Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Comparison of in situ and satellite sea surface-temperature data from South Australia and Tasmania: how reliable are satellite data as a proxy for coastal temperatures in temperate southern Australia?

B. Stobart A D , S. Mayfield B , C. Mundy B , A. J. Hobday C and J. R. Hartog C
+ Author Affiliations
- Author Affiliations

A South Australian Research and Development Institute; SARDI Aquatic Sciences, PO Box 1511, Port Lincoln, SA 5606, Australia.

B Institute for Marine and Antarctic Studies, Private Bag 49, Hobart, Tas. 7001, Australia.

C CSIRO Oceans and Atmosphere Flagship, Hobart, Tas. 7000, Australia.

D Corresponding author. Email: ben.stobart@sa.gov.au

Marine and Freshwater Research 67(5) 612-625 https://doi.org/10.1071/MF14340
Submitted: 28 October 2014  Accepted: 2 March 2015   Published: 6 August 2015

Abstract

Satellite sea-surface temperature (SST) is widely used for biological modelling and ecological studies, assuming it represents subsurface in situ temperature (IST). We tested this assumption at 32 coastal sites in southern Australia, spanning a wide geographic range. Annual IST regimes are described and were demonstrated to be highly correlated with SST. Mean annual daily temperature differences between SST and IST (DTD) were generally small, varying spatially and seasonally (range 0–1°C). No correlation between DTDs and a range of site attributes was found, indicating the importance of site-specific factors. Seasonal DTDs were not geographically consistent, being higher in South Australia during the summer (mean 1.4°C) than in Tasmania (mean 0.5°C). Generally, small annual mean DTDs justify using SST for broad-scale ecological and climate-change studies, although considerable DTDs at some sites suggest that using SST at smaller spatial and temporal scales is unlikely to be appropriate. In addition, SST data lack information on daily temperature fluctuation that may be biologically relevant. Excepting South Australia, where spatially consistent summer DTDs would allow a correction factor, this site-specific variation is hard to correct. In spite of this, studies that rely on SST should consider the implications of such variation on the level of certainty associated with temperature-based predictions.

Additional keywords: climate change, in situ temperature, latitudinal temperature variation, satellite-derived sea-surface temperature, temperature fluctuation.


References

Anestis, A., Lazou, A., Pörtner, H. O., and Michaelidis, B. (2007). Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology 293, R911–R921.
Behavioral, metabolic, and molecular stress responses of marine bivalve Mytilus galloprovincialis during long-term acclimation at increasing ambient temperature.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXptlyqtrk%3D&md5=26cf562d071a683229713f93a59263a9CAS | 17522122PubMed |

Australian Bureau of Meteorology (2014). Average Daily Mean Temperature October to April. Availablet at http://www.bom.gov.au/jsp/ncc/climate_averages/temperature/index.jsp?maptype=6andperiod=wet [Verified 1 September 2014].

Burrows, M. T., Schoeman, D. S., Buckley, L. B., Moore, P., Poloczanska, E. S., Brander, K. M., Brown, C., Bruno, J. F., Duarte, C. M., Halpern, B. S., Holding, J., Kappel, C. V., Kiessling, W., O’Connor, M. I., Pandolfi, J. M., Parmesan, C., Schwing, F. B., Sydeman, W. J., and Richardson, A. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655.
The pace of shifting climate in marine and terrestrial ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtlyqu7jN&md5=0826d33024d3c6df5971a4158bc86257CAS | 22053045PubMed |

Caputi, N., Melville-Smith, R., Lestang, S., Pearce, A., and Feng, M. (2010). The effect of climate change on the western rock lobster (Panulirus Cygnus) fishery of western Australia. Canadian Journal of Fisheries and Aquatic Sciences 67, 85–96.
The effect of climate change on the western rock lobster (Panulirus Cygnus) fishery of western Australia.Crossref | GoogleScholarGoogle Scholar |

