Comparative assessment of aquatic macroinvertebrate diversity in irrigated rice fields and wetlands through different spatial scales: an additive partitioning approach
Mateus Marques Pires A E , Carla Bender Kotzian B , Marcia Regina Spies C and Vanessa dos Anjos Baptista DA Programa de Pós-Graduação em Biologia, Escola Politécnica, Universidade do Vale do Rio dos Sinos, Avenida Unisinos, 950, CEP 93022-000, São Leopoldo, RS, Brazil.
B Departamento de Biologia e Programa de Pós-graduação em Biodiversidade Animal, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Faixa de Camobi, kilómetro 9, CEP 97105-900, Santa Maria, RS, Brazil.
C Universidade Federal do Pampa, Avenida Antônio Trilha, 1847, CEP 97300-000, São Gabriel, RS, Brazil.
D Universidade Regional Integrada do Alto Uruguai e das Missões, Avenida Batista Bonoto Sobrinho, CEP 97700-000, Santiago, RS, Brazil.
E Corresponding author. Email: marquespiresm@gmail.com
Marine and Freshwater Research 67(3) 368-379 https://doi.org/10.1071/MF14109
Submitted: 17 April 2014 Accepted: 5 February 2015 Published: 29 June 2015
Abstract
The role of rice fields as refuges for wetland macroinvertebrates was assessed at multiple spatial scales, and macroinvertebrate diversity was compared between fields and natural wetlands. Because irrigated rice fields are highly disturbed environments, and have lower environmental complexity and heterogeneity in the irrigated phase than do wetlands, we hypothesised that the fields would sustain lower diversity than do wetlands, especially at broader spatial scales. Wetlands and rice fields from three regions in southern Brazil were simultaneously sampled. In wetlands, the broadest scale (hydrographic basin) contributed the most to macroinvertebrate diversity. In rice fields, besides hydrographic basin level, narrower scales (site level) also contributed to macroinvertebrate γ diversity. Different cultivation and management systems may be responsible for the contribution of narrower scales to γ diversity in rice fields. Differences in community structure in both environments were determined by wetland drainage practices, and they were affected by the ENSO climatic phenomenon, which influenced macrophyte diversity in wetlands. Wetland communities were characterised by macrophyte-associated, passive-dispersing taxa, whereas rice fields contained short-lived, active-dispersing macroinvertebrates. The present study demonstrated that rice fields do not represent suitable refugia for wetland-expelled macroinvertebrates because they do not support similar community structure, at least under some management practices and climatic conditions influenced by ENSO.
Additional keywords: beta-diversity, community structure, multiple spatial scales.
References
Accordi, I. A. (2003). Levantamento e análise da conservação da avifauna na sub-bacia do Baixo-Jacuí, Rio Grande do Sul, Brasil. Atualidades Ornitológicas 114, 7–28.ANA (2006). ‘Região Hidrográfica do Uruguai’. (Agência Nacional das Águas.) Available at http://www2.ana.gov.br/Paginas/portais/bacias/uruguai.aspx [Verified 4 August 2014].
Anderson, M. J., Crist, T. O., Chase, J. M., Vellend, M., Inouye, D., Freestone, A. L., Sanders, N. J., Cornell, H. V., Comita, L. S., Davies, K. F., Harrison, S. P., Kraft, N. J. B., Stegen, C., and Swenson, N. G. (2011). Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist. Ecology Letters 14, 19–28.
| Navigating the multiple meanings of β diversity: a roadmap for the practicing ecologist.Crossref | GoogleScholarGoogle Scholar | 21070562PubMed |
Bambaradenyia, C. N. B., and Amarasinghe, F. P. (2004). ‘Biodiversity Associated with the Rice Field Agro-ecosystem in Asian Countries: a Brief Review.’ Working Paper 63. (International Water Management Institute: Colombo, Sri Lanka.)
Bennett, A. F., Radford, J. Q., and Haslem, A. (2006). Properties of land mosaics: implications for nature conservation in agricultural environments. Biological Conservation 133, 250–264.
| Properties of land mosaics: implications for nature conservation in agricultural environments.Crossref | GoogleScholarGoogle Scholar |
Bilton, D. T., Freeland, J. R., and Okamura, B. (2001). Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32, 159–181.
| Dispersal in freshwater invertebrates.Crossref | GoogleScholarGoogle Scholar |
Bueno-Silva, M., and Fischer, M. L. (2005). Dinâmica populacional de Drepanotrema cimex (Moricand, 1839) (Mollusca: Basommatophora: Planorbidae) no Parque Barigüi, Curitiba, Paraná, Brasil. Biotemas 18, 129–141.
