Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE (Open Access)

Sea-surface temperature used to predict the relative density of giant Pacific octopuses (Enteroctopus dofleini) in intertidal habitats of Prince William Sound, Alaska

D. Scheel
+ Author Affiliations
- Author Affiliations

Alaska Pacific University, 4101 University Drive, Anchorage, AK 99508, USA. Email: dscheel@alaskapacific.edu

Marine and Freshwater Research 66(10) 866-876 https://doi.org/10.1071/MF14197
Submitted: 4 July 2014  Accepted: 10 November 2014   Published: 1 April 2015

Journal Compilation © CSIRO Publishing 2015 Open Access CC BY-NC-ND

Abstract

Productivity linked to upwelling strength is an important environmental factor affecting the production and dynamics of octopus populations. This often takes the form of a negative relationship between octopus abundance and sea-surface temperatures (SST). Enteroctopus dofleini (giant Pacific octopuses) is caught as by-catch in several fisheries, but management for octopuses is data-poor. Visual surveys (in Prince William Sound (PWS) and Puget Sound) showed significant negative correlations of octopus counts with winter SST over the previous 30 months in the waters of eastern Gulf of Alaska, as expected on the basis of life-history parameters. In PWS, local octopus densities varied more than six-fold during the study, and correlations with SST accounted for 48–61% of the variance in counts. Octopus by-catch datasets were not similarly significantly correlated with SST. The negative correlation with SST suggests that octopus populations are influenced by factors regulating marine productivity during larval stages of life history far from the site of recruitment to benthic habitats. Targeted visual surveys for E. dofleini may be more predictable than by-catch statistics, and may be better estimators of variation in octopus abundance.

Additional keywords: environmental variability, population, Puget Sound, recruitment.


References

Agnew, D. J., Beddington, J. R., and Hill, S. L. (2002). The potential use of environmental information to manage squid stocks. Canadian Journal of Fisheries and Aquatic Sciences 59, 1851–1857.
The potential use of environmental information to manage squid stocks.Crossref | GoogleScholarGoogle Scholar |

Anderson, P. J., and Piatt, J. F. (1999). Community reorganization in the Gulf of Alaska following ocean climate regime shift. Marine Ecology Progress Series 189, 117–123.
Community reorganization in the Gulf of Alaska following ocean climate regime shift.Crossref | GoogleScholarGoogle Scholar |

Anderson, C. I. H., and Rodhouse, P. G. (2001). Life cycles, oceanography, and variability: ommastrephid squid in variable oceanographic environments. Fisheries Research 54, 133–143.
Life cycles, oceanography, and variability: ommastrephid squid in variable oceanographic environments.Crossref | GoogleScholarGoogle Scholar |

André, J., Haddon, M., and Pecl, G. T. (2010). Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics. Global Change Biology 16, 2866–2875.
Modelling climate-change-induced nonlinear thresholds in cephalopod population dynamics.Crossref | GoogleScholarGoogle Scholar |

Bakun, A., and Csirke, J. (1998). Environmental processes and recruitment variability. In ‘Squid Recruitment Dynamics: the Genus Illex as a Model, the Commerical Illex Species, and Influences on Variability’. (Eds P. G. Rodhouse, E. G. Dawe and R. K. O’Dor.) pp. 105–124. (FAO: Rome.)

Boyle, P., and Boletzky, S.v. (1996). Cephalopod populations: definition and dynamics. Philosophical Transactions: Biological Sciences 351, 985–1002.
Cephalopod populations: definition and dynamics.Crossref | GoogleScholarGoogle Scholar |

Conners, M. E., Conrath, C., and Brewer, R. (2012a). ‘Field Studies in Support of Stock Assessment for the Giant Pacific Octopus Enteroctopus dofleini.’ (Alaska Fisheries Science Center, North Pacific Fisheries Management Council: Seattle, WA.)

Conners, M. E., Aydin, K., and Conrath, C. (2012b). ‘NPFMC Gulf of Alaska SAFE 22. Assessment of the Octopus Stock Complex in the Gulf of Alaska.’ pp. 647–687. (Alaska Fisheries Science Center, North Pacific Fisheries Management Council: Seattle, WA.)