Chelton, D. B., and Wentz, F. J. (2005). Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research. Bulletin of the American Meteorological Society 86, 1097–1115.
Global microwave satellite observations of sea surface temperature for numerical weather prediction and climate research.Crossref | GoogleScholarGoogle Scholar |

Clark, R. A., Fox, C. J., Viner, D., and Livermore, M. (2003). North Sea cod and climate change: modelling the effects of temperatures on population dynamics. Global Change Biology 9, 1669–1680.
North Sea cod and climate change: modelling the effects of temperatures on population dynamics.Crossref | GoogleScholarGoogle Scholar |

Cox, T. J. (2000). Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature. New Zealand Journal of Marine and Freshwater Research 34, 203–208.
Thermal tolerances of two stream invertebrates exposed to diurnally varying temperature.Crossref | GoogleScholarGoogle Scholar |

Dimmlich, W. F., Breed, W. G., Geddes, M., and Ward, T. M. (2004). Relative importance of gulf and shelf waters for spawning and recruitment of Australian anchovy, Engraulis australis, in South Australia. Fisheries Oceanography 13, 310–323.
Relative importance of gulf and shelf waters for spawning and recruitment of Australian anchovy, Engraulis australis, in South Australia.Crossref | GoogleScholarGoogle Scholar |

Donlon, C. J., Minnett, P. J., Gentemann, C., Nightingale, T. J., Barton, I. T., Ward, B., and Murray, M. J. (2002). Toward improved validation of satellite sea skin temperature measurements for climate research. Journal of Climate 15, 353–369.
Toward improved validation of satellite sea skin temperature measurements for climate research.Crossref | GoogleScholarGoogle Scholar |

Fordham, D. A., Mellin, C., Russell, B. D., Akçakaya, R. H., Bradshaw, C. J. A., Aiello-Lammens, M., Caley, J. M., Connell, S. D., Mayfield, S., Shepherd, S., and Brook, B. W. (2013a). Population dynamics can be more important than physiological limits for determining range shifts under climate change. Global Change Biology 19, 3224–3237.
Population dynamics can be more important than physiological limits for determining range shifts under climate change.Crossref | GoogleScholarGoogle Scholar | 23907833PubMed |

Fordham, D. A., Brook, B. W., Caley, M. J., Bradshaw, C. J. A., and Mellin, C. (2013b). Conservation management and sustainable harvest quotas are sensitive to choice of climate modelling approach for two marine gastropods. Diversity & Distributions 19, 1299–1312.
Conservation management and sustainable harvest quotas are sensitive to choice of climate modelling approach for two marine gastropods.Crossref | GoogleScholarGoogle Scholar |

Frusher, S. D., Hobday, A. J., Jennings, S. M., Crighton, C., D’Silva, D., Haward, M., Holbrook, N. J., Nursey-Bray, M., Pecl, G. T., and van Putten, E. I. (2014). A short history of a marine hotspot: from anecdote to adaptation in south-east Australia. Reviews in Fish Biology and Fisheries 24, 593–611.
A short history of a marine hotspot: from anecdote to adaptation in south-east Australia.Crossref | GoogleScholarGoogle Scholar |

Hanna, E., Trausti, J., Ólafsson, J., and Valdimarsson, H. (2006). Icelandic coastal sea surface temperature records constructed: putting the pulse on air-sea-climate interactions in the northern North Atlantic. Part I: comparison with HadISST1 open-ocean surface temperatures and preliminary analysis of long-term patterns and anomalies of SST around Iceland. Journal of Climate 19, 5652–5666.
Icelandic coastal sea surface temperature records constructed: putting the pulse on air-sea-climate interactions in the northern North Atlantic. Part I: comparison with HadISST1 open-ocean surface temperatures and preliminary analysis of long-term patterns and anomalies of SST around Iceland.Crossref | GoogleScholarGoogle Scholar |

Harley, C. D. G., Hughes, R., Hultgren, K. M., Miner, B. G., Sorte, C. J. B., Thornber, C. S., Rodriguez, L. F., Tomanek, L., and Williams, S. L. (2006). The impacts of climate change in coastal marine systems. Ecology Letters 9, 228–241.
The impacts of climate change in coastal marine systems.Crossref | GoogleScholarGoogle Scholar |

Hartog, J., and Hobday, A. J. (2011). ‘SDODE: Spatial Dynamics Ocean Data Explorer. User Guide v3.’ (CSIRO Marine and Atmospheric Research: Hobart.)

