Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Substrate mapping of three rivers in a Ramsar wetland in Jamaica: a comparison of data collection (hydroacoustic v. grab samples), classification and kriging methods

Kurt Prospere A B , Kurt McLaren A and Byron Wilson A
+ Author Affiliations
- Author Affiliations

A Department of Life Sciences, University of the West Indies (Mona Campus), Mona, Kingston, Jamaica.

B Corresponding author. Email: kurt.prospere@gmail.com

Marine and Freshwater Research 67(11) 1771-1795 https://doi.org/10.1071/MF15033
Submitted: 27 January 2015  Accepted: 8 August 2015   Published: 21 October 2015

Abstract

Most developing countries have failed to adopt hydroacoustics to aid with the management of their aquatic natural resources. We tested the ability of single-beam sonar (SBES) to discern and map substrates in three rivers from the largest wetland in Jamaica, the Black River Lower Morass (BRLM). We used five supervised classification methods (including C5.0; random forest, RF; and naïve Bayes, NB) and four interpolation algorithms (indicator kriging (iks), fixed path simulation (fpth), random path simulations (rpth) and multinomial categorical simulation (mcs) based on transitional rates and incorporated into Markov Chain). Irrespective of the classifier used, mcs consistently produced higher overall classification accuracies (OAC) and kappa statistics; however, rpth interpolation produced the lowest balanced error rate (BER) recorded. For all three rivers, OAC, kappa and BER statistics were 49.7–87.1, 32.8–81.0 and 15.3–45.1% respectively. All interpolation algorithms produced maps with higher OAC and kappa indices from data classified using the tree-based classifiers (C5.0 and RF) in the absence of gravel-free substrates. At a lower spatial resolution, comparable maps were obtained by interpolating discrete sample points acquired by grab samples. Given that most of rivers in island states are small, sinuous, shallow and sometimes non-navigable by boat, the use of SBES as the most cost-effective and efficient way of mapping river substrates is questionable, but the interpolation of grab samples might suffice.

Additional keywords: C5.0, hydroacoustics, Markov Chain, random forest, rivers, substrates, supervised classification methods.


References

Abril, G., Martinez, J.-M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F., Vidal, L., Meziane, T., Kim, J.-H., Bernardes, M. C., and Savoye, N. (2014). Amazon River carbon dioxide outgassing fuelled by wetlands. Nature 505, 395–398.
Amazon River carbon dioxide outgassing fuelled by wetlands.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXotFeitw%3D%3D&md5=34443718d0da744b6e84efafc492feb0CAS | 24336199PubMed |

Allard, D., D’Or, D., and Froidevaux, R. (2011). An efficient maximum entropy approach for categorical variable prediction. European Journal of Soil Science 62, 381–393.
An efficient maximum entropy approach for categorical variable prediction.Crossref | GoogleScholarGoogle Scholar |

Amiri-Simkooei, A., Snellen, M., and Simons, D. G. (2009). Riverbed sediment classification using multi-beam echo-sounder backscatter data. The Journal of the Acoustical Society of America 126, 1724–1738.
Riverbed sediment classification using multi-beam echo-sounder backscatter data.Crossref | GoogleScholarGoogle Scholar | 19813788PubMed |

Amiri-Simkooei, A. R., Snellen, M., and Simons, D. G. (2011). Principal component analysis of single-beam echo-sounder signal features for seafloor classification. IEEE Journal of Oceanic Engineering 36, 259–272.
Principal component analysis of single-beam echo-sounder signal features for seafloor classification.Crossref | GoogleScholarGoogle Scholar |

Anderson, J. T., Van Holliday, D., Kloser, R., Reid, D. G., and Simard, Y. (2008). Acoustic seabed classification: current practice and future directions. ICES Journal of Marine Science 65, 1004–1011.
Acoustic seabed classification: current practice and future directions.Crossref | GoogleScholarGoogle Scholar |

Bakiera, D., and Stepnowski, A. (1996). Method of the sea bottom classification with a division of the first echo signal. In ‘Proceedings of the XIIIth Symposium on Hydroacoustics’, 12–16 May 1996, Gdynia-Jurata, Poland. pp. 55–60. (Technical University of Gdańsk: Gdańsk, Poland.)

