Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Reproductive capacity of a marine species (Octopus tetricus) within a recent range extension area

Jorge E. Ramos A D , Gretta T. Pecl A , Jayson M. Semmens A , Jan M. Strugnell B , Rafael I. León A and Natalie A. Moltschaniwskyj C
+ Author Affiliations
- Author Affiliations

A Institute for Marine and Antarctic Studies, University of Tasmania, Private Bag 49, Hobart, Tas. 7001, Australia.

B Department of Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Vic. 3086, Australia.

C School of Environmental and Life Sciences, University of Newcastle, PO Box 127, Ourimbah, NSW 2258, Australia.

D Corresponding author. Email: jeramos@utas.edu.au

Marine and Freshwater Research 66(11) 999-1008 https://doi.org/10.1071/MF14126
Submitted: 9 May 2014  Accepted: 5 November 2014   Published: 7 April 2015

Abstract

To persist in the face of environmental change, species must adjust to the new conditions or change their geographical distribution, e.g. by range extension. Success for individuals within a zone of range extension requires the new environment to support their capacity to produce viable gametes and survival of the offspring. Reproductive characteristics of the polewards range-shifting Octopus tetricus were examined within the new range off north-eastern Tasmania, Australia, to assess whether it is likely to successfully establish in this extended area of its range. Approximately 44% of captured males and 14% of captured females were mature. Mature females with developing eggs were found throughout the year. Greater numbers of mature females were observed during the austral summer and spring, whereas mature males were observed all year round. Fecundity was high and developing embryos appeared to be viable. Our results suggest that O. tetricus is successfully reproducing beyond its historical range, the reproductive cycle is timed to favourable environmental conditions, and the population has the potential to be self-sustainable. The reproductive biology of O. tetricus may thus facilitate the establishment and prevalence of the population into new environments beyond the known historical distribution.

Additional keywords: East Australian Current, fecundity, Ocean warming, population dynamics, population establishment, range shift.


References

Amor, M. D., Norman, M. D., Cameron, H. E., and Strugnell, J. M. (2014). Allopatric speciation within a cryptic species complex of Australasian octopuses. PLoS ONE 9, e98982.
Allopatric speciation within a cryptic species complex of Australasian octopuses.Crossref | GoogleScholarGoogle Scholar | 24964133PubMed |

Amundsen, P. A., Salonen, E., Niva, T., Gjelland, K. O., Præbel, K., Sandlund, O. T., Knudsen, R., and Bøhn, T. (2012). Invader population speeds up life history during colonization. Biological Invasions 14, 1501–1513.
Invader population speeds up life history during colonization.Crossref | GoogleScholarGoogle Scholar |

Australian Government (2004). ‘Australian Code of Practice for the Care and Use of Animals for Scientific Purposes’, 7th edn. (Australian Government & National Health and Medical Research Council: Canberra.)

Barratt, I. M., and Allcock, A. L. (2010). Ageing octopods from stylets: development of a technique for permanent preparations. ICES Journal of Marine Science 67, 1452–1457.
Ageing octopods from stylets: development of a technique for permanent preparations.Crossref | GoogleScholarGoogle Scholar |

Bates, A. E., Bird, T. J., Stuart-Smith, R. D., Wernberg, T., Sunday, J. M., Barrett, N. S., Edgar, G. J., Frusher, S., Hobday, A. J., Pecl, G. T., Smale, D. A., and McCarthy, M. (2015). Distinguishing geographical range shifts from artefacts of detectability and sampling effort. Diversity & Distributions 21, 13–22.
Distinguishing geographical range shifts from artefacts of detectability and sampling effort.Crossref | GoogleScholarGoogle Scholar |

Bromham, L. (2011). The genome as a life-history character: why rate of molecular evolution varies between mammal species. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 366, 2503–2513.
The genome as a life-history character: why rate of molecular evolution varies between mammal species.Crossref | GoogleScholarGoogle Scholar | 21807731PubMed |

Burton, O. J., Phillips, B. L., and Travis, J. M. J. (2010). Trade-offs and the evolution of life-histories during range expansion. Ecology Letters 13, 1210–1220.
Trade-offs and the evolution of life-histories during range expansion.Crossref | GoogleScholarGoogle Scholar | 20718846PubMed |