Helmuth, B. (2009). From cells to coastlines: how can we use physiology to forecast the impacts of climate change? The Journal of Experimental Biology 212, 753–760.
From cells to coastlines: how can we use physiology to forecast the impacts of climate change?Crossref | GoogleScholarGoogle Scholar | 19251989PubMed |

Helmuth, B., Broitman, B. R., Yamane, L., Gilman, S. E., Mach, K., Mislan, K. A. S., and Denny, M. W. (2010). Organismal climatology: analyzing environmental variability at scales relevant to physiological stress. Journal of Experimental Marine Biology and Ecology 213, 995–1003.
Organismal climatology: analyzing environmental variability at scales relevant to physiological stress.Crossref | GoogleScholarGoogle Scholar |

Hilborn, R., Orensanz, J. M., and Parma, A. M. (2005). Institutions, incentives and the future of fisheries. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 360, 47–57.
Institutions, incentives and the future of fisheries.Crossref | GoogleScholarGoogle Scholar | 15744918PubMed |

Hobday, A. J. (2010). Ensemble analysis of the future distribution of large pelagic fishes in Australia. Progress in Oceanography 86, 291–301.
Ensemble analysis of the future distribution of large pelagic fishes in Australia.Crossref | GoogleScholarGoogle Scholar |

Hobday, A. J., and Lough, M. (2011). Projected climate change in Australian marine and freshwater environments. Marine and Freshwater Research 62, 1000–1014.
Projected climate change in Australian marine and freshwater environments.Crossref | GoogleScholarGoogle Scholar |

Hobday, A. J., and Tegner, M. J. (2002). The warm and the cold: influence of temperature and fishing on local population dynamics of red abalone. California Cooperative Oceanic Fisheries Investigations Reports 43, 74–96.

Hoegh-Guldberg, O., and Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology 129, 279–303.
The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana.Crossref | GoogleScholarGoogle Scholar |

Hokanson, K. E. F., Kleiner, C. F., and Thorslund, T. W. (1977). Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri. Journal of the Fisheries Research Board of Canada 34, 639–648.
Effects of constant temperatures and diel temperature fluctuations on specific growth and mortality rates and yield of juvenile rainbow trout, Salmo gairdneri.Crossref | GoogleScholarGoogle Scholar |

Hughes, T. P., Baird, A. H., Bellwood, D. R., Card, M., Connolly, S. R., Folke, C., Grosberg, R., Hoegh-Guldberg, O., Jackson, J. B. C., Kleypas, J., Lough, J. M., Marshall, P., Nyström, M., Palumbi, S. R., Pandolfi, J. M., Rosen, B., and Roughgarden, J. (2003). Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933.
Climate change, human impacts, and the resilience of coral reefs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmt1elsb4%3D&md5=49096c324f4ef3066d55b164ac2e9913CAS | 12920289PubMed |

Johnson, C. R., Banks, S., Barrett, N. S., Cazassus, F., Dunstan, P. K., Edgar, G. J., Frusher, S. D., Gardner, C., Haddon, M., Heliodoniotis, F., Hill, K. L., Holbrook, N. J., Hosie, G. W., Last, P. R., Ling, S. D., Melbourne-Thomas, J., Miller, K., Pecl, G., Richardson, A. J., Ridgway, K. R., Rintoul, S. R., Ritz, D. A., Ross, D. J., Sanderson, J. C., Shepherd, S. A., Slotwinski, A., Swalding, K. M., and Taw, N. (2011). Climate change cascades: shifts in oceanography, species ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400, 17–32.
Climate change cascades: shifts in oceanography, species ranges and subtidal marine community dynamics in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Knight, M. A., and Tsolos, A. (2012). South Australian Wild Fisheries Information and Statistics Report, SARDI Research Report 2010/11. SARDI Publication Number F2008/000804-4. Technical report, South Australian Research and Development Institute (Aquatic Sciences), Adelaide.

