impacts on the biodiversity and ecosystem function of one the world’s largest natural harbours. Marine and Freshwater Research 66, 1088–1105.
Sydney Harbour: a review of anthropogenic impacts on the biodiversity and ecosystem function of one the world’s largest natural harbours.Crossref | GoogleScholarGoogle Scholar |

McCready, S., Birch, G. F., and Long, E. R. (2006). Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity – a chemical dataset for evaluating sediment quality guidelines. Environment International 32, 455–465.
Metallic and organic contaminants in sediments of Sydney Harbour, Australia and vicinity – a chemical dataset for evaluating sediment quality guidelines.Crossref | GoogleScholarGoogle Scholar | 16337000PubMed |

McKinley, A., Ryan, L., Coleman, M., Knott, N., Clark, G., Taylor, M., and Johnston, E. (2011). Putting marine sanctuaries into context: a comparison of estuary fish assemblages over multiple levels of protection and modification. Aquatic Conservation: Marine And Freshwater Ecosystems 21, 636–648.
Putting marine sanctuaries into context: a comparison of estuary fish assemblages over multiple levels of protection and modification.Crossref | GoogleScholarGoogle Scholar |

McLoughlin, L. C. (2000). Estuarine wetlands distribution along the Parramatta River, Sydney, 1788–1940: implications for planning and conservation. Cunninghamia 6, 579–610.

Melville, F., and Pulkownik, A. (2006). Investigation of mangrove macroalgae as bioindicators of estuarine contamination. Marine Pollution Bulletin 52, 1260–1269.
Investigation of mangrove macroalgae as bioindicators of estuarine contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtValtb7J&md5=9623b00c52f142cc6c1bfb7fa981f54dCAS | 16620872PubMed |

Melville, F., and Pulkownik, A. (2007). Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination. The Science of the Total Environment 387, 301–309.
Investigation of mangrove macroalgae as biomonitors of estuarine metal contamination.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtVyrsb%2FP&md5=3156efae43c719f873bd829df79a8d97CAS | 17662374PubMed |

Menge, B. A., and Branch, G. M. (2001). Rocky intertidal communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines, and M. E. Hay.) pp. 221–251. (Sinauer Associates, Inc.: Sunderland, MA, USA.)

Middleton, J. H., Cox, D., and Tate, P. (1997). The oceanography of the Sydney region. Marine Pollution Bulletin 33, 124–131.

Mullaney, T. J., and Suthers, I. M. (2013). Entrainment and retention of the coastal larval fish assemblage by a short-lived, submesoscale, frontal eddy of the East Australian Current. Limnology and Oceanography 58, 1546–1556.
Entrainment and retention of the coastal larval fish assemblage by a short-lived, submesoscale, frontal eddy of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Murray, S. A., Wiese, M., Stuken, A., Brett, S., Kellmann, R., Hallegraeff, G., and Neilan, B. A. (2011). sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters. Applied and Environmental Microbiology 77, 7050–7057.
sxtA-based quantitative molecular assay to identify saxitoxin-producing harmful algal blooms in marine waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlClsb7P&md5=5f565131c8aa7a1c3c1b75183432de92CAS | 21841034PubMed |

Orth, R. J., and Moore, K. A. (1984). Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay – an historical perspective. Estuaries 7, 531–540.
Distribution and abundance of submerged aquatic vegetation in Chesapeake Bay – an historical perspective.Crossref | GoogleScholarGoogle Scholar |

Orth, R. J., Carruthers, T. J. B., Dennison, W. C., Duarte, C. M., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Olyarnik, S., Short, F. T., Waycott, M., and Williams, S. L. (2006). A global crisis for seagrass ecosystems. Bioscience 56, 987–996.
A global crisis for seagrass ecosystems.Crossref | GoogleScholarGoogle Scholar |

Orth, R. J., Marion, S. R., Moore, K. A., and Wilcox, D. J. (2010). Eelgrass (Zostera marina L.) in the Chesapeake Bay region of mid-Atlantic coast of the USA: challenges in conservation and restoration. Estuaries and Coasts 33, 139–150.
Eelgrass (Zostera marina L.) in the Chesapeake Bay region of mid-Atlantic coast of the USA: challenges in conservation and restoration.Crossref | GoogleScholarGoogle Scholar |

Palmer, M. A., Covich, A. P., Lake, S., Biro, P., Brooks, J. J., Cole, J., Dahm, C., Gibert, J., Goedkoop, W., Martens, K., and Verhoeven, J. (2000). Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes. Bioscience 50, 1062–1075.
Linkages between aquatic sediment biota and life above sediments as potential drivers of biodiversity and ecological processes.Crossref | GoogleScholarGoogle Scholar |

Pantus, F. J., and Dennison, W. C. (2005). Quantifying and evaluating ecosystem health: a case study from Moreton Bay, Australia. Environmental Management 36, 757–771.
Quantifying and evaluating ecosystem health: a case study from Moreton Bay, Australia.Crossref | GoogleScholarGoogle Scholar | 16206027PubMed |

Pennings, S. C., and Bertness, M. D. (2001). Salt marsh communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines and M. E. Hay.) (Sinauer Associates: Sunderland, MA, USA.)

