Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

A rod-like bacterium is responsible for high molybdenum concentrations in the tropical sponge Halichondria phakellioides

Constanza Buccella A , Belinda Alvarez A B , Karen Gibb A and Anna Padovan A C
+ Author Affiliations
- Author Affiliations

A Research Institute for the Environment and Livelihoods, Charles Darwin University, Darwin, NT 0909, Australia.

B Museum and Art Gallery of the Northern Territory, Darwin, NT 0801, Australia.

C Corresponding author. Email: anna.padovan@cdu.edu.au

Marine and Freshwater Research 65(9) 838-848 https://doi.org/10.1071/MF13254
Submitted: 19 September 2013  Accepted: 12 December 2013   Published: 4 July 2014

Abstract

The tropical marine sponge, Halichondria phakellioides, from Darwin Harbour contains high concentrations of molybdenum. A rod-like bacterium extracellular in sponge tissue was observed using transmission electron microscopy. Molybdenum was located within these bacteria, but not in sponge cells. This is the first report of the trace element molybdenum localised in a sponge bacterial symbiont. Many different bacterial symbionts were identified in the sponge by sequence analysis so the identity of the molybdenum-accumulating bacterium could only be inferred.

Additional keywords: pyrosequencing, X-ray microanalysis.


References

Abbott, O. J. (1977). The toxicity of ammonium molybdate to marine invertebrates. Marine Pollution Bulletin 8, 204–205.
The toxicity of ammonium molybdate to marine invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1cXhs1ygsw%3D%3D&md5=6eb4eb3372ca6d33f8add388497d672fCAS |

Aguiar, P., Medeiros, J., Costa, A., Humanes, M., and Barreto, M. (2010). Distribution of nickel in the tissue of Cliona viridis from the coast of San Miguel (Azores). In ‘VIII World Sponge Conference 2010, Girona, Spain, 20–24 September 2010’, p. 129.

Amsler, C. D., Moeller, C. B., McClintock, J. B., Iken, K. B., and Baker, B. J. (2000). Chemical defences against diatom fouling in Antarctic marine sponges. Biofouling 16, 29–45.
Chemical defences against diatom fouling in Antarctic marine sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXovVeqsL8%3D&md5=75878a6775f8fc771e32dec3f82cdc95CAS |

Araújo, M., Cruz, A., Humanes, M., Lopes, M., da Silva, J. A. L., and da Silva, J. J. R. (1999). Elemental composition of Demospongiae from the eastern Atlantic coastal waters. Chemical Speciation and Bioavailability 11, 25–36.
Elemental composition of Demospongiae from the eastern Atlantic coastal waters.Crossref | GoogleScholarGoogle Scholar |

Berthet, B. B., Catherine, M. C., Pérez, T., and Amiard-Triquet, C. (2005). Metallothionein concentration in sponges (Spongia officinalis) as a biomarker of metal contamination. Comparative Biochemistry and Physiology 141, 306–313.

Bewley, C. A., Holland, N. D., and Faulkner, D. J. (1996). Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts. Experientia 52, 716–722.
Two classes of metabolites from Theonella swinhoei are localized in distinct populations of bacterial symbionts.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28Xkslymu7o%3D&md5=3b679448308010b8ed7cfa7662878974CAS | 8698116PubMed |

Bowen, V. T., and Sutton, V. (1951). Comparative studies of mineral constituents of marine sponges. Journal of Marine Marine Research 10, 153–169.
| 1:CAS:528:DyaG38XitFelsA%3D%3D&md5=480898d0a4ba9158d4f0abbbe322b201CAS |

Capon, R. J., Elsbury, K., Butler, M. S., Lu, C. C., Hooper, J. N. A., Rostas, J. A. P., O'Brien, K. J., Mudge, L.-M., and Sim, A. T. R. (1993). Extraordinary levels of cadmium and zinc in a marine sponge, Tedania charcoti Topsent: inorganic chemical defense agents. Cellular and Molecular Life Sciences 49, 263–264.
Extraordinary levels of cadmium and zinc in a marine sponge, Tedania charcoti Topsent: inorganic chemical defense agents.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXks1ylsL4%3D&md5=577d9ea589cadc790c1b2c15838b370fCAS |