Carvalho, A. B. P., and Ozório, C. P. (2007). Avaliação sobre os banhados do Rio Grande do Sul, Brasil. Revista de Ciências Ambientais 1, 83–95.
Collier, K. J., and Clements, B. L. (2011). Influences of catchment and corridor imperviousness on urban stream macroinvertebrate communities at multiple spatial scales. Hydrobiologia 664, 35–50.
| Influences of catchment and corridor imperviousness on urban stream macroinvertebrate communities at multiple spatial scales.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXisVKjtrw%3D&md5=f1bdaf4e40e3fc5c9715e0a27f02c7d6CAS |
Crist, T. O., Veech, J. A., Gering, J. C., and Sumemrville, K. S. (2003). Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β and γ diversity. American Naturalist 162, 734–743.
| Partitioning species diversity across landscapes and regions: a hierarchical analysis of α, β and γ diversity.Crossref | GoogleScholarGoogle Scholar | 14737711PubMed |
Czech, H. A., and Parsons, K. C. (2002). Agricultural wetlands and waterbirds: a review. Waterbirds 25, 56–65.
Dantas, M. E., Vieiro, A. C., and Silva, D. R. A. (2010). Origem das paisagens. In ‘Geodiversidade do Estado do Rio Grande do Sul’. (Eds A. C. Viero and D. R. A. da Silva.) pp. 35–50. (CPRM: Porto Alegre, Brazil.)
de Ávila, A. C., Stenert, C., and Maltchik, L. (2011). Partitioning macroinvertebrate diversity across different spatial scales in southern Brazil coastal wetlands. Wetlands 31, 459–469.
| Partitioning macroinvertebrate diversity across different spatial scales in southern Brazil coastal wetlands.Crossref | GoogleScholarGoogle Scholar |
Ellingsen, K. E., and Gray, J. S. (2002). Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf? Journal of Animal Ecology 71, 373–389.
| Spatial patterns of benthic diversity: is there a latitudinal gradient along the Norwegian continental shelf?Crossref | GoogleScholarGoogle Scholar |
Embrapa Clima Temperado (2005). ‘Cultivo do Arroz Irrigado no Brasil.’ Sistemas de Produção, 3. Available at http://sistemasdeproducao.cnptia.embrapa.br/FontesHTML/Arroz/ArrozIrrigadoBrasil/index.htm [Verified 30 March 2011].
Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., Sirami, C., Siriwardena, G. M., and Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology Letters 14, 101–112.
| Functional landscape heterogeneity and animal biodiversity in agricultural landscapes.Crossref | GoogleScholarGoogle Scholar | 21087380PubMed |
Fernández, H. R., and Domínguez, E. (2009). ‘Guide for the Determination of the Benthic Arthropods of South America.’ (Fundación Miguel Lillo: Tucumán, Argentina.) [In Spanish]
Fernando, C. H., Forest, H. S., and Herbert, C. (1993). ‘A Bibliography of References to Rice Field Aquatic Fauna, their Ecology and Rice-fish Culture.’ (State University of New York Press: New York.)
Gomes, A. S., and Magalhães Jr, A. M. D. (2004). ‘Arroz Irrigado no Sul do Brasil (Irrigated Rice in Southern Brazil)’. (Embrapa Clima Temperado: Pelotas, Brazil.)
Gonzáles-Solís, J., and Ruiz, X. (1996). Succession and secondary production of gastropods in the Ebro Delta rice fields. Hydrobiologia 337, 85–92.
| Succession and secondary production of gastropods in the Ebro Delta rice fields.Crossref | GoogleScholarGoogle Scholar |
Halwart, M. (2006). Biodiversity and nutrition in rice-based aquatic ecosystems. Journal of Food Composition and Analysis 19, 747–751.
| Biodiversity and nutrition in rice-based aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |
Heckman, C. W. (1979). Rice field ecology in northeastern Thailand. Monographiae Biologicae 34, 1–6.
| Rice field ecology in northeastern Thailand.Crossref | GoogleScholarGoogle Scholar |
Heino, J., Moutka, T., and Paavola, R. (2003). Determinants of macroinvertebrate diversity in headwater streams: regional and local influences. Journal of Animal Ecology 72, 425–434.