Poore, A. G. B., and Hill, N. A. (2005). Spatial associations among palatable and unpalatable macroalgae: a test of associational resistance with a herbivorous amphipod. Journal of Experimental Marine Biology and Ecology 326, 207–216.
Spatial associations among palatable and unpalatable macroalgae: a test of associational resistance with a herbivorous amphipod.Crossref | GoogleScholarGoogle Scholar |

Poore, A. G. B., and Lowry, J. K. (1997). New ampithoid amphipods from Port Jackson, New South Wales, Australia (Crustacea: Amphipoda: Ampithoidae). Invertebrate Taxonomy 11, 897–941.
New ampithoid amphipods from Port Jackson, New South Wales, Australia (Crustacea: Amphipoda: Ampithoidae).Crossref | GoogleScholarGoogle Scholar |

Potter, I. C., and Hyndes, G. A. (1999). Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: a review. Australian Journal of Ecology 24, 395–421.
Characteristics of the ichthyofaunas of southwestern Australian estuaries, including comparisons with holarctic estuaries and estuaries elsewhere in temperate Australia: a review.Crossref | GoogleScholarGoogle Scholar |

Priddel, D., Carlile, N., and Wheeler, R. (2008). Population size, breeding success and provenance of a mainland colony of Little Penguins (Eudyptula minor). Emu 108, 35–41.
Population size, breeding success and provenance of a mainland colony of Little Penguins (Eudyptula minor).Crossref | GoogleScholarGoogle Scholar |

Ranasinghe, J. A., Welch, K. A., Slattery, P. N., Montagne, D. E., Huff, D. D., Lee, I. I. H., Hyland, J. L., Thompson, B., Weisberg, S. B., Oakden, J. M., Cadien, D. B., and Velarde, R. G. (2012). Habitat-related benthic macrofaunal assemblages of bays and estuaries of the western United States. Integrated Environmental Assessment and Management 8, 638–648.
Habitat-related benthic macrofaunal assemblages of bays and estuaries of the western United States.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhsVSqsLjF&md5=712f3c70fbb8324514e7183aabecd30cCAS | 22987518PubMed |

Reinheimer, G. (1992). ‘Aquatic Microbiology.’ (Wiley: New York.)

Roberts, D. E., Cummins, S. P., Davis, A. R., and Chapman, M. G. (2006). Structure and dynamics of sponge-dominated assemblages on exposed and sheltered temperate reefs. Marine Ecology Progress Series 321, 19–30.
Structure and dynamics of sponge-dominated assemblages on exposed and sheltered temperate reefs.Crossref | GoogleScholarGoogle Scholar |

Robinson, C., Suggett, D., Ralph, P. J., and Doblin, M. A. (2014). Performance of fast repetition rate fluorometry based estimates of primary productivity in coastal waters. Journal of Marine Systems 139, 299–310.
Performance of fast repetition rate fluorometry based estimates of primary productivity in coastal waters.Crossref | GoogleScholarGoogle Scholar |

Rosenberg, E., Koren, O., Reshef, L., Efrony, R., and Zilber-Rosenberg, I. (2007). The role of microorganisms in coral health, disease and evolution. Nature Reviews. Microbiology 5, 355–362.
The role of microorganisms in coral health, disease and evolution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1Chsb4%3D&md5=5f127ecbf2dae24bc3074c7b17b2ce26CAS | 17384666PubMed |

Ross, P. M. (2001). Larval supply, settlement and survival of barnacles in a temperate mangrove forest. Marine Ecology Progress Series 215, 237–249.
Larval supply, settlement and survival of barnacles in a temperate mangrove forest.Crossref | GoogleScholarGoogle Scholar |

Ross, P. M., and Underwood, A. J. (1997). The distribution and abundance of barnacles in a mangrove forest. Australian Journal of Ecology 22, 37–47.
The distribution and abundance of barnacles in a mangrove forest.Crossref | GoogleScholarGoogle Scholar |

Roughan, M., and Middleton, J. H. (2002). A comparison of observed upwelling mechanisms off the east coast of Australia. Continental Shelf Research 22, 2551–2572.
A comparison of observed upwelling mechanisms off the east coast of Australia.Crossref | GoogleScholarGoogle Scholar |