Bayes, M., and Price, M. (1763). An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr Bayes, F.R.S., communicated by Mr Price, in a letter to John Canton, A.M.F.R.S. Philosophical Transactions 53, 370–418.
An essay towards solving a problem in the doctrine of chances. By the late Rev. Mr Bayes, F.R.S., communicated by Mr Price, in a letter to John Canton, A.M.F.R.S.Crossref | GoogleScholarGoogle Scholar |

Benediktsson, J. A., Sveinsson, J. R., and Swain, P. H. (1997). Hybrid consensus theoretic classification. IEEE Transactions on Geoscience and Remote Sensing 35, 833–843.
Hybrid consensus theoretic classification.Crossref | GoogleScholarGoogle Scholar |

Biggio, B., Fumera, G., and Roli, F. (2010). Multiple classifier systems for robust classifier design in adversarial environments. International Journal of Machine Learning and Cybernetics 1, 27–41.
Multiple classifier systems for robust classifier design in adversarial environments.Crossref | GoogleScholarGoogle Scholar |

Björk, S., and Digerfeldt, G. (1991). Development and degradation, redevelopment and preservation of Jamaican wetlands. Ambio 20, 276–284.

Blott, S. J., and Pye, K. (2001). GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments. Earth Surface Processes and Landforms 26, 1237–1248.
GRADISTAT: a grain size distribution and statistics package for the analysis of unconsolidated sediments.Crossref | GoogleScholarGoogle Scholar |

Breiman, L. (1996). Bagging predictors. Machine Learning 24, 123–140.
Bagging predictors.Crossref | GoogleScholarGoogle Scholar |

Breiman, L. (2001). Random forests. Machine Learning 45, 5–32.
Random forests.Crossref | GoogleScholarGoogle Scholar |

Breiman, L., Friedman, J., Stone, C. J., and Olshen, R. A. (1984). ‘Classification and Regression Trees.’ (CRC Press: Wadsworth, Belmount, CA.)

Brown, C. J., Smith, S. J., Lawton, P., and Anderson, J. T. (2011). Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques. Estuarine, Coastal and Shelf Science 92, 502–520.
Benthic habitat mapping: a review of progress towards improved understanding of the spatial ecology of the seafloor using acoustic techniques.Crossref | GoogleScholarGoogle Scholar |

Burges, C. J. (1998). A tutorial on support vector machines for pattern recognition. Data Mining and Knowledge Discovery 2, 121–167.
A tutorial on support vector machines for pattern recognition.Crossref | GoogleScholarGoogle Scholar |

Cao, G., Kyriakidis, P., and Goodchild, M. (2013). On spatial transition probabilities as continuity measures in categorical fields. Available at http://arxiv.org/abs/1312 [Verified 26 September 2015].

Carle, S. F., and Fogg, G. E. (1997). Modeling spatial variability with one and multidimensional continuous-lag Markov chains. Mathematical Geology 29, 891–918.
Modeling spatial variability with one and multidimensional continuous-lag Markov chains.Crossref | GoogleScholarGoogle Scholar |

Cavaro, M., Payan, C., Moysan, J., and Baqué, F. (2011). Microbubble cloud characterization by nonlinear frequency mixing. The Journal of the Acoustical Society of America 129, EL179–EL183.
Microbubble cloud characterization by nonlinear frequency mixing.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3MnktlensA%3D%3D&md5=8369ab21f592e4cb480682cd847abf47CAS | 21568372PubMed |

Chanton, J. P., Martens, C. S., and Kelley, C. A. (1989). Gas transport from methane-saturated, tidal freshwater and wetland sediments. Limnology and Oceanography 34, 807–819.
Gas transport from methane-saturated, tidal freshwater and wetland sediments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXhvVGgs7o%3D&md5=1b74879d3d62da1bc8359ea46354b262CAS |