Capone, K. A., Dowd, S. E., Stamatas, G. N., and Nikolovski, J. (2011). Diversity of the human skin microbiome early in life. The Journal of Investigative Dermatology 131, 2026–2032.
Diversity of the human skin microbiome early in life.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtFOls7fF&md5=6e2ca0a25e6bdc909fc3a5a6dd04b97dCAS | 21697884PubMed |

Carballo, J. L., Naranjo, S. A., and Garcia-Gómez, J. C. (1996). Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula). Marine Ecology Progress Series 135, 109–122.
Use of marine sponges as stress indicators in marine ecosystems at Algeciras Bay (southern Iberian Peninsula).Crossref | GoogleScholarGoogle Scholar |

Cebrian, E., Martí, R., Uriz, M. J., and Turon, X. (2003). Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: Metal accumulation and biological responses. Marine Pollution Bulletin 46, 1273–1284.
Sublethal effects of contamination on the Mediterranean sponge Crambe crambe: Metal accumulation and biological responses.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXnvVWqsrs%3D&md5=5ac4399f1171c4ca9244a325e3a418c1CAS | 14550340PubMed |

Cebrian, E., Martí, R., Agell, G., and Uriz, M. J. (2006). Response of the Mediterranean sponge Chondrosia reniformis Nardo to heavy metal pollution. Environmental Pollution 141, 452–458.
Response of the Mediterranean sponge Chondrosia reniformis Nardo to heavy metal pollution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjtFGktr0%3D&md5=81725c91ca50d579b119d9b89a31fc93CAS | 16271813PubMed |

Collier, R. W. (1985). Molybdenum in the northeast Pacific Ocean. Limnology and Oceanography 30, 1351–1354.
Molybdenum in the northeast Pacific Ocean.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XpsV2rtg%3D%3D&md5=c1676bb95f8ba0b763218c24bc80f743CAS |

da Silva, J. J. R. F., and Williams, R. J. P. (1991). ‘The Biological Chemistry of the Elements.’ (Clarendon Press: Oxford, UK.)

Dendy, A., and Frederick, L. M. (1924). On a collection of sponges from the Abrolhos Islands, Western Australia. Journal of the Linnean Society 35, 477–519.

DeSantis, T. Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E. L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G. L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Applied and Environmental Microbiology 72, 5069–5072.
Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XnsVaqtLg%3D&md5=18694e78f25a30ce129dfc18e7193e36CAS | 16820507PubMed |

Dowd, S. E., Callaway, T. R., Wolcott, R. D., Sun, Y., McKeehan, T., Hagevoort, R. G., and Edrington, T. S. (2008a). Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP). BMC Microbiology 8, 125.
Evaluation of the bacterial diversity in the feces of cattle using 16S rDNA bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP).Crossref | GoogleScholarGoogle Scholar | 18652685PubMed |

Dowd, S. E., Sun, Y., Wolcott, R. D., Domingo, A., and Carroll, J. A. (2008b). Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs. Foodborne Pathogens and Disease 5, 459–472.
Bacterial tag-encoded FLX amplicon pyrosequencing (bTEFAP) for microbiome studies: bacterial diversity in the ileum of newly weaned Salmonella-infected pigs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtVWksbjF&md5=14ae824795cc318247d5edce49e001feCAS | 18713063PubMed |

Dunlap, W. C., and Shick, J. M. (1998). Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective. Journal of Phycology 34, 418–430.
Ultraviolet radiation-absorbing mycosporine-like amino acids in coral reef organisms: a biochemical and environmental perspective.Crossref | GoogleScholarGoogle Scholar |

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics Applications Note 26, 2460–2461.
Search and clustering orders of magnitude faster than BLAST.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1WhtbzM&md5=c2ecba92636eac92cd1433ee02ab02d8CAS |

Eisler, R. (1981) ‘Trace Metal Concentrations in Marine Organisms.’ (Pergamon Press: Elmsford, NY.)

