Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Dissolved organic carbon characteristics in an acidified groundwater-dependent ecosystem

Azra Mat Daud A B , Suzanne McDonald C and Carolyn E. Oldham A D
+ Author Affiliations
- Author Affiliations

A School of Civil, Environmental and Mining Engineering, M015, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.

B Faculty of Civil and Environmental Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Batu Pahat, Johor, Malaysia.

C Curtin Water Quality Research Centre, Department of Chemistry, Curtin University, GPO Box U1987, Perth, WA 6845, Australia.

D Corresponding author. Email: carolyn.oldham@uwa.edu.au

Marine and Freshwater Research 66(7) 582-595 https://doi.org/10.1071/MF13215
Submitted: 9 August 2013  Accepted: 19 September 2014   Published: 19 February 2015

Abstract

Quantifying and characterising dissolved organic carbon (DOC) is critical to understanding its role in aquatic ecosystems. This is particularly challenging in acidic groundwater-dependent ecosystems, where low pH and high concentrations of Fe affect DOC characterisation. We investigated the variability in DOC concentrations and chemical structure in an acidic wetland, using UV visible spectrophotometry, a range of digestion methods and subsequent TOC analysis, high-pressure size exclusion chromatography (HPSEC) and rapid fractionation techniques. HPSEC results showed that increasing the pH from an original pH 2.3 to a neutral pH reduced the column adsorption of organic carbon, but did not change molecular weight distributions. Principal component analysis suggested that iron concentrations had a more direct effect on molecular structure than pH. The pH, Fe concentrations and DOC characteristics were highly dynamic and spatially variable, and were linked to surface water–groundwater connectivity, as well as horizontal connectivity of surface ponding. The changing pH and Fe concentrations affected DOC concentration and molecular structure with expected effects on bioavailability of DOC.

Additional keywords: iron cycling, organic matter, pH, sediment processes.


References

Aiken, G. R., Hsu-Kim, H., and Ryan, J. N. (2011). Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids. Environmental Science & Technology 45, 3196–3201.
Influence of dissolved organic matter on the environmental fate of metals, nanoparticles, and colloids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXjtFKqt7k%3D&md5=9c22a3fbb2ebb14c2c772571d2f3c9efCAS |

Allpike, B. P., Heitz, A., Joll, C. A., Kagi, R. I., Abbt-Braun, G., Frimmel, F. H., Brinkmann, T., Her, N., and Amy, G. (2