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Pecl, G. T. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices.Crossref | GoogleScholarGoogle Scholar |

Lathlean, J. A., Ayre, D. J., and Minchinton, T. E. (2011). Rocky intertidal temperature variability along the southeast coast of Australia: comparing data from in situ loggers, satellite-derived SST and terrestrial weather stations. Marine Ecology Progress Series 439, 83–95.
Rocky intertidal temperature variability along the southeast coast of Australia: comparing data from in situ loggers, satellite-derived SST and terrestrial weather stations.Crossref | GoogleScholarGoogle Scholar |

Leichter, J. J., and Miller, S. L. (1999). Predicting high-frequency upwelling: spatial and temporal patterns of temperature anomalies on a Florida coral reef. Continental Shelf Research 19, 911–928.
Predicting high-frequency upwelling: spatial and temporal patterns of temperature anomalies on a Florida coral reef.Crossref | GoogleScholarGoogle Scholar |

Leichter, J. J., Helmuth, B., and Fischer, A. M. (2006). Variation beneath the surface: quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida. Journal of Marine Research 64, 563–588.
Variation beneath the surface: quantifying complex thermal environments on coral reefs in the Caribbean, Bahamas and Florida.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

Liu, G., Skirving, W., and Strong, A. E. (2003). Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching. EOS 84, 137–141.
Remote sensing of sea surface temperatures during 2002 barrier reef coral bleaching.Crossref | GoogleScholarGoogle Scholar |

Mayfield, S., Mundy, C., Gorfine, H., Hart, A., and Worthington, D. (2012). Fifty years of sustained production in Australia’s abalone fisheries. Reviews in Fisheries Science 20, 220–250.
Fifty years of sustained production in Australia’s abalone fisheries.Crossref | GoogleScholarGoogle Scholar |

McAtee, B., Pearce, A., Lynch, M., Davies, J., Boterhoven, M., and Osbourne, B. (2007). The Hillarys transect (2): validation of satellite derived sea surface temperature in the Indian Ocean off Perth, Western Australia. Continental Shelf Research 27, 1702–1718.
The Hillarys transect (2): validation of satellite derived sea surface temperature in the Indian Ocean off Perth, Western Australia.Crossref | GoogleScholarGoogle Scholar |

Monismith, S. G., Genin, A., Reidenbach, M. A., Yahel, G., and Koseff, J. R. (2006). Thermally driven exchanges between a coral reef and adjoining ocean. Journal of Physical Oceanography 36, 1332–1347.
Thermally driven exchanges between a coral reef and adjoining ocean.Crossref | GoogleScholarGoogle Scholar |

Nguyen, K. D. T., Morley, S. A., Lai, C. H., Clark, M. S., Tan, K. S., Bates, A. E., and Peck, L. S. (2011). Upper temperature limits of tropical marine ectotherms: global warming implications. PLoS One 6, e29340.
Upper temperature limits of tropical marine ectotherms: global warming implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xms1Kqtg%3D%3D&md5=4a32e449816fb432c7108160fb55c954CAS |

O’Hara, T. D., and Poore, G. C. B. (2000). Patterns of distribution for southern Australian marine echinoderms and decapods. Journal of Biogeography 27, 1321–1335.
Patterns of distribution for southern Australian marine echinoderms and decapods.Crossref | GoogleScholarGoogle Scholar |