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20, 37–46.
A coefficient of agreement for nominal scales.Crossref | GoogleScholarGoogle Scholar |

Crawford, J. T., Stanley, E. H., Spawn, S. A., Finlay, J. C., Loken, L. C., and Striegl, R. G. (2014). Ebullitive methane emissions from oxygenated wetland streams. Global Change Biology 20, 3408–3422.
Ebullitive methane emissions from oxygenated wetland streams.Crossref | GoogleScholarGoogle Scholar | 24756991PubMed |

Dartnell, P., and Gardner, J. V. (2004). Predicting seafloor facies from multibeam bathymetry and backscatter data. Photogrammetric Engineering and Remote Sensing 70, 1081–1091.
Predicting seafloor facies from multibeam bathymetry and backscatter data.Crossref | GoogleScholarGoogle Scholar |

Diaz, R. J., Solan, M., and Valente, R. M. (2004). A review of approaches for classifying benthic habitats and evaluating habitat quality. Journal of Environmental Management 73, 165–181.
A review of approaches for classifying benthic habitats and evaluating habitat quality.Crossref | GoogleScholarGoogle Scholar | 15474734PubMed |

Diesing, M., Green, S. L., Stephens, D., Lark, R. M., Stewart, H. A., and Dove, D. (2014). Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches. Continental Shelf Research 84, 107–119.
Mapping seabed sediments: comparison of manual, geostatistical, object-based image analysis and machine learning approaches.Crossref | GoogleScholarGoogle Scholar |

Dietterich, T. G. (2000). Ensemble methods in machine learning. In ‘Multiple Classifier Systems’. (Eds , J. Kittler and F. Roli.) pp. 1–15. (Springer: New York.)

Du, P., Xia, J., Zhang, W., Tan, K., Liu, Y., and Liu, S. (2012). Multiple classifier system for remote sensing image classification: a review. Sensors 12, 4764–4792.
Multiple classifier system for remote sensing image classification: a review.Crossref | GoogleScholarGoogle Scholar | 22666057PubMed |

Eastwood, P. D., Souissi, S., Rogers, S. I., Coggan, R. A., and Brown, C. J. (2004). Mapping sediment biotopes as continuous distributions rather than discrete entities with hard boundaries. In ‘ICES Council Meeting Paper’, 22–25 September 2004, Vigo, Spain. pp 14–27. (The Council: Copenhagen, Denmark.)

Eidem, E. J., and Landmark, K. (2013). Acoustic seabed classification using QTC IMPACT on single-beam echo sounder data from the Norwegian Channel, northern North Sea. Continental Shelf Research 68, 1–14.
Acoustic seabed classification using QTC IMPACT on single-beam echo sounder data from the Norwegian Channel, northern North Sea.Crossref | GoogleScholarGoogle Scholar |

Elvenes, S., Dolan, M. F. J., Buhl-Mortensen, P., and Bellec, V. K. (2014). An evaluation of compiled single-beam bathymetry data as a basis for regional sediment and biotope mapping. ICES Journal of Marine Science: Journal du Conseil 71, 867–881.
An evaluation of compiled single-beam bathymetry data as a basis for regional sediment and biotope mapping.Crossref | GoogleScholarGoogle Scholar |

FAO (2014). AQUASTAT database. Food and Agriculture Organization of the United Nations (FAO).

Flemming, B. W. (2000). A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams. Continental Shelf Research 20, 1125–1137.
A revised textural classification of gravel-free muddy sediments on the basis of ternary diagrams.Crossref | GoogleScholarGoogle Scholar |

Foody, G. M. (2004). Thematic map comparison. Photogrammetric Engineering and Remote Sensing 70, 627–633.
Thematic map comparison.Crossref | GoogleScholarGoogle Scholar |

Foote, K. G., and MacLennan, D. N. (1984). Comparison of copper and tungsten carbide calibration spheres. The Journal of the Acoustical Society of America 75, 612–616.
Comparison of copper and tungsten carbide calibration spheres.Crossref | GoogleScholarGoogle Scholar |