Elliott, B. B., and Mortenson, L. E. (1976). Regulation of molybdate transport by Clostridium pasteurianum. Journal of Bacteriology 127, 770–779.
| 1:CAS:528:DyaE28XlsFKhtL0%3D&md5=8026a498ff238173002f2fdbbeb1b630CAS | 956118PubMed |

Fan, L., Reynolds, D., Liu, M., Stark, M., Kjellberg, S., Webster, N. S., and Thomas, T. (2012). Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proceedings of the National Academy of Sciences, USA 109, 1878–1887.
Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts.Crossref | GoogleScholarGoogle Scholar |

Ferreira, S. L. C., dos Santos, H. C., Costa, A. C. S., and de la Guardia, M. (2004). Procedures of separation and pre-concentration for molybdenum determination using atomic spectrometry – a review. Applied Spectroscopy Reviews 39, 457–474.
Procedures of separation and pre-concentration for molybdenum determination using atomic spectrometry – a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXot1ahs7w%3D&md5=eea46934da995ae35ffc221b64b31109CAS |

Flowers, A. E., Garson, M. J., Webb, R. I., Dumdei, E. J., and Charan, R. D. (1998). Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller). Cell and Tissue Research 292, 597–607.
Cellular origin of chlorinated diketopiperazines in the dictyoceratid sponge Dysidea herbacea (Keller).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivFWgurc%3D&md5=c721efd03a16f5fa86bb703f5675463dCAS | 9582417PubMed |

Garson, M. J., Dexter, A. F., Lambert, L. K., and Liokas, V. (1992). Isolation of the bioactive terpene 7-deacetoxy-olepupuane from the temperate marine sponge Dysidea sp. Journal of Natural Products 55, 364–367.
Isolation of the bioactive terpene 7-deacetoxy-olepupuane from the temperate marine sponge Dysidea sp.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XhsFajt7Y%3D&md5=727f6b9a5179057df16c522bd0ab761fCAS | 1593283PubMed |

Garson, M. J., Zimmermann, M. P., Battershill, C. N., Holden, J. L., and Murphy, P. T. (1994). The distribution of brominated longchain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis. Lipids 29, 509–516.
The distribution of brominated longchain fatty acids in sponge and symbiont cell types from the tropical marine sponge Amphimedon terpenensis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2cXltVCmsr8%3D&md5=4f6218cc15a4595bcb9a17e8b0700e5fCAS | 7968273PubMed |

Garson, M. J., Flower, A. E., Webb, R. I., Charan, R. D., and McCaffrey, E. J. (1998). A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation. Cell and Tissue Research 293, 365–373.
A sponge/dinoflagellate association in the haplosclerid sponge Haliclona sp.: cellular origin of cytotoxic alkaloids by Percoll density gradient fractionation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXktlyisLw%3D&md5=e148f5e16f6c8d1792d4bcd77282f960CAS | 9662659PubMed |

Glover, H. E. (1985). The physiology and ecology of the marine cyanobacterial genus Synechococcus. In ‘Advances in Aquatic Microbiology, Vol. 3’. (Eds H. W. Jannasch and P. J. le B. Williams.) pp. 49–107. (Academic Press: London.)

Hansen, I. V., Weeks, J. M., and Depledge, M. E. (1995). Accumulation of copper, zinc, cadmium and chromium by the marine sponge Halichondria panacea Pallas and the implications for biomonitoring. Marine Pollution Bulletin 31, 133–138.
Accumulation of copper, zinc, cadmium and chromium by the marine sponge Halichondria panacea Pallas and the implications for biomonitoring.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXnvFCntrg%3D&md5=c5b4cce5f6c6066f0b9ad50cafac074dCAS |

Hentschel, U., Schmid, M., Wagner, M., Fieseler, L., Gernert, C., and Hacker, J. (2001). Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola. FEMS Microbiology Ecology 35, 305–312.
Isolation and phylogenetic analysis of bacteria with antimicrobial activities from the Mediterranean sponges Aplysina aerophoba and Aplysina cavernicola.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXislGrsbk%3D&md5=598b39cf4bbff92d7a8d1047c2a69fa9CAS | 11311441PubMed |