Roughan, M., and Middleton, J. H. (2004). On the East Australian Current: variability, encroachment, and upwelling. Journal of Geophysical Research 109, C07003.
On the East Australian Current: variability, encroachment, and upwelling.Crossref | GoogleScholarGoogle Scholar |

Roughan, M., Macdonald, H. S., Baird, M. E., and Glasby, T. M. (2011). Modelling coastal connectivity in a western boundary current: seasonal and inter-annual variability. Deep-sea Research. Part II, Topical Studies in Oceanography 58, 628–644.
Modelling coastal connectivity in a western boundary current: seasonal and inter-annual variability.Crossref | GoogleScholarGoogle Scholar |

Roy, P.S. (1981). Geology of the Sydney Basin. Geological Survey of New South Wales Quarterly Notes , 41–91.
| 1:CAS:528:DyaL38Xlt12msb4%3D&md5=8d9e587b515ac459e8e29032ed6d6112CAS |

Roy, P. S., Williams, R. J., Jones, A. R., Yassini, I., Gibbs, P. J., Coates, B., West, R. J., Scanes, P. R., Hudson, J. P., and Nichol, S. (2001). Structure and function of south-east Australian estuaries. Estuarine, Coastal and Shelf Science 53, 351–384.
Structure and function of south-east Australian estuaries.Crossref | GoogleScholarGoogle Scholar |

Saintilan, N., Wilson, N. C., Rogers, K., Rajkaran, A., and Krauss, K. W. (2014). Mangrove expansion and salt marsh decline at mangrove poleward limits. Global Change Biology 20, 147–157.
Mangrove expansion and salt marsh decline at mangrove poleward limits.Crossref | GoogleScholarGoogle Scholar | 23907934PubMed |

Schaeffer, A., Roughan, M., and Morris, B. D. (2013). Cross-shelf dynamics in a western boundary current regime: implications for upwelling. Journal of Physical Oceanography 43, 1042–1059.
Cross-shelf dynamics in a western boundary current regime: implications for upwelling.Crossref | GoogleScholarGoogle Scholar |

Short, F., Carruthers, T., Dennison, W., and Waycott, M. (2007). Global seagrass distribution and diversity: a bioregional model. Journal of Experimental Marine Biology and Ecology 350, 3–20.
Global seagrass distribution and diversity: a bioregional model.Crossref | GoogleScholarGoogle Scholar |

Snelgrove, P., Blackburn, T. H., Hutchings, P. A., Alongi, D. M., Grassle, J. F., Hummel, H., King, G., Koike, I., Lambshead, P. J. D., Ramsing, N. B., and Solis-Weiss, V. (1997). The importance of marine sediment biodiversity in ecosystem processes. Ambio 26, 578–583.

Snelgrove, P. V. R., Grassle, J. P., Grassle, J. F., Petrecca, R. F., and Ma, H. G. (1999). In situ habitat selection by settling larvae of marine soft-sediment invertebrates. Limnology and Oceanography 44, 1341–1347.
In situ habitat selection by settling larvae of marine soft-sediment invertebrates.Crossref | GoogleScholarGoogle Scholar |

Steinberg, P. D. (1995). Interaction between the canopy dwelling echinoid Holopneustes purpurescens and its host kelp Ecklonia radiata. Marine Ecology Progress Series 127, 169–181.
Interaction between the canopy dwelling echinoid Holopneustes purpurescens and its host kelp Ecklonia radiata.Crossref | GoogleScholarGoogle Scholar |

Steneck, R. S., Graham, M. H., Bourque, B. J., Corbett, D., Erlandson, J. M., Estes, J. A., and Tegner, M. J. (2002). Kelp forest ecosystems: biodiversity, stability, resilience and future. Environmental Conservation 29, 436–459.
Kelp forest ecosystems: biodiversity, stability, resilience and future.Crossref | GoogleScholarGoogle Scholar |

Stephenson, W., Lance, G. N., and Williams, W. T. (1970). The macrobenthos of Moreton Bay. Ecological Monographs 40, 459–494.
The macrobenthos of Moreton Bay.Crossref | GoogleScholarGoogle Scholar |

Stuart-Smith, R. D., Edgar, J. E., Stuart-Smith, J. F., Barrett, N. S., Fowles, A. E., Hill, N. A., Cooper, A. T., Myers, A. P., Oha, E. S., Pocklington, J. B., and Thomson, R. J. (2015). Loss of native rocky reef biodiversity in Australian metropolitan embayments. Marine Pollution Bulletin 95, 324–332.
Loss of native rocky reef biodiversity in Australian metropolitan embayments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2MXltFCjt70%3D&md5=053c8266d39cd2f3beb338dce4105faeCAS | 25882229PubMed |