Paganini, A. W., Miller, N. A., and Stillman, J. H. (2014). Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes. The Journal of Experimental Biology 217, 3974–3980.
Temperature and acidification variability reduce physiological performance in the intertidal zone porcelain crab Petrolisthes cinctipes.Crossref | GoogleScholarGoogle Scholar | 25392458PubMed |

Pearce, A., Faskel, F., and Hyndes, G. (2006). Nearshore sea temperature variability off Rottnest Island (Western Australia) derived from satellite data. International Journal of Remote Sensing 27, 2503–2518.
Nearshore sea temperature variability off Rottnest Island (Western Australia) derived from satellite data.Crossref | GoogleScholarGoogle Scholar |

Pecl, G. T., Frusher, S., Gardner, C., Haward, M., Hobday, A. J., Jennings, S., Nursey-Bray, M., Punt, A., Revill, H., and van Putten, I. (2009). The east coast Tasmanian rock lobster fishery: vulnerability to climate change impacts and adaptation response options. Report to the Department of Climate Change, Canberra.

Pecl, G. T., Ward, T., Briceño, F., Fowler, A., Frusher, S., Gardner, C., Hamer, P., Hartmann, K., Hartog, J., Hobday, A., Hoshino, E., Jennings, S., Le Bouhellec, B., Linnane, A., Marzloff, M., Mayfield, S., Mundy, C., Ogier, E., Sullivan, A., Tracey, S., Tuck, G., and Wayte, S. (2014). Preparing Fisheries for Climate Change: Identifying Adaptation Options for Four Key Fisheries in South Eastern Australia. Project 2011/039, Fisheries Research and Development Corporation, Canberra.

Pfister, C. A., and Wootton, J. T. (2007). Relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system. Limnology and Oceanography 52, 1767–1775.
Relative roles of coastal and oceanic processes in determining physical and chemical characteristics of an intensively sampled nearshore system.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXht1ahsLzI&md5=ba6e8b8960c5e54f25f815fd2aa10520CAS |

Quinn, N. J., and Johnson, D. W. (1996). Cold water upwellings cover Gulf of Oman coral reefs. Coral Reefs 15, 214.

Raybaud, V., Beaugrand, G., Goberville, E., Delebecq, G., Destombe, C., Valero, M., Davoult, D., Morin, P., and Gevaert, F. (2013). Decline in kelp in West Europe and climate. PLoS One 8, e66044.
Decline in kelp in West Europe and climate.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFSlt7jL&md5=3b9de8fc047716c1d6dc5a83e419d8bfCAS | 23840397PubMed |

Reynolds, R. W., and Smith, T. M. (1994). Improved global sea surface temperature analysis using optimal interpolation. Journal of Climate 7, 929–948.
Improved global sea surface temperature analysis using optimal interpolation.Crossref | GoogleScholarGoogle Scholar |

Russell, B. D., Connell, S. D., Mellin, C., Brook, B. W., Burnell, O. W., and Fordham, D. A. (2012). Preidicting the distribution of commercially important invertebrate stocks under future climate change. PLoS One 7, e46554.
Preidicting the distribution of commercially important invertebrate stocks under future climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVQ%3D&md5=c729d219f9685a41a113b2e5b4765593CAS | 23251326PubMed |

Schluessel, P., Emery, W. J., Grassl, H., and Mammen, T. (1990). On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. Journal of Geophysical Research 95, 13 341–13 356.
On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature.Crossref | GoogleScholarGoogle Scholar |

Smale, D. A., and Wernberg, T. (2009). Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology. Marine Ecology Progress Series 387, 27–37.
Satellite-derived SST data as a proxy for water temperature in nearshore benthic ecology.Crossref | GoogleScholarGoogle Scholar |

Smale, D. A., and Wernberg, T. (2013). Extreme climatic event drives range contraction of a habitat-forming species. Proceedings. Biological Sciences 280, 20122829.
Extreme climatic event drives range contraction of a habitat-forming species.Crossref | GoogleScholarGoogle Scholar |