Hentschel, U., Hopke, J., Horn, M., Friedrich, A. B., Wagner, M., Hacker, J., and Moore, B. S. (2002). Molecular evidence for a uniform microbial community in sponges from different oceans. Applied and Environmental Microbiology 68, 4431–4440.
Molecular evidence for a uniform microbial community in sponges from different oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvVCjsrs%3D&md5=9128401dd5a6b3102edadbcfd706c0b3CAS | 12200297PubMed |

Hille, R. (2002). Molybdenum and tungsten in biology. Trends in Biochemical Sciences 27, 360–367.
Molybdenum and tungsten in biology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XltFahsbY%3D&md5=8734b7bab981b169a28568c854ae3a95CAS | 12114025PubMed |

Hoffmann, F., Larsen, O., Thiel, V., Rapp, H. T., Pape, T., Michaelis, W., and Reitner, J. (2005). An anaerobic world in sponges. Geomicrobiology Journal 22, 1–10.
An anaerobic world in sponges.Crossref | GoogleScholarGoogle Scholar |

Horn, M., and Heumann, K. G. (1994). Comparison of heavy metal analyses in hydrofluoric acid used in microelectronic industry by ICP–MS and thermal ionization isotope dilution mass spectrometry. Fresenius’ Journal of Analytical Chemistry 350, 286–292.
Comparison of heavy metal analyses in hydrofluoric acid used in microelectronic industry by ICP–MS and thermal ionization isotope dilution mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXisVWms7c%3D&md5=88d2ff51cd0b2aeb34815a6bc8bc8754CAS |

Imhoff, J. F., and Trüper, H. G. (1976). Marine sponges as habitats of anaerobic phototrophic bacteria. Microbial Ecology 3, 1–9.
| 1:STN:280:DC%2BC2c7mvFensg%3D%3D&md5=9e2171c5f15cdaf9ec96b149cffc3c8fCAS | 24233392PubMed |

Karentz, D., McEuen, F. S., Land, M. C., and Dunlap, W. C. (1991). Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure. Marine Biology 108, 157–166.
Survey of mycosporine-like amino acid compounds in Antarctic marine organisms: potential protection from ultraviolet exposure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3MXit1Clt7o%3D&md5=85359e545e80f7c1099cbee71dcfcea1CAS |

Kelman, D., Kashman, Y., Rosenberg, E., Ilan, M., Ifrach, I., and Loya, Y. (2001). Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity. Aquatic Microbial Ecology 24, 9–16.
Antimicrobial activity of the reef sponge Amphimedon viridis from the Red Sea: evidence for selective toxicity.Crossref | GoogleScholarGoogle Scholar |

Morris, R. M., Rappe, M. S., Connon, S. A., Vergin, K. L., Siebold, W. A., and Carlson, C. A. (2002). SAR11 clade dominates ocean surface bacterioplankton communities. Nature 420, 806–810.
SAR11 clade dominates ocean surface bacterioplankton communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpsFygt7Y%3D&md5=1507bc84465375835c015547a40d21acCAS | 12490947PubMed |

Nagatani, H. H., and Haselkorn, R. (1978). Molybdenum independence of nitrogenase component synthesis in the non-heterocystous cyanobacterium Plectonema. Journal of Bacteriology 134, 597–605.
| 1:CAS:528:DyaE1cXktl2hsb0%3D&md5=c270dd421e1014fb838b53b40b614e13CAS |

Padovan, A., Munksgaard, N., Alvarez, B., McGuinness, K., Parry, D., and Gibb, K. (2012). Trace metal concentrations in the tropical sponge Spheciospongia vagabunda at a sewage outfall: synchrotron X-ray imaging reveals the micron-scale distribution of accumulated metals. Hydrobiologia 687, 275–288.
Trace metal concentrations in the tropical sponge Spheciospongia vagabunda at a sewage outfall: synchrotron X-ray imaging reveals the micron-scale distribution of accumulated metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XkvFWku7c%3D&md5=d79f70f3cc7353e9b2bf760d1267a58fCAS |