| Determinants of macroinvertebrate diversity in headwater streams: regional and local influences.Crossref | GoogleScholarGoogle Scholar |
Heiss, J. S., Harp, G. L., and Meisch, M. V. (1986). Aquatic Coleoptera associated with Arkansas rice, with observations on the effects of Carbofuran, Molinate, predatory fish and late-planting. The Southwestern Naturalist 31, 521–525.
| Aquatic Coleoptera associated with Arkansas rice, with observations on the effects of Carbofuran, Molinate, predatory fish and late-planting.Crossref | GoogleScholarGoogle Scholar |
Hepp, L. U., and Melo, A. S. (2013). Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances. Hydrobiologia 703, 239–246.
| Dissimilarity of stream insect assemblages: effects of multiple scales and spatial distances.Crossref | GoogleScholarGoogle Scholar |
INMET (2012). Dados Meteorológicos: Estações Automáticas. (Instituto Nacional de Meteorologia.) Available at http://www.inmet.gov.br/portal/ [Verified 20 October 2012].
IRGA (2012). Acompanhamento da Semeadura do Arroz Irrigado no Rio Grande do Sul: Safra 2011/2012. (Instituto Rio-grandense do Arroz.) Available at http://www.irga.rs.gov.br [Verified 30 June 2012].
Johnson, R. K., and Goedkopp, W. (2002). Littoral macroinvertebrate communities: spatial scale and ecological relationships. Freshwater Biology 47, 1840–1854.
| Littoral macroinvertebrate communities: spatial scale and ecological relationships.Crossref | GoogleScholarGoogle Scholar |
Johnson, R. K., Goedkopp, W., and Sandin, L. (2004). Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes. Freshwater Biology 49, 1179–1194.
| Spatial scale and ecological relationships between the macroinvertebrate communities of stony habitats of streams and lakes.Crossref | GoogleScholarGoogle Scholar |
Jones, M. M., Tuomisto, H., Clark, D. B., and Olivas, P. (2006). Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns. Journal of Ecology 94, 181–195.
| Effects of mesoscale environmental heterogeneity and dispersal limitation on floristic variation in rain forest ferns.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhvVClsLk%3D&md5=939f4297de0aae51390007a4a4a2e96fCAS |
Junk, W. J. (2013). Current state of knowledge regarding South America wetlands and their future under global climate change Aquatic Sciences 75, 113–131.
| Current state of knowledge regarding South America wetlands and their future under global climate changeCrossref | GoogleScholarGoogle Scholar |
Kumaraswamy, S., and Kunte, K. (2013). Integrating biodiversity and conservation with modern agricultural landscapes. Biodiversity and Conservation 22, 2735–2750.
| Integrating biodiversity and conservation with modern agricultural landscapes.Crossref | GoogleScholarGoogle Scholar |
Lacey, L. A., and Lacey, C. M. (1990). The medical importance of riceland mosquitoes and their control using alternatives to chemical insecticides. Journal of the American Mosquito Control Association 2, 1–93.
| 1:STN:280:DyaK3czjtFWnsQ%3D%3D&md5=12bc210023151c1dedb55f19d5665dc5CAS | 1973949PubMed |
Lande, R. (1996). Statistics and partitioning of species diversity, and similarity among multiple communities. Oikos 76, 5–13.
| Statistics and partitioning of species diversity, and similarity among multiple communities.Crossref | GoogleScholarGoogle Scholar |
Lawler, S. P. (2001). Rice fields as temporary wetlands. Israel Journal of Zoology 47, 513–528.
| Rice fields as temporary wetlands.Crossref | GoogleScholarGoogle Scholar |
Legendre, P., and Legendre, L. (1998). ‘Numerical Ecology.’ (Elsevier: Amsterdam.)