Freitas, R., Sampaio, L., Oliveira, J., Rodrigues, A. M., and Quintino, V. (2006). Validation of soft bottom benthic habitats identified by single-beam acoustics. Marine Pollution Bulletin 53, 72–79.
Validation of soft bottom benthic habitats identified by single-beam acoustics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xjs1ymtbk%3D&md5=60e1a4f173f0b203f4f99fc28c7ed38bCAS | 16266728PubMed |

Freund, Y., and Schapire, R. (1995). A decision-theoretic generalization of on-line learning and an application to boosting. In ‘Computational Learning Theory. Vol. 904’. (Ed. P. Vitányi.) pp. 23–37. (Springer: Berlin)

Freund, Y., and Schapire, R. E. (1996). Experiments with a new boosting algorithm. In ‘Proceedings of the 13th International Conference on Machine Learning’, 3–6 July 1996, Bari, Italy. (Ed. L. Saitta.) pp. 148–156. (Morgan Kaufmann: San Francisco, CA.)

Gengler, S., and Bogaert, P. (2013). Bayesian Data Fusion for spatial prediction of categorical variables in environmental sciences. In ‘33rd International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering’, 15–20 December 2013, Canberra, ACT, Australia. AIP Conference Proceedings, Vol 1636, Issue 1. pp. 88–93. (AIP Publishing: New York.)

Goff, J. A., Olson, H. C., and Duncan, C. S. (2000). Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin. Geo-Marine Letters 20, 43–49.
Correlation of side-scan backscatter intensity with grain-size distribution of shelf sediments, New Jersey margin.Crossref | GoogleScholarGoogle Scholar |

Goovaerts, P. (1999). Geostatistics in soil science: state-of-the-art and perspectives. Geoderma 89, 1–45.
Geostatistics in soil science: state-of-the-art and perspectives.Crossref | GoogleScholarGoogle Scholar |

Hasan, R., Ierodiaconou, D., and Monk, J. (2012). Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar. Remote Sensing 4, 3427–3443.
Evaluation of four supervised learning methods for benthic habitat mapping using backscatter from multi-beam sonar.Crossref | GoogleScholarGoogle Scholar |

Hengl, T. (2007). A practical guide to geostatistical mapping of environmental variables. JRC Scientific and Technical Reports. Office for Official Publication of the European Communities, Luxembourg.

Hengl, T., Toomanian, N., Reuter, H. I., and Malakouti, M. J. (2007). Methods to interpolate soil categorical variables from profile observations: lessons from Iran. Geoderma 140, 417–427.
Methods to interpolate soil categorical variables from profile observations: lessons from Iran.Crossref | GoogleScholarGoogle Scholar |

Huang, Z., Nichol, S. L., Siwabessy, J. P. W., Daniell, J., and Brooke, B. P. (2012). Predictive modelling of seabed sediment parameters using multibeam acoustic data: a case study on the Carnarvon Shelf, Western Australia. International Journal of Geographical Information Science 26, 283–307.
Predictive modelling of seabed sediment parameters using multibeam acoustic data: a case study on the Carnarvon Shelf, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Huang, Z., McArthur, M., Przeslawski, R., Siwabessy, J., Nichol, S., and Brooke, B. (2014). Predictive mapping of soft-bottom benthic biodiversity using a surrogacy approach. Marine and Freshwater Research 65, 409–424.
Predictive mapping of soft-bottom benthic biodiversity using a surrogacy approach.Crossref | GoogleScholarGoogle Scholar |

Jerosch, K. (2013). Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data. Journal of Marine Systems 127, 5–13.
Geostatistical mapping and spatial variability of surficial sediment types on the Beaufort Shelf based on grain size data.Crossref | GoogleScholarGoogle Scholar |

Journel, A. G., and Huijbregts, C. J. (1978). ‘Mining Geostatistics.’ (Academic Press: New York.)