Patel, B., Balani, M. C., and Patel, S. (1985). Sponge ‘sentinel’ of heavy metals. The Science of the Total Environment 41, 143–152.
Sponge ‘sentinel’ of heavy metals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2MXhsFCmsLw%3D&md5=2765d8201fe3729fb1127f6ab0157873CAS | 3983628PubMed |

Pérez, T., Wafo, E., Fourt, M., and Vacelet, J. (2003). Marine sponges as biomonitor of poly-chlorobiphenyls contamination: concentration and fate of 24 congeners. Environmental Science & Technology 37, 2152–2158.
Marine sponges as biomonitor of poly-chlorobiphenyls contamination: concentration and fate of 24 congeners.Crossref | GoogleScholarGoogle Scholar |

Pienkos, P. T., and Brill, W. J. (1981). Molybdenum accumulation and storage in Klebsiella pneumoniae and Azotobacter vinelandii. Journal of Bacteriology 145, 743–751.
| 1:CAS:528:DyaL3MXhsFeiur4%3D&md5=1c9706b9721db09584e09eac5d77b4d2CAS | 7007348PubMed |

Pile, A. J., Patterson, M. R., and Witman, J. D. (1996). In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua. Marine Ecology Progress Series 141, 95–102.
In situ grazing on plankton <10 µm by the boreal sponge Mycale lingua.Crossref | GoogleScholarGoogle Scholar |

Rai, U. N., Tripathi, R. D., Singh, N., Kumar, A., Ali, M. B., Pal, A., and Singh, S. N. (2000). Amelioration of fly-ash by selected nitrogen fixing blue green algae. Bulletin of Environmental Contamination and Toxicology 64, 294–301.
Amelioration of fly-ash by selected nitrogen fixing blue green algae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtlags7s%3D&md5=99a735f2e27459a8a86c6c54fd22e7b6CAS | 10656898PubMed |

Rao, V. J., Srikanth, K., Pallela, R., and Rao, G. T. (2009). The use of marine sponge, Haliclona tenuiramosa as bioindicator to monitor heavy metal pollution in the coasts of Gulf of Mannar, India. Environmental Monitoring and Assessment 156, 451–459.
The use of marine sponge, Haliclona tenuiramosa as bioindicator to monitor heavy metal pollution in the coasts of Gulf of Mannar, India.Crossref | GoogleScholarGoogle Scholar |

Rappé, M. S., Connon, S. A., Vergin, K. L., and Giovannoni, S. J. (2002). Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633.
Cultivation of the ubiquitous SAR11 marine bacterioplankton clade.Crossref | GoogleScholarGoogle Scholar | 12167859PubMed |

Reiswig, H. M. (1971). Particle feeding in natural populations of three marine demosponges. The Biological Bulletin 141, 568–591.
Particle feeding in natural populations of three marine demosponges.Crossref | GoogleScholarGoogle Scholar |

Richelle-Maurer, E., Braekman, J. C., De Kluijver, M. J., Gomez, R., van de Vyver, G., van Soest, R. W. M., and Devijver, C. (2001). Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti. Cell and Tissue Research 306, 157–165.
Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmvVegsrY%3D&md5=84315b3c8558be14af2a5d3c55ea594eCAS | 11683177PubMed |

Ridley, C. P., Bergquist, P. R., Harper, M. K., Faulkner, D. J., Hooper, J. N. A., and Haygood, M. G. (2005). Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbionts, Oscillatoria spongeliae. Chemistry & Biology 12, 397–406.
Speciation and biosynthetic variation in four dictyoceratid sponges and their cyanobacterial symbionts, Oscillatoria spongeliae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXis1Kms7k%3D&md5=bdaac3dd3239b4c4f5cf8efe27a315d4CAS |

Roué, M., Domart-Coulon, I., Ereskovsky, A., Djediat, C., Pérez, T., and Bourguet-Kondracki, M. L. (2010). Cellular localization of clathridimine, an antimicrobial 2-aminoimidazole alkaloid produced by the Mediterranean calcerous sponge Clathria clathrus. Journal of Natural Products 73, 1277–1282.
Cellular localization of clathridimine, an antimicrobial 2-aminoimidazole alkaloid produced by the Mediterranean calcerous sponge Clathria clathrus.Crossref | GoogleScholarGoogle Scholar | 20590100PubMed |

Sara, M., Bavestrello, G., Cattaneo-Vietti, R., and Cerrano, C. (1998). Endosymbiosis in sponges: relevance for epigenesis and evolution. Symbiosis 25, 57–70.