Calosi, P., Turner, L. M., Hawkins, M., Bertolini, C., Nightingale, G., Truebano, M., and Spicer, J. I. (2013). Multiple physiological responses to multiple environmental challenges: an individual approach. Integrative and Comparative Biology 53, 660–670.
Multiple physiological responses to multiple environmental challenges: an individual approach.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsFegsrjI&md5=465ea55e04c3c10491a6617066837f74CAS | 23660590PubMed |

Carrasco, J. F., Arronte, J. C., and Rodriguez, C. (2006). Paralarval rearing of the common octopus, Octopus vulgaris (Cuvier). Aquaculture and Research 37, 1601–1605.
Paralarval rearing of the common octopus, Octopus vulgaris (Cuvier).Crossref | GoogleScholarGoogle Scholar |

Doubleday, Z., Semmens, J. M., Pecl, G., and Jackson, G. (2006). Assessing the validity of stylets as ageing tools in Octopus pallidus. Journal of Experimental Marine Biology and Ecology 338, 35–42.
Assessing the validity of stylets as ageing tools in Octopus pallidus.Crossref | GoogleScholarGoogle Scholar |

Edgar, G. J. (2000). ‘Australian Marine Life: The Plants and Animals of Temperate Waters’, 1st edn. (Reed New Holland Publishers: Sydney.)

Edgar, G. J., and Stuart-Smith, R. D. (2014). Systematic global assessment of reef fish communities by the Reef Life Survey program. Scientific Data 1, 140007.
Systematic global assessment of reef fish communities by the Reef Life Survey program.Crossref | GoogleScholarGoogle Scholar |

Forsythe, J. W. (2004). Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice. Marine and Freshwater Research 55, 331–339.
Accounting for the effect of temperature on squid growth in nature: from hypothesis to practice.Crossref | GoogleScholarGoogle Scholar |

Forsythe, J. W., and Hanlon, R. T. (1988). Effect of temperature on laboratory growth, reproduction and life span of Octopus bimaculoides. Marine Biology 98, 369–379.
Effect of temperature on laboratory growth, reproduction and life span of Octopus bimaculoides.Crossref | GoogleScholarGoogle Scholar |

Forsythe, J. W., and Van Heukelem, W. F. (1987). Growth. In ‘Cephalopod Life Cycles, Comparative Reviews’. Vol. 2. (Ed. P. R. Boyle.) pp. 135–156. (Academic Press: London.)

Fox, J., and Weisberg, S. (2011). An {R} Companion to Applied Regression. 2nd edn. (Sage: Thousand Oaks, CA.) Available at http://socserv.socsci.mcmaster.ca/jfox/Books/Companion [Verified 13 July 2013].

Grubert, M. A., and Wadley, V. A. (2000). Sexual maturity and fecundity of Octopus maorum in southeast Tasmania. Bulletin of Marine Science 66, 131–142.

Guzik, M. T., Norman, M. D., and Crozier, R. H. (2005). Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae). Molecular Phylogenetics and Evolution 37, 235–248.
Molecular phylogeny of the benthic shallow-water octopuses (Cephalopoda: Octopodinae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtVart7jL&md5=fa0c4de9e0b9ee03aac7f6da39f58f55CAS | 16009571PubMed |

Harris, G., Nilsson, C., Clementson, L., and Thomas, D. (1987). The water masses of the east coast of Tasmania: seasonal and interannual variability and the influence on phytoplankton biomass and productivity. Australian Journal of Marine and Freshwater Research 38, 569–590.
The water masses of the east coast of Tasmania: seasonal and interannual variability and the influence on phytoplankton biomass and productivity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXotFCqsw%3D%3D&md5=6d1df95adad520ab36f5a5cb4d3d94f5CAS |

Hermosilla, C. A., Rocha, F., Fiorito, G., González, A. F., and Guerra, A. (2010). Age validation in common octopus Octopus vulgaris using stylet increment analysis. ICES Journal of Marine Science 67, 1458–1463.
Age validation in common octopus Octopus vulgaris using stylet increment analysis.Crossref | GoogleScholarGoogle Scholar |

Herwig, J. N., Depczynski, M., Roberts, J. D., Semmens, J. M., Gagliano, M., and Heyward, A. J. (2012). Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea. PLoS ONE 7, e43679.
Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xht1Cnsb7J&md5=8e19defc123fbc4d3235e0c4057cca67CAS | 22912898PubMed |

Hill, K. L., Rintoul, S. R., Coleman, R., and Ridgway, K. R. (2008). Wind forced low frequency variability of the East Australia Current. Geophysical Research Letters 35, L08602.
Wind forced low frequency variability of the East Australia Current.Crossref | GoogleScholarGoogle Scholar |