Leitão, S., Pinto, P., Pereira, T., and Brito, M. F. (2007). Spatial and temporal variability of macroinvertebrate communities in two farmed Mediterranean rice fields. Aquatic Ecology 41, 373–386.
| Spatial and temporal variability of macroinvertebrate communities in two farmed Mediterranean rice fields.Crossref | GoogleScholarGoogle Scholar |
Ligeiro, R., Melo, A. S., and Callisto, M. (2010). Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment. Freshwater Biology 55, 424–435.
| Spatial scale and the diversity of macroinvertebrates in a Neotropical catchment.Crossref | GoogleScholarGoogle Scholar |
Lupi, D., Rocco, A., and Rossaro, B. (2013). Benthic macroinvertebrates in Italian rice fields. Journal of Limnology 72, e15.
| Benthic macroinvertebrates in Italian rice fields.Crossref | GoogleScholarGoogle Scholar |
Machado, I. F., and Maltchik, L. (2010). Can management practices in rice fields contribute to amphibian conservation in southern Brazilian wetlands? Aquatic Conservation. Marine and Freshwater Ecosystems 20, 39–46.
Maltchik, L., Costa, E. S., Becker, C. G., and Oliveira, A. E. (2003). Inventory of wetlands of Rio Grande do Sul (Brazil). Pesquisas: série Botânica 53, 89–100.
Maluf, J. R. T. (2000). Nova classificação climática do estado do Rio Grande do Sul. Revista Brasileira de Agrometeorologia 8, 141–150.
McPhaden, M. J. (2002). El Niño and La Niña: causes and global consequences. In ‘Encyclopedia of Global Environmental Change. Volume 1. The Earth System: Physical and Chemical Dimensions of Global Environmental Change’. (Eds M. C. MacCracken and J. S. Perry.) pp. 353–370. (Wiley: Chichester, UK).
Mendelssohn, I. A., and Batzer, D. (2006). Abiotic constraints for wetland plants and animals. In ‘Ecology of Freshwater and Estuarine Wetlands’. (Eds D. Batzer and R. R. Sharitz.) pp. 82–114. (University of California Press: Berkeley, CA.)
Merritt, R. W., Cummins, K. W., Berg, M. B. (2008). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall/Hunt: Dubuque, IA.)
Millennium Ecosystem Assessment (2005). ‘Ecosystems and Human Well-being: Wetlands and Water Synthesis’. (World Resources Institute: Washington, DC.)
Mitsch, W. J., and Gosselink, J. G. (2000). ‘Wetlands.’ (Wiley: New York.)
Molozzi, J., Hepp, L. U., and Dias, A. S. (2007). Influence of rice crop on the benthic community in Itajaí Valley (Santa Catarina, Brazil). Acta Limnológica Brasiliensia 19, 383–392.
Moore, P. D. (2006). ‘Wetlands: Biomes of the Earth.’ (Chelsea House: New York.)
Mormul, R. P., Thomaz, S. M., Takeda, A. M., and Behrend, R. D. L. (2011). Structural complexity and distance from source habitat determine invertebrate abundance and diversity. Biotropica 43, 738–745.
| Structural complexity and distance from source habitat determine invertebrate abundance and diversity.Crossref | GoogleScholarGoogle Scholar |
Nekola, J., and White, P. S. (1999). The distance decay of similarity in biogeography and ecology. Journal of Biogeography 26, 867–878.
| The distance decay of similarity in biogeography and ecology.Crossref | GoogleScholarGoogle Scholar |
Pillar, V. D. P., Müller, S. C., Castilhos, Z. M. S., and Jacques, A. V. A. (2009). ‘Campos Sulinos: Conservação e Uso Sustentável da Biodiversidade.’ (Ministério do Meio Ambiente: Brasília, Brazil.)
Pointier, J. P., and David, P. (2004). Biological control of Biomphalaria glabrata, the intermediate host of schistosomes, by Marisa cornuarietis in ponds of Guadeloupe: long-term impact on the local snail fauna and aquatic flora. Biological Control 29, 81–89.
| Biological control of Biomphalaria glabrata, the intermediate host of schistosomes, by Marisa cornuarietis in ponds of Guadeloupe: long-term impact on the local snail fauna and aquatic flora.Crossref | GoogleScholarGoogle Scholar |
R Development Core Team (2012). R: a language and environment for statistical computing. Available at http://www.R-project.org [Verified 1 November 2011].
Righi, F. P. (2012). A cartografia ambiental como suporte para o estudo das unidades da paisagem: o caso da reserva biológica de São Donato – RS. Master Dissertation, Universidade de São Paulo, Brazil.
Russi, D., ten Brink, P., Farmer, A., Badura, T., Coates, D., Förster, J., Kumar, R., and Davidson, N. (2013). ‘The Economics of Ecosystems and Biodiversity for Water and Wetlands.’ (Institute for European Environmental Policy: London.)