Cooney, R. T., Allen, J. R., Bishop, M. A., Eslinger, D. L., Kline, T., Norcross, B. L., McRoy, C. P., Milton, J., Olsen, J., Patrick, V., Paul, A. J., Salmon, D., Scheel, D., Thomas, G. L., Vaughan, S. L., and Willette, T. M. (2001). Ecosystem control of pink salmon (Oncorhynchus gorbuscha) and Pacific herring (Clupea pallasi) populations in Prince William Sound, Alaska. Fisheries Oceanography 10, 1–13.
Ecosystem control of pink salmon (Oncorhynchus gorbuscha) and Pacific herring (Clupea pallasi) populations in Prince William Sound, Alaska.Crossref | GoogleScholarGoogle Scholar |

Crawford, W. R., Brickley, P. J., Peterson, T. D., and Thomas, A. C. (2005). Impact of Haida Eddies on chlorophyll distribution in the eastern Gulf of Alaska. Deep-sea Research. Part II, Topical Studies in Oceanography 52, 975–989.
Impact of Haida Eddies on chlorophyll distribution in the eastern Gulf of Alaska.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXksVyjsL0%3D&md5=4a0ea5b26a2f08b180c22df16f0956c9CAS |

Dawe, E. G., and Brodziak, J. K. T. (1998). Trophic relationships, ecosystem variability and recruitment. In ‘Squid Recruitment Dynamics: the Genus Illex as a Model, the Commerical Illex Species, and Influences on Variability’. (Eds P. G. Rodhouse, E. G. Dawe and R. K. O’Dor.) pp. 125–156. (FAO: Rome.)

Demicheli, M., Martínez, A., Ortega, L., Scarabino, F., Maytía, S., and Demicheli, A. (2006). Mass stranding of Argonauta nodosa Lightfoot, 1786 (Cephalopoda, Argonautidae) along the Uruguayan coast (southwestern Atlantic). Revista de Biología Marina y Oceanografía 41, 147–153.

Dodge, R., and Scheel, D. (1999). Remains of the prey – recognizing the midden piles of Octopus dofleini (Wulker). The Veliger 42, 260–266.

Garofalo, G., Ceriola, L., Gristina, M., Fiorentino, F., and Pace, R. (2010). Nurseries, spawning grounds and recruitment of Octopus vulgaris in the Strait of Sicily, central Mediterranean Sea. ICES Journal of Marine Science 67, 1363–1371.

Garstang, W. (1900). The plague of octopus on the south coast, and its effect on the crab and lobster fisheries. Journal of the Marine Biological Association of the United Kingdom 6, 260–273.
The plague of octopus on the south coast, and its effect on the crab and lobster fisheries.Crossref | GoogleScholarGoogle Scholar |

Guerra, Á., González, Á. F., and Rocha, F. (2002). Appearance of the common paper nautilus Argonauta argo related to the increase of the sea surface temperature in the north-eastern Atlantic. Journal of the Marine Biological Association of the United Kingdom 82, 855–858.
Appearance of the common paper nautilus Argonauta argo related to the increase of the sea surface temperature in the north-eastern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Hartwick, B. (1983a). Octopus dofleini. In ‘Cephalopod Life Cycles. Vol. 1’. (Ed. P. R. Boyle.) pp. 277–291. (Academic Press: London.)

Hartwick, E. B. (1983b). Octopus dofleini. In ‘Cephalopod Life Cycles. Vol. I. Species Accounts’. (Ed. P. R. Boyle.) pp. 277–291. (Academic Press: London.)

Hartwick, E. B., and Barriga, I. (1997). Octopus dofleini: biology and fisheries in Canada. In ‘Proceedings of the Workshop on The Fishery and Market Potential of Octopus in California’, 31 August–8 September 1989, Avalon, CA, USA. (Eds M. A. Lang and F. G. Hochberg.) pp. 45–56. (Smithsonian Institution: Washington, DC.)

Hendrickson, L. (2004). Population biology of northern shortfin squid (Illex illecebrosus) in the Northwest Atlantic Ocean and initial documentation of a spawning area. ICES Journal of Marine Science 61, 252–266.
Population biology of northern shortfin squid (Illex illecebrosus) in the Northwest Atlantic Ocean and initial documentation of a spawning area.Crossref | GoogleScholarGoogle Scholar |

Henson, S. A., and Thomas, A. C. (2008). A census of oceanic anticyclonic eddies in the Gulf of Alaska. Deep-sea Research. Part I. Oceanographic Research Papers 55, 163–176.
A census of oceanic anticyclonic eddies in the Gulf of Alaska.Crossref | GoogleScholarGoogle Scholar |

Higgins, K. L., Semmens, J. M., Doubleday, Z. A., and Burridge, C. P. (2013). Life history matters: comparisons of population structuring in sympatric octopus species that differ in the presence of a pelagic larval stage. Marine Ecology Progress Series 486, 203–212.
Life history matters: comparisons of population structuring in sympatric octopus species that differ in the presence of a pelagic larval stage.Crossref | GoogleScholarGoogle Scholar |

Hollenbeck, N., and Scheel, D. (2012). Is there a previously unknown cryptic species of giant Pacific octopus in Prince William Sound, Alaska? American Malacological Bulletin 43, 7–9.

Jorgensen, E. M. (2009). ‘Field Guide to Squids and Octopods of the Eastern North Pacific and Bering Sea.’ (Alaska Sea Grant College Program: Fairbanks, AK.)