Hobday, A., and Pecl, G. T. (2014). Identification of global marine hotspots: sentinels for change and vanguards for adaptation action. Reviews in Fish Biology and Fisheries 24, 415–425.
Identification of global marine hotspots: sentinels for change and vanguards for adaptation action.Crossref | GoogleScholarGoogle Scholar |

Johnson, C. R., Banks, S. C., Barrett, N. S., Cazassus, F., Dunstan, P. K., Edgar, G. J., Frusher, S. D., Gardner, C., Haddon, M., Helidoniotis, F., Hill, K. L., Holbrook, N. J., Hosie, G. W., Last, P. R., Ling, S. D., Melbourne-Thomas, J., Miller, K., Pecl, G. T., Richardson, A. J., Ridgway, K. R., Rintoul, S. R., Ritz, D. A., Ross, J., Sanderson, J. C., Shepherd, S. A., Slotwinski, A., Swadling, K. M., and Taw, N. (2011). Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania. Journal of Experimental Marine Biology and Ecology 400, 17–32.
Climate change cascades: shifts in oceanography, species’ ranges and subtidal marine community dynamics in eastern Tasmania.Crossref | GoogleScholarGoogle Scholar |

Joll, L. M. (1976). Mating, egg-laying and hatching of Octopus tetricus (Mollusca: Cephalopoda) in the laboratory. Marine Biology 36, 327–333.
Mating, egg-laying and hatching of Octopus tetricus (Mollusca: Cephalopoda) in the laboratory.Crossref | GoogleScholarGoogle Scholar |

Kang, Y. S., Kim, J. Y., Kim, H. G., and Park, J. H. (2002). Long-term changes in zooplankton and its relationship with squid, Todarodes pacificus, catch in Japan/East Sea. Fisheries Oceanography 11, 337–346.
Long-term changes in zooplankton and its relationship with squid, Todarodes pacificus, catch in Japan/East Sea.Crossref | GoogleScholarGoogle Scholar |

Kearney, M., and Porter, W. (2009). Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecology Letters 12, 334–350.
Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges.Crossref | GoogleScholarGoogle Scholar | 19292794PubMed |

Last, P. R., White, W. T., Gledhill, D. C., Hobday, A. J., Brown, R., Edgar, G. J., and Pecl, G. (2011). Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices. Global Ecology and Biogeography 20, 58–72.
Long-term shifts in abundance and distribution of a temperate fish fauna: a response to climate change and fishing practices.Crossref | GoogleScholarGoogle Scholar |

Leporati, S. C., and Hart, A. M. (2015). Stylet weight as a proxy for age in a merobenthic octopus population. Fisheries Research 161, 235–243.
Stylet weight as a proxy for age in a merobenthic octopus population.Crossref | GoogleScholarGoogle Scholar |

Levitus, S., Antonov, J. I., Boyer, T. P., Baranova, O. K., Garcia, H. E., Locarnini, R. A., Mishonov, A. V., Reagan, J. R., Seidov, D., Yarosh, E. S., and Zweng, M. M. (2012). World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophysical Research Letters 39, L10603.
World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010.Crossref | GoogleScholarGoogle Scholar |

Ling, S. D., Johnson, C. R., Ridgway, K., Hobday, A. J., and Haddon, M. (2009). Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biology 15, 719–731.
Climate-driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics.Crossref | GoogleScholarGoogle Scholar |

McMahon, R. F. (2002). Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance. Canadian Journal of Fisheries and Aquatic Sciences 59, 1235–1244.
Evolutionary and physiological adaptations of aquatic invasive animals: r selection versus resistance.Crossref | GoogleScholarGoogle Scholar |

Norman, M., and Reid, A. (2000). ‘A Guide to Squid, Cuttlefish and Octopuses of Australasia.’ (CSIRO Publishing: Melbourne.)