Sun, M. Y., Dafforn, K. A., Brown, M. V., and Johnston, E. L. (2012). Bacterial communities are sensitive indicators of contaminant stress. Marine Pollution Bulletin 64, 1029–1038.
Bacterial communities are sensitive indicators of contaminant stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xmt1WmtL0%3D&md5=74869dbf8ad26ad53448c8dd5e66947cCAS | 22385752PubMed |

Thompson, J. N., Reichman, O. J., Morin, P. J., Polis, G. A., Power, M. E., Sterner, R. W., Couch, C. A., Gough, L., Holt, R., Hooper, D. U., Keesing, F., Lovell, C. R., Milne, B. T., Molles, M. C., Roberts, D. W., and Strauss, S. Y. (2001). Frontiers of ecology. Bioscience 51, 15–24.
Frontiers of ecology.Crossref | GoogleScholarGoogle Scholar |

Tolhurst, T. J. (2009). Weak diurnal changes in the biochemical properties and benthic macrofauna of urbanised mangrove forests and mudflats. Hydrobiologia 636, 101–117.
Weak diurnal changes in the biochemical properties and benthic macrofauna of urbanised mangrove forests and mudflats.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVymt7nP&md5=91de18527a2f5af758efb5a28e09eb5aCAS |

Tomlinson, P. B. (1986). ‘The Botany of Mangroves.’ (Cambridge University Press: London.)

Waycott, M., Duarte, C. M., Carruthers, T. J. B., Orth, R. J., Dennison, W. C., Olyarnik, S., Calladine, A., Fourqurean, J. W., Heck, K. L., Hughes, A. R., Kendrick, G. A., Kenworthy, W. J., Short, F. T., and Williams, S. L. (2009). Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106, 12 377–12 381.
Accelerating loss of seagrasses across the globe threatens coastal ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXpslGjsbo%3D&md5=bae82cf8331a64f6af10b2e719732fefCAS |

West, G., and Williams, R. J. (2008). A preliminary assessment of the historical, current and future cover of seagrass in the estuary of the Parramatta River. NSW Department of Primary Industries, Port Stephens.

West, G., Williams, R. J., and Laird, R. (2004). Distribution of estuarine vegetation in the Parramatta River and Sydney Harbour, 2000. NSW Department of Primary Industries, Port Stephens.

Widmer, W. M. (2006). Using the precautionary principle to measure recovery of coastal habitats: the case of a seagrass bed. Journal of Coastal Research SI39, 962–965.

Widmer, W. M., and Underwood, A. J. (2004). Factors affecting traffic and anchoring patterns of recreational boats in Sydney Harbour, Australia. Landscape and Urban Planning 66, 173–183.
Factors affecting traffic and anchoring patterns of recreational boats in Sydney Harbour, Australia.Crossref | GoogleScholarGoogle Scholar |

Wilson, J. G., and Koutsagiannopolou, V. (2014). Abundance, biomass, and productivity of invertebrate hyperbenthos in a temperate saltmarsh creek system. Hydrobiologia 728, 141–151.
Abundance, biomass, and productivity of invertebrate hyperbenthos in a temperate saltmarsh creek system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXisFWhu7o%3D&md5=ca259db1c135248cdd7416e103dc6260CAS |

Wilson, R. S., Heislers, S., and Poore, G. C. B. (1998). Changes in benthic communities of Port Phillip Bay, Australia, between 1969 and 1995. Marine and Freshwater Research 49, 847–861.
Changes in benthic communities of Port Phillip Bay, Australia, between 1969 and 1995.Crossref | GoogleScholarGoogle Scholar |

Witman, J. D., and Dayton, P. K. (2001). Rocky subtidal communities. In ‘Marine Community Ecology’. (Eds M. D. Bertness, S. D. Gaines, and M. E. Hay.) pp. 339–366. (Sinauer Associates, Inc.: Sunderland, MA, USA.)

Yin, K. D. (2003). Influence of monsoons and oceanographic processes on red tides in Hong Kong waters. Marine Ecology Progress Series 262, 27–41.
Influence of monsoons and oceanographic processes on red tides in Hong Kong waters.Crossref | GoogleScholarGoogle Scholar |

Yung, Y. K., Yau, K., Wong, C. K., Chan, K. K., Yeung, I., Kueh, C. S. W., and Broom, M. J. (1999). Some observations on the changes of physico-chemical and biological factors in Victoria Harbour and vicinity, Hong Kong, 1988–1996. Marine Pollution Bulletin 39, 315–325.
Some observations on the changes of physico-chemical and biological factors in Victoria Harbour and vicinity, Hong Kong, 1988–1996.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXntFSisL4%3D&md5=60f972b06650571b797a7334bb272479CAS |