Schneider, C., and Gies, D. (2004). Effects of El Niño–Southern Oscillation on southernmost South America precipitation at 53°S revealed from Ncep–Ncar reanalyses and weather station data. International Journal of Climatology 24, 1057–1076.
| Effects of El Niño–Southern Oscillation on southernmost South America precipitation at 53°S revealed from Ncep–Ncar reanalyses and weather station data.Crossref | GoogleScholarGoogle Scholar |
Scott, D. A., and Poole, C. M. (1989). ‘A Status Overview of Asian Wetlands.’ (Asian Wetland Bureau: Kuala Lumpur.)
SOSBAI (2010). ‘Arroz Irrigado: Recomendações Técnicas da Pesquisa para o Sul do Brasil.’ (Sociedade Sul-brasileira de Arroz Irrigado: Porto Alegre, Brazil.)
Soininen, J., McDonald, R., and Hillebrand, H. (2007). The distance decay of similarity in ecological communities. Ecography 30, 3–12.
| The distance decay of similarity in ecological communities.Crossref | GoogleScholarGoogle Scholar |
Stendera, S. E. S., and Johnson, R. K. (2005). Additive partitioning of aquatic invertebrate species diversity across multiple scales. Freshwater Biology 50, 1360–1375.
| Additive partitioning of aquatic invertebrate species diversity across multiple scales.Crossref | GoogleScholarGoogle Scholar |
Stenert, C., Santos, E. M., and Maltchik, L. (2004). Levantamento da diversidade de macroinvertebrados em áreas úmidas do Rio Grande do Sul (Brasil). Acta Biologica Leopoldensia 26, 225–240.
Stenert, C., Bacca, R. C., Maltchik, L., and Rocha, O. (2009). Can hydrologic management practices of rice fields contribute to macroinvertebrate conservation in southern Brazil wetlands? Hydrobiologia 635, 339–350.
| Can hydrologic management practices of rice fields contribute to macroinvertebrate conservation in southern Brazil wetlands?Crossref | GoogleScholarGoogle Scholar |
Stenert, C., Bacca, R. C., de Ávila, A. C., Maltchik, L., and Rocha, O. (2010). Do hydrologic regimes used in rice fields compromise the viability of resting stages of aquatic invertebrates? Wetlands 30, 989–996.
| Do hydrologic regimes used in rice fields compromise the viability of resting stages of aquatic invertebrates?Crossref | GoogleScholarGoogle Scholar |
Thomaz, S. M., Dibble, E. D., Evangelista, L. R., Higuti, J., and Bini, L. M. (2008). Influence of aquatic macrophyte habitat complexity on invertebrate abundance and richness in tropical lagoons. Freshwater Biology 53, 358–367.
Trivinho-Strixino, S. (2011). ‘Larvas de Chironomidae: Guia de identificação.’ (Universidade Federal de São Carlos: São Carlos, Brazil.)
Veech, J. A., Summerville, K. S., Crist, T. O., and Gering, J. C. (2002). The additive partitioning of diversity: recent revival of an old idea. Oikos 99, 3–9.
| The additive partitioning of diversity: recent revival of an old idea.Crossref | GoogleScholarGoogle Scholar |
Whittaker, R. H. (1960). Vegetation of the Siskiyou Mountains, Oregon and California. Ecological Monographs 30, 279–338.
| Vegetation of the Siskiyou Mountains, Oregon and California.Crossref | GoogleScholarGoogle Scholar |
Whittaker, R. H. (1972). Evolution and measurement of species diversity. Taxon 21, 213–251.
| Evolution and measurement of species diversity.Crossref | GoogleScholarGoogle Scholar |
Wrubleski, D. A., and Ross, L. C. M. (2011). Aquatic invertebrates of prairie wetlands: community composition, ecological roles, and impacts of agriculture. In ‘Arthropods of Canadian Grasslands: Inhabitants of a Changing Landscape’. (Ed. K. D. Floate.) pp. 91–116. (Biological Survey of Canada: Ottawa, ON, Canada.)
Zamanillo, E. A., Tucci, C. E. M., Simões-Lopes, M. O., and Lanna, A. E. (1989). Management of navigation in the Jacuí River. Water International 14, 181–192.
| Management of navigation in the Jacuí River.Crossref | GoogleScholarGoogle Scholar |
Zar, J. H. (1999). ‘Biostatistical Analysis.’ (Prentice Hall: New Jersey, NJ.)