Oosthuizen, A., and Smale, M. J. (2003). Population biology of Octopus vulgaris on the temperate south-eastern coast of South Africa. Journal of the Marine Biological Association of the United Kingdom 83, 535–541.
Population biology of Octopus vulgaris on the temperate south-eastern coast of South Africa.Crossref | GoogleScholarGoogle Scholar |

Otero, J., Gonzalez, A. F., Sieiro, M. P., and Guerra, A. (2007). Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic. Fisheries Research 85, 122–129.
Reproductive cycle and energy allocation of Octopus vulgaris in Galician waters, NE Atlantic.Crossref | GoogleScholarGoogle Scholar |

Otero, J., Álvarez-Salgado, X. A., González, A. F., Miranda, A., Groom, S. B., Cabanas, J. M., Casas, G., Wheatley, B., and Guerra, A. (2008). Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean. Marine Ecology Progress Series 362, 181–192.
Bottom-up control of common octopus Octopus vulgaris in the Galician upwelling system, northeast Atlantic Ocean.Crossref | GoogleScholarGoogle Scholar |

Parmesan, C., and Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42.
A globally coherent fingerprint of climate change impacts across natural systems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXoslM%3D&md5=33c105ab8537600b093502b4f178fe4aCAS | 12511946PubMed |

Pecl, G. (2004). The in situ relationships between season of hatching, growth and condition in the southern calamary, Sepioteuthis australis. Marine and Freshwater Research 55, 429–438.
The in situ relationships between season of hatching, growth and condition in the southern calamary, Sepioteuthis australis.Crossref | GoogleScholarGoogle Scholar |

Pecl, G. T., and Moltschaniwskyj, N. A. (2006). Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season. ICES Journal of Marine Science 63, 995–1004.
Life history of a short-lived squid (Sepioteuthis australis): resource allocation as a function of size, growth, maturation, and hatching season.Crossref | GoogleScholarGoogle Scholar |

Pecl, G. T., Moltschaniwskyj, N. A., Tracey, S. R., and Jordan, A. R. (2004). Inter-annual plasticity of squid life history and population structure: ecological and management implications. Oecologia 139, 515–524.
Inter-annual plasticity of squid life history and population structure: ecological and management implications.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2c3jsV2jtQ%3D%3D&md5=e89df69c8837fcf2e5ce0f4eff78d039CAS | 15054657PubMed |

Phillips, B. L., Brown, G. P., and Shine, R. (2010). Life-history evolution in range-shifting populations. Ecology 91, 1617–1627.
Life-history evolution in range-shifting populations.Crossref | GoogleScholarGoogle Scholar | 20583704PubMed |

Pinsky, M. L., Worm, B., Fogarty, M. J., Sarmiento, J. L., and Levin, S. A. (2013). Marine taxa track local climate velocities. Science 341, 1239–1242.
Marine taxa track local climate velocities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVWrs7nK&md5=110482531e0ddbd99c0d379de316dbbbCAS | 24031017PubMed |

Pitt, N. R., Poloczanska, E. S., and Hobday, A. J. (2010). Climate-driven range changes in Tasmanian intertidal fauna. Marine and Freshwater Research 61, 963–970.
Climate-driven range changes in Tasmanian intertidal fauna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt7nO&md5=b56be911853651737c6ea021d3b0c74cCAS |

Poloczanska, E. S., Babcock, R. C., Butler, A., Hobday, A. J., Hoegh-Guldberg, O., Kunz, T. J., Matear, R., Milton, D. A., Okey, T. A., and Richardson, A. J. (2007). Climate change and Australian marine life. Oceanography and Marine Biology - an Annual Review 45, 407–478.
Climate change and Australian marine life.Crossref | GoogleScholarGoogle Scholar |

Pörtner, H. O., and Farrell, A. P. (2008). Physiology and climate change. Science 322, 690–692.
Physiology and climate change.Crossref | GoogleScholarGoogle Scholar | 18974339PubMed |

R Core Team (2013). R: a language and environment for statistical computing. (Version 3.0.1.). (R Foundation for Statistical Computing: Vienna.) Available at http://www.R-project.org/ [Verified 18 February 2013].

Ramos, J. E., Pecl, G. T., Moltschaniwskyj, N. A., Strugnell, J. M., León, R. I., and Semmens, J. M. (2014). Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia. PLoS ONE 9, e103480.
Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.Crossref | GoogleScholarGoogle Scholar | 25090250PubMed |

Rao, C. P., and Huston, D. (1995). Temperate shelf carbonates reflect mixing of distinct water masses, eastern Tasmania, Australia. Carbonates and Evaporites 10, 105–113.
Temperate shelf carbonates reflect mixing of distinct water masses, eastern Tasmania, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnt1Cht7c%3D&md5=3f1b1f9d15268fc96305ea0adadd1813CAS |