Somero, G. N. (2005). Linking biogeography to physiology: evolutionary and acclamatory adjustments to thermal limits. Frontiers in Zoology 2, 1–9.
Linking biogeography to physiology: evolutionary and acclamatory adjustments to thermal limits.Crossref | GoogleScholarGoogle Scholar | 15679952PubMed |

Sonu, C. J., Murray, S. P., Hsu, S. A., Suhayda, J. N., and Waddell, E. (1973). Sea breeze and coastal processes. Transactions: American Geophysical Union 54, 820–833.
Sea breeze and coastal processes.Crossref | GoogleScholarGoogle Scholar |

Spillman, C., and Alves, O. (2009). Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef. Coral Reefs 28, 197–206.
Dynamical seasonal prediction of summer sea surface temperatures in the Great Barrier Reef.Crossref | GoogleScholarGoogle Scholar |

Spillman, C. M., Alves, O., and Hudson, D. A. (2011). Seasonal prediction of thermal stress accumulation for coral bleaching in the tropical oceans. Monthly Weather Review 139, 317–331.
Seasonal prediction of thermal stress accumulation for coral bleaching in the tropical oceans.Crossref | GoogleScholarGoogle Scholar |

Stillman, J. H. (2003). Acclimation capacity underlies susceptibility to climate change. Science 301, 65.
Acclimation capacity underlies susceptibility to climate change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXlt1Wrs7c%3D&md5=ab1206653389672b105b103070ed9f23CAS | 12843385PubMed |

Stobart, B., Downing, N., Buckley, R., and Teleki, K. (2008). Comparison of in situ temperature data from the southern Seychelles with SST data: can satellite data alone be used ot predict coral bleaching events? In ‘Proceedings of the 11th International Coral Reef Symposium’, 7–11 July 2008, Fort Lauderdale, FL, USA. pp. 652–656. (National Coral Reef Institute: Dania Beach, FL.)

Tomanek, L. (2010). Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs. Journal of Experimental Biology 213, 971–979.
Variation in the heat shock response and its implication for predicting the effect of global climate change on species’ biogeographical distribution ranges and metabolic costs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXmtlSitb0%3D&md5=4090c1989f906eb546f8970ab4a00427CAS | 20190122PubMed |

Waluda, C. M., Trathan, P. N., and Rodhouse, P. G. (1999). Influence of oceanographic variability on recruitment in the Illex argentines (Cephalopoda: Ommastrephidae) fishery in the South Atlantic. Marine Ecology Progress Series 183, 159–167.
Influence of oceanographic variability on recruitment in the Illex argentines (Cephalopoda: Ommastrephidae) fishery in the South Atlantic.Crossref | GoogleScholarGoogle Scholar |

Wellington, G. M., Strong, A. E., and Merlen, G. (2001). Sea surface temperature variation in the Galapagos archipelago: a comparison between AVHRR nighttime satellite data and in situ instrumentation (1982–1998). Bulletin of Marine Science 69, 27–42.

Wernberg, T., Russell, B. D., Moore, P. J., Ling, S. D., Smale, D. A., Campbell, A., Coleman, M. A., Steinberg, P. D., Kendrick, G. A., and Connell, S. D. (2011). Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming. Journal of Experimental Marine Biology and Ecology 400, 7–16.
Impacts of climate change in a global hotspot for temperate marine biodiversity and ocean warming.Crossref | GoogleScholarGoogle Scholar |

Winter, A., Appleton, R. S., Bruckner, A., Williams, E. H. J., and Goenaga, C. (1998). Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (northeastern Caribbean Sea). Coral Reefs 17, 377–382.
Sea surface temperatures and coral reef bleaching off La Parguera, Puerto Rico (northeastern Caribbean Sea).Crossref | GoogleScholarGoogle Scholar |

Yoshimi, K., and Kawamura, H. (1997). Seasonal and diurnal variability of differences between satellite-derived and in situ sea surface temperatures in the south of the sea of Okhotsk. Journal of Oceanography 55, 343–354.