Koike, K., and Matsuda, S. (2005). Spatial modeling of discontinuous geologic attributes with geotechnical applications. Engineering Geology 78, 143–161.
Spatial modeling of discontinuous geologic attributes with geotechnical applications.Crossref | GoogleScholarGoogle Scholar |

Kuhn, M., and Johnson, K. (2013). ‘Applied Predictive Modeling.’ (Springer: New York.)

Kuhn, M., Weston, S., Coulter, N., and Quinlan, R. (2014). C50: C5.0 decision trees and rule-based models. R package version 0.1.0-19. Available at http://CRAN.R-project.org/package=C50 [Verified 26 September 2015].

Kumar, S., Ghosh, J., and Crawford, M. M. (2002). Hierarchical fusion of multiple classifiers for hyperspectral data analysis. Pattern Analysis & Applications 5, 210–220.
Hierarchical fusion of multiple classifiers for hyperspectral data analysis.Crossref | GoogleScholarGoogle Scholar |

Langley, P., and Sage, S. (1994). Induction of selective Bayesian classifiers. In ‘Proceedings of the Tenth International Conference on Uncertainty in Artificial Intelligence’, 29–31 July 1994, Seattle, WA, USA. (Eds R. Lopez de Manataras and D. Poole.) pp. 399–406. (Morgan Kaufmann: San Francisco, CA.)

Lark, R. M., and Bishop, T. F. A. (2007). Cokriging particle size fractions of the soil. European Journal of Soil Science 58, 763–774.
Cokriging particle size fractions of the soil.Crossref | GoogleScholarGoogle Scholar |

Le Bas, T. P., and Huvenne, V. A. I. (2009). Acquisition and processing of backscatter data for habitat mapping – comparison of multibeam and sidescan systems. Applied Acoustics 70, 1248–1257.
Acquisition and processing of backscatter data for habitat mapping – comparison of multibeam and sidescan systems.Crossref | GoogleScholarGoogle Scholar |

Legleiter, C. J., and Kyriakidis, P. C. (2007). Forward and inverse transformations between Cartesian and channel-fitted coordinate systems for meandering rivers. Mathematical Geology 38, 927–958.
Forward and inverse transformations between Cartesian and channel-fitted coordinate systems for meandering rivers.Crossref | GoogleScholarGoogle Scholar |

Li, W. (2006). Transiogram: a spatial relationship measure for categorical data. International Journal of Geographical Information Science 20, 693–699.
Transiogram: a spatial relationship measure for categorical data.Crossref | GoogleScholarGoogle Scholar |

Li, W. (2007). Markov Chain random fields for estimation of categorical variables. Mathematical Geology 39, 321–335.
Markov Chain random fields for estimation of categorical variables.Crossref | GoogleScholarGoogle Scholar |

Li, W., and Zhang, C. (2007). A random-path Markov Chain algorithm for simulating categorical soil variables from random point samples. Soil Science Society of America Journal 71, 656–668.
A random-path Markov Chain algorithm for simulating categorical soil variables from random point samples.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXlvFGgtro%3D&md5=fa3ae1403cd29c15061c4a944d9fde8cCAS |

Li, J., Heap, A. D., Potter, A., Huang, Z., and Daniell, J. J. (2011). Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin. Continental Shelf Research 31, 1365–1376.
Can we improve the spatial predictions of seabed sediments? A case study of spatial interpolation of mud content across the southwest Australian margin.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xit1ymtrc%3D&md5=cc9f262335e717e2b6abad300d175f7bCAS |

Liaw, A., and Wiener, M. (2002). Classication and regression by randomForest. R news 2, 18–22.

Liikanen, A., Flöjt, L., and Martikainen, P. (2002). Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate. Journal of Environmental Quality 31, 338–349.
Gas dynamics in eutrophic lake sediments affected by oxygen, nitrate, and sulfate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlvVCns74%3D&md5=648da07417ac8b532c8d1310a32a7af7CAS | 11837439PubMed |

Lubniewski, Z., and Stepnowski, A. (1997). Sea bottom typing using fractal dimensions. 1. In ‘International Symposium on Hydroacoustics and Ultrasonics’, 12–16 May 1997, Gdańsk-Jurata, Poland, pp. 12–16. (Technical University of Gdańsk: Gdansk.)