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D. (1996). The NCEP/NCAR reanalysis 40-year project. Bulletin of the American Meteorological Society 77, 437–471.
The NCEP/NCAR reanalysis 40-year project.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S., and Verriopoulos, G. (2004). Abundance of Octopus vulgaris on soft sediment. Scientia Marina 68, 553–560.
Abundance of Octopus vulgaris on soft sediment.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S., and Verriopoulos, G. (2006). Modelling the effect of temperature on hatching and settlement patterns of meroplanktonic organisms: the case of the octopus. Scientia Marina 70, 699–708.

Kubodera, T. (1991). Distribution and abundance of the early life stages of octopus, Octopus dofleini Wülker, 1910 in the north Pacific. Bulletin of Marine Science 49, 235–243.

Laidig, T. E., Adams, P. B., Baxter, C. H., and Butler, J. L. (1995). Feeding on euphausiids by Octopus rubescens. California Fish and Game 81, 77–79.

Lima, F. D., Leite, T. S., Haimovici, M., Nóbrega, M. F., and Oliveira, J. E. L. (2014). Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil. Fisheries Research 152, 86–92.
Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Mackas, D. L., Tsurumi, M., Galbraith, M. D., and Yelland, D. R. (2005). Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species. Deep-sea Research. Part II, Topical Studies in Oceanography 52, 1011–1035.
Zooplankton distribution and dynamics in a North Pacific Eddy of coastal origin: II. Mechanisms of eddy colonization by and retention of offshore species.Crossref | GoogleScholarGoogle Scholar |

O’Dor, R. K. (1998). Squid life history strategies. In ‘Squid Recruitment Dynamics: the Genus Illex as a Model, the Commerical Illex Species, and Influences on Variability’. (Eds P. G. Rodhouse, E. G. Dawe and R. K. O’Dor.) pp. 233–254. (FAO: Rome.)

Okutani, T., and Kawaguchi, T. (1983). A mass occurrence of Argonauta argo (Cephalopoda: Octopoda) along the coast of Shimane prefecture, Western Japan Sea. Venus 41, 281–290.

Otero, J., Alvarez-Salgado, X. A., Gonzalez, A. F., Miranda, A., Groom, S. B., Cabanas, J. M., Casas, G., Wheatley, B., and Guerra, A. (2008). Bottom up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic ocean. Marine Ecology Progress Series 362, 181–192.
Bottom up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic ocean.Crossref | GoogleScholarGoogle Scholar |

Pierce, G. J., Boyle, P. R., Hastie, L. C., and Shanks, A. M. (1994). Distribution and abundance of the fished population of Loligo forbesi in UK waters: analysis of fishery data. Fisheries Research 21, 193–216.
Distribution and abundance of the fished population of Loligo forbesi in UK waters: analysis of fishery data.Crossref | GoogleScholarGoogle Scholar |

Pierce, G. J., Valvanis, V. D., Guerra, A., Jereb, P., Orsi-Relini, L., Bellido, J. M., Katara, I., Piatkowski, U., Pereira, J., Balguerias, E., Sobrino, I., Lefkaditou, E., Wang, J., Santurtun, M., Boyle, P. R., Hastie, L. C., MacLeod, C. D., Smith, J. M., Viana, M., Gonzalez, A. F., and Zuur, A. F. (2008). A review of cephalopod-environment interactions in European seas. Hydrobiologia 612, 49–70.
A review of cephalopod-environment interactions in European seas.Crossref | GoogleScholarGoogle Scholar |

Rees, W. J., and Lumby, J. R. (1954). The abundance of octopus in the English channel. Journal of the Marine Biological Association of the United Kingdom 33, 515–536.
The abundance of octopus in the English channel.Crossref | GoogleScholarGoogle Scholar |

Reuter, R. F., Conners, M. E., Dicosimo, J., Gaichas, S., Ormseth, O., and Tenbrink, T. T. (2010). Managing non-target, data-poor species using catch limits: lessons from the Alaskan groundfish fishery. Fisheries Management and Ecology 17, 323–335.

Robert, M., Faraj, A., McAllister, M. K., and Rivot, E. (2010). Bayesian state-space modelling of the De Lury depletion model: strengths and limitations of the method, and application to the Moroccan octopus fishery. ICES Journal of Marine Science 67, 1272–1290.
Bayesian state-space modelling of the De Lury depletion model: strengths and limitations of the method, and application to the Moroccan octopus fishery.Crossref | GoogleScholarGoogle Scholar |

Rodhouse, P. G. (2008). Large-scale range expansion and variability. In ‘Ommastrephid squid populations: a review of environmental links’. California Cooperative Oceanic Fisheries Investigation report 49, pp. 83–89. Available at http://www.calcofi.org/ccpublications/ccreports/calcofi-reports-pdf.html [Verified 12 January 2015].