Richardson, A. J., and Schoeman, D. S. (2004). Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612.
Climate impact on plankton ecosystems in the northeast Atlantic.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXntlGrsr4%3D&md5=f8c061b46616bce5f059c7fa1259c9d7CAS | 15361622PubMed |

Ridgway, K. R. (2007). Long-term trend and decadal variability of the East Australian Current. Geophysical Research Letters 34, L13613.
Long-term trend and decadal variability of the East Australian Current.Crossref | GoogleScholarGoogle Scholar |

Ridgway, K. R., and Dunn, J. R. (2003). Mesoscale structure of the mean East Australian Current System and its relationship with topography. Progress in Oceanography 56, 189–222.
Mesoscale structure of the mean East Australian Current System and its relationship with topography.Crossref | GoogleScholarGoogle Scholar |

Robinson, L. M., Gledhill, D. C., Moltschaniwskyj, N. A., Hobday, A. J., Frusher, S., Barrett, N., Stuart-Smith, J., and Pecl, G. T. (2015). Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions. Global Environmental Change 31, 28–37.
Rapid assessment of an ocean warming hotspot reveals ‘high’ confidence in potential species’ range extensions.Crossref | GoogleScholarGoogle Scholar |

Sandery, P. A., and Kämpf, J. (2007). Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia. Estuarine, Coastal and Shelf Science 74, 684–696.
Transport timescales for identifying seasonal variation in Bass Strait, south-eastern Australia.Crossref | GoogleScholarGoogle Scholar |

Scandol, J., Rowling, K., and Graham, K. (Eds) (2008). Octopus (Octopus spp.). In ‘Status of Fisheries Resources in NSW 2006/2007’. pp. 193–196. (NSW Department of Primary Industries: Sydney.)

Semmens, J. M., Pecl, G. T., Villanueva, R., Jouffre, D., Sobrino, I., Wood, J. B., and Rigby, P. R. (2004). Understanding octopus growth: patterns, variability and physiology. Marine and Freshwater Research 55, 367–377.
Understanding octopus growth: patterns, variability and physiology.Crossref | GoogleScholarGoogle Scholar |

Silva, L., Sobrino, I., and Ramos, F. (2002). Reproductive biology of the common octopus Octopus vulgaris Cuvier, 1797 (Cephalopoda: Octopodidae) in the Gulf of Cádiz (SW Spain). Bulletin of Marine Science 71, 837–850.

Simmons, A. D., and Thomas, C. D. (2004). Changes in dispersal during species’ range expansions. American Naturalist 164, 378–395.
Changes in dispersal during species’ range expansions.Crossref | GoogleScholarGoogle Scholar | 15478092PubMed |

Sunday, J. M., Bates, A. E., and Dulvy, N. K. (2012). Thermal tolerance and the global redistribution of animals. Nature Climate Change 2, 686–690.
Thermal tolerance and the global redistribution of animals.Crossref | GoogleScholarGoogle Scholar |

Tafur, R., Villegas, P., Rabí, M., and Yamashiro, C. (2001). Dynamics of maturation, seasonality of reproduction and spawning grouds of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in Peruvian waters. Fisheries Research 54, 33–50.
Dynamics of maturation, seasonality of reproduction and spawning grouds of the jumbo squid Dosidicus gigas (Cephalopoda: Ommastrephidae) in Peruvian waters.Crossref | GoogleScholarGoogle Scholar |

Tasmanian Department of Primary Industries and Water (2009). Scalefish Fishery Management Plan review. Octopus fishery. Tasmania Wild Fisheries Management Branch, Department of Primary Industries and Water, Hobart.

Villanueva, R. (1995). Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement. Canadian Journal of Fisheries and Aquatic Sciences 52, 2639–2650.
Experimental rearing and growth of planktonic Octopus vulgaris from hatching to settlement.Crossref | GoogleScholarGoogle Scholar |

Villanueva, R., and Norman, D. (2008). Biology of the planktonic stages of benthic octopus. In ‘Oceanography and Marine Biology – an Annual Review’. Volume 46. (Eds R. N. Gibson, R. J. A. Atkinson, and J. D. M. Gordon.) pp. 105–202. (CRC Press.)

Ware, D. M., and Thomson, R. E. (2005). Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific. Science 308, 1280–1284.
Bottom-up ecosystem trophic dynamics determine fish production in the northeast Pacific.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXks1CiurY%3D&md5=7b8868a83e6971091d19fc69eeba3e0dCAS | 15845876PubMed |