Schmitt, S., Tsai, P., Bell, J., Fromont, J., Ilan, M., Lindquist, N., Perez, T., Rodrigo, A., Schupp, P., Vacelet, J., Webster, N., Hentschel, T., and Taylor, M. W. (2012). Assessing the complex sponge microbiota – core, variable and species-specific bacteria communities in marine sponges. The ISME Journal 6, 564–576.
Assessing the complex sponge microbiota – core, variable and species-specific bacteria communities in marine sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgt7w%3D&md5=8725284a6d4943d09594483211ab026cCAS | 21993395PubMed |

Skaar, H., Rystad, B., and Jensen, J. (1974). The uptake of 63N by the diatom Phaeodactylum tricornutum. Physiologia Plantarum 32, 353–358.
The uptake of 63N by the diatom Phaeodactylum tricornutum.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2MXhtVymu7s%3D&md5=b563f846674129de07760f2677e3ce13CAS |

Steindler, L., Beer, S., and Ilan, M. (2002). Photosymbiosis in intertidal and subtidal tropical sponges. Symbiosis 33, 1–11.

Taylor, M. W., Radax, R., Steger, D., and Wagner, M. (2007). Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiology and Molecular Biology Reviews 71, 295–347.
Sponge-associated microorganisms: evolution, ecology, and biotechnological potential.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotV2gu7w%3D&md5=652cb8ce6b013061c8bf6a4dc6f84e73CAS | 17554047PubMed |

ter Steeg, P. F., Hanson, P. J., and Paerl, H. W. (1986). Growth-limiting quantities and accumulation of molybdenum in Anabaena oscillaroides (Cyanobacteria). Hydrobiologia 140, 143–l47.
| 1:CAS:528:DyaL2sXhslGmsg%3D%3D&md5=f0b84f4333f6b70b1233021562e94fa2CAS |

Trollope, D. R., and Evans, F. B. (1976). Concentration of copper, iron, lead nickel and zinc in freshwater algae blooms. Environmental Pollution 11, 109–116.
Concentration of copper, iron, lead nickel and zinc in freshwater algae blooms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE2sXmtVWgsg%3D%3D&md5=940b81a20ec9e35ed96e2e8ca2c67db8CAS |

Turon, X., Becerro, M. A., and Uriz, M. J. (2000). Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques. Cell and Tissue Research 301, 311–322.
Distribution of brominated compounds within the sponge Aplysina aerophoba: coupling of X-ray microanalysis with cryofixation techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXmtFKitbo%3D&md5=2ce1f6786bfef3225af220b8a1161882CAS | 10955726PubMed |

Unson, M. D., and Faulkner, D. J. (1993). Cyanobacterial symbiont biosynthesis of chlorinated metabolies from Dysidea herbacea (Porifera). Experientia 49, 349–353.
Cyanobacterial symbiont biosynthesis of chlorinated metabolies from Dysidea herbacea (Porifera).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXltlGitbk%3D&md5=7f96f53b7093716ed73fe66c41b94b3bCAS |

Vacelet, J. (1975). Etude en microscopie electronique de l’association entre bacteries et spongiaires du genre Verongia (Dictyoceratida). Journal de Microscopie et de Biologie Cellulaire 23, 271–288.

Vacelet, J. (1981). Algal-sponge symbioses in the coral reefs of New Caledonia: a morphological study. In ‘Proceedings of the 4th International Coral Reef Symposium’. (Eds. E.D. Gomez, C.E. Birkeland, R.W. Buddemeier, R.E. Johannes, J.A. Marsh, Jr. and R.T. Tsuda) Vol. 2, pp. 713–719.