Lucieer, V., Hill, N. A., Barrett, N. S., and Nichol, S. (2013). Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images. Estuarine, Coastal and Shelf Science 117, 94–106.
Do marine substrates ‘look’ and ‘sound’ the same? Supervised classification of multibeam acoustic data using autonomous underwater vehicle images.Crossref | GoogleScholarGoogle Scholar |

Lüdtke, A., Jerosch, K., Herzog, O., and Schlüter, M. (2012). Development of a machine learning technique for automatic analysis of seafloor image data: case example, Pogonophora coverage at mud volcanoes. Computers & Geosciences 39, 120–128.
Development of a machine learning technique for automatic analysis of seafloor image data: case example, Pogonophora coverage at mud volcanoes.Crossref | GoogleScholarGoogle Scholar |

Luts, J., Ojeda, F., Van de Plas, R., De Moor, B., Van Huffel, S., and Suykens, J. A. K. (2010). A tutorial on support vector machine-based methods for classification problems in chemometrics. Analytica Chimica Acta 665, 129–145.
A tutorial on support vector machine-based methods for classification problems in chemometrics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXlt1Snt7o%3D&md5=b4ce8ae6e27a0dc4c109fedf1ae00c16CAS | 20417323PubMed |

Max, K. (2013). caret: Classification and Regression Training. R package version 5.17–7. CRAN. Available at https://cran.r-project.org/web/packages/caret/index.html [Verified 26 September 2015].

Merwade, V. (2009). Effect of spatial trends on interpolation of river bathymetry. Journal of Hydrology 371, 169–181.
Effect of spatial trends on interpolation of river bathymetry.Crossref | GoogleScholarGoogle Scholar |

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., and Leisch, F. (2012). e1071: Misc Functions of the Department of Statistics (e1071), TU Wien. Available at https://cran.r-project.org/web/packages/e1071/index.html [Verified 9 October 2015].

Nelson, D. W., and Sommers, L. E. (1982). Total carbon, organic carbon, and organic matter. In ‘Methods of Soil Analysis. Part 2. Chemical and Microbiological Properties’. (Ed. A. L. Page.) pp. 539–579. (American Society of Agronomy, Soil Science Society of America: Madison, WI.)

Omara Ojungu, P. H. (1992). ‘Resource Management in Developing Countries.’ (Longman Scientific and Technical: Waterloo, ON, Canada.)

Pal, M., and Foody, G. M. (2010). Feature selection for classification of hyperspectral data by SVM. IEEE Transactions on Geoscience and Remote Sensing 48, 2297–2307.
Feature selection for classification of hyperspectral data by SVM.Crossref | GoogleScholarGoogle Scholar |

Papritz, A. (2009). Limitations of indicator kriging for predicting data with trend. In ‘StatGIS Conference Proceedings’, 17–19 June 2009, Milos Island, Greece. (Ed. D. Cornford, G. Dubois, D. Hristopulos, E. Pebesma, and J. Pilz.) pp. 1–6. (Alpen-Adria-Universität: Klagenfurt, Austria.)

Pawlak, Z. (1999). Decision rules, Bayes’ rule and rough sets. In ‘New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. Vol. 1711’. (Eds N. Zhong, A. Skowron and S. Ohsuga.) pp. 1–9. (Springer: Heidelberg.)

Pickard, D. K. (1980). Unilateral Markov fields. Advances in Applied Probability 12, 655–671.
Unilateral Markov fields.Crossref | GoogleScholarGoogle Scholar |

Quinlan, J. R. (1996). Bagging, boosting, and C4.5. In ‘AAAI’96 Proceedings of the Thirteenth National Conference on Artificial Intelligence – Volume 1’, 4–8 August 1996, Portland, OR, USA. pp. 725–730. (AAAI Press: Menlo Park, CA.)