Rodhouse, P. G. (2010). Effects of environmental variability and change on cephalopod populations: an introduction to the CIAC ‘09 symposium special issue. ICES Journal of Marine Science 67, 1311–1313.

Sakurai, Y., Kiyofuji, H., Saitoh, S., Goto, T., and Hiyama, Y. (2000). Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions. ICES Journal of Marine Science 57, 24–30.
Changes in inferred spawning areas of Todarodes pacificus (Cephalopoda: Ommastrephidae) due to changing environmental conditions.Crossref | GoogleScholarGoogle Scholar |

Scheel, D. (2002). Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska. Marine Ecology 23, 185–206.
Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska.Crossref | GoogleScholarGoogle Scholar |

Scheel, D., and Anderson, R. C. (2012). Variability in the diet specialization of Enteroctopus dofleini in the eastern Pacific examined from midden contents. American Malacological Bulletin 30, 267–279.
Variability in the diet specialization of Enteroctopus dofleini in the eastern Pacific examined from midden contents.Crossref | GoogleScholarGoogle Scholar |

Scheel, D., and Bisson, L. (2012). Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910). Journal of Experimental Marine Biology and Ecology 416–417, 21–31.
Movement patterns of giant Pacific octopuses, Enteroctopus dofleini (Wülker, 1910).Crossref | GoogleScholarGoogle Scholar |

Scheel, D., Lauster, A., and Vincent, T. L. S. (2007). Habitat ecology of Enteroctopus dofleini from middens and live prey surveys in Prince William Sound, AK. In ‘Cephalopods Present and Past: New Insights and Fresh Perspectives’. (Eds N. H. Landman, R. A. Davis and R. H. Mapes.) pp. 434–458. (Springer: Dordrecht, Netherlands.)

Sims, D. W., Genner, M. J., Southward, A. J., and Hawkins, S. J. (2001). Timing of squid migration reflects North Atlantic climate variability. Proceedings. Biological Sciences 268, 2607–2611.
Timing of squid migration reflects North Atlantic climate variability.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2FgsVCqtQ%3D%3D&md5=2367b79b83d61546f6e7c48d06bf7d92CAS |

Sobrino, I., Silva, L., Bellido, J. M., and Ramos, F. (2002). Rainfall, river discharges and sea temperature as factors affecting abundance of two coastal benthic cephalopod species in the Gulf of Cádiz (SW Spain). Bulletin of Marine Science 71, 851–865.

Thiaw, M., Gascuel, D., Thiao, D., Thiaw, O. T., and Jouffre, D. (2011). Analysing environmental and fishing effects on a short-lived species stock: the dynamics of the octopus Octopus vulgaris population in Senegalese waters. African Journal of Marine Science 33, 209–222.
Analysing environmental and fishing effects on a short-lived species stock: the dynamics of the octopus Octopus vulgaris population in Senegalese waters.Crossref | GoogleScholarGoogle Scholar |

Toussaint, R. K., Scheel, D., Sage, G. K., and Talbot, S. L. (2012). Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska. Conservation Genetics 13, 1483–1497.
Nuclear and mitochondrial markers reveal evidence for genetically segregated cryptic speciation in giant Pacific octopuses from Prince William Sound, Alaska.Crossref | GoogleScholarGoogle Scholar |

Vidal, E. A. G., Haimovici, M., and Hackbart, V. C. S. (2010). Distribution of paralarvae and small juvenile cephalopods in relation to primary production in an upwelling area off southern Brazil. ICES Journal of Marine Science 67, 1346–1352.

Vincent, T. L. S., Scheel, D., and Hough, K. R. (1998). Some aspects of diet and foraging behavior of Octopus dofleini (Wülker, 1910) in its northernmost range. Marine Ecology 19, 13–29.
Some aspects of diet and foraging behavior of Octopus dofleini (Wülker, 1910) in its northernmost range.Crossref | GoogleScholarGoogle Scholar |

Waluda, C. M., Rodhouse, P. G., Podesta, G. P., Trathan, P. N., and Pierce, G. J. (2001). Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability. Marine Biology 139, 671–679.
Surface oceanography of the inferred hatching grounds of Illex argentinus (Cephalopoda: Ommastrephidae) and influences on recruitment variability.Crossref | GoogleScholarGoogle Scholar |

Whitney, F., and Robert, M. (2002). Structure of Haida Eddies and their transport of nutrient from coastal margins into the NE Pacific Ocean. Journal of Oceanography 58, 715–723.
Structure of Haida Eddies and their transport of nutrient from coastal margins into the NE Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XptV2hsbc%3D&md5=ecb7ce7f89845bf57cca9f798826ebd5CAS |

Zhang, Y., Wallace, J. M., and Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of Climate 10, 1004–1020.
ENSO-like interdecadal variability: 1900–93.Crossref | GoogleScholarGoogle Scholar |