Vacelet, J., Verdenal, B., and Perinet, G. (1988). The iron mineralization of Spongia officinalis L. (Porifera, Dictyoceratida) and its relationships with the collagen skeleton. Biology of the Cell 62, 189–198.
The iron mineralization of Spongia officinalis L. (Porifera, Dictyoceratida) and its relationships with the collagen skeleton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXktVCisbs%3D&md5=19c49efaae01f5a2d5caf1ad935c2253CAS |

Verdenal, B., Diana, C., Arnoux, A., and Vacelet, J. (1985). Pollutant levels in Mediterranean commercial sponges. In ‘Proceedings of the 3rd International Sponge Conference’. (Ed. K. Rützler.) pp 516–524. (Smithsonian Institution Press: Washington, DC.)

Weisz, J. B., Hentschel, U., Lindquist, N., and Martens, C. S. (2007). Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges. Marine Biology 152, 475–483.
Linking abundance and diversity of sponge-associated microbial communities to metabolic differences in host sponges.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVOgtbs%3D&md5=ae19299f8802eae5d5512fcb6763e1dbCAS |

Weisz, J. B., Massaro, A. J., Ramsby, B. D., and Hill, M. S. (2010). Zooxanthellar symbionts shape host sponge trophic status through translocation of carbon. The Biological Bulletin 219, 189–197.
| 21183440PubMed |

White, J. R., Patel, J., Ottesen, A., Arce, G., Blackwelder, P., and Lopez, J. V. (2012). Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability. PLoS ONE 7, e38204.
Pyrosequencing of bacterial symbionts within Axinella corrugata sponges: diversity and seasonal variability.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XovFyqt70%3D&md5=65a310e64ae29d569391a3613f189434CAS | 22701613PubMed |

Wilcox, T. P., Hill, M., and DeMeo, K. (2002). Observations on a new two sponge symbiosis from the Florida Keys. Coral Reefs 21, 198–204.

Wilkinson, C. R. (1980). Nutrient translocation from green algal symbionts to the freshwater sponge Ephydatia fluviatilis. Hydrobiologia 75, 241–250.
Nutrient translocation from green algal symbionts to the freshwater sponge Ephydatia fluviatilis.Crossref | GoogleScholarGoogle Scholar |

Wilkinson, C. R., and Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic bacteria. Nature 279, 527–529.
Nitrogen fixation in coral reef sponges with symbiotic bacteria.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3cXjsVWl&md5=4a1610147a4aa46e4875b6f8b41e6453CAS |

Wilkinson, C. R., Summons, R., and Evans, E. (1999). Nitrogen fixation in symbiotic marine sponges: ecological significance and difficulties in detection. Memoirs of the Queensland Museum 44, 667–673.

Yahel, G., Sharp, J. H., Marie, D., Häse, C., and Genin, A. (2003). In situ feeding and element removal in the symbionts-bearing sponge Theonella swinhoe: bulk DOC is the major source for carbon. Limnology and Oceanography 48, 141–149.
In situ feeding and element removal in the symbionts-bearing sponge Theonella swinhoe: bulk DOC is the major source for carbon.Crossref | GoogleScholarGoogle Scholar |

Yong, N. K., Oshima, M., Blake, R. C., and Sugio, T. (1997). Isolation and some properties of an iron-oxidizing bacterium Thiobacillus ferrooxidans resistant to molybdenum ion. Bioscience, biotechnology, and biochemistry 61, 1523–1526.
| 1:CAS:528:DyaK2sXmsFehsb4%3D&md5=31f9cafa465335cc994a1d19d4723d1bCAS |

Zahn, R. K., Zahn, G., Muller, W. E. G., Kurelec, B., Rijavec, M., and Batel, R. (1981). Assessing con-sequences of marine pollution by hydrocarbons using sponges as model organisms. The Science of the Total Environment 20, 147–169.
Assessing con-sequences of marine pollution by hydrocarbons using sponges as model organisms.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFajtLc%3D&md5=40b49c9e2c66fa2e0c9b50136ed4be1cCAS | 6272390PubMed |

Zhang, Y., and Gladyshev, V. N. (2010). dbTEU: a protein database of trace element utilization. Bioinformatics 26, 700–702.
dbTEU: a protein database of trace element utilization.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXis1Wntbc%3D&md5=1989d2f3db9148b06a6ef5f14a491c84CAS | 20053843PubMed |