Quinlan, R. (2004). Data mining tools see5 and c5.0. Available at http://www.rulequest.com/see5-info.html [Verified 26 September 2015].

R Development Core Team (2013). ‘A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

RAMSAR (2012). The list of wetlands of international importance. (The Secretariat of the Convention on Wetlands: Gland, Switzerland.) Available at http://www.ramsar.org/sites/default/files/documents/library/sitelist_07_october_2015.pdf [Verified 9 October 2015].

Sartore, L. (2013). spMC: modelling spatial random fields with continuous lag spatial Markov Chains. The R Journal 5, 16–28.

Scandella, B., Urban, P., Delwiche, K., Greinert, J., Hemond, H., Ruppel, C. D., and Juanes, R. (2013). Quantifying methane flux from lake sediments using multibeam sonar. In ‘AGU Fall Meeting Abstracts’, 9–13 December 2013, San Francisco, CA, USA. Vol. 1, p. 456. (AGU: San Francisco, CA.)

Schnurrenberger, D., Russell, J., and Kelts, K. (2003). Classification of lacustrine sediments based on sedimentary components. Journal of Paleolimnology 29, 141–154.
Classification of lacustrine sediments based on sedimentary components.Crossref | GoogleScholarGoogle Scholar |

Simmonds, E.J., and MacLennan, D.N. (1992). ‘Fisheries Acoustics.’ (Chapman & Hall: London.)

Simons, D. G., and Snellen, M. (2009). A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data. Applied Acoustics 70, 1258–1268.
A Bayesian approach to seafloor classification using multi-beam echo-sounder backscatter data.Crossref | GoogleScholarGoogle Scholar |

Smith, J. D., and McLean, S. R. (1984). A model for flow in meandering streams. Water Resources Research 20, 1301–1315.
A model for flow in meandering streams.Crossref | GoogleScholarGoogle Scholar |

Solow, A. (1986). Mapping by simple indicator kriging. Mathematical Geology 18, 335–352.
Mapping by simple indicator kriging.Crossref | GoogleScholarGoogle Scholar |

Star, J., and Estes, J. E. (1990). ‘Geographic Information Systems: an Introduction.’ (Prentice Hall: Englewood Cliffs, NJ, USA.)

Stephens, D., and Diesing, M. (2014). A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data. PLoS One 9, e93950.
A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data.Crossref | GoogleScholarGoogle Scholar | 24699553PubMed |

Venables, W. N., and Ripley, B. D. (2004). ‘Modern Applied Statistics with S-Plus.’ (Springer-Verlag: New York.)

Venteris, E. R., and May, C. J. (2014). Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data. PLoS One 9, e95940.
Cost-effective mapping of benthic habitats in inland reservoirs through split-beam sonar, indicator kriging, and historical geologic data.Crossref | GoogleScholarGoogle Scholar | 24759834PubMed |

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377–392.
A scale of grade and class terms for clastic sediments.Crossref | GoogleScholarGoogle Scholar |

Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G., Ng, A., Liu, B., Yu, P., Zhou, Z.-H., Steinbach, M., Hand, D., and Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems 14, 1–37.
Top 10 algorithms in data mining.Crossref | GoogleScholarGoogle Scholar |

Yamamoto, J. K., Mao, X. M., Koike, K., Crosta, A. P., Landim, P. M. B., Hu, H. Z., Wang, C. Y., and Yao, L. Q. (2012). Mapping an uncertainty zone between interpolated types of a categorical variable. Computers & Geosciences 40, 146–152.
Mapping an uncertainty zone between interpolated types of a categorical variable.Crossref | GoogleScholarGoogle Scholar |

Zeff, M. (2011). The necessity for multidisciplinary approaches to wetland design and adaptive management: the case of wetland channels. In ‘Wetlands’. (Ed. B. A. LePage.) pp. 27–34. (Springer: Heidelberg.)10.1007/978-94-007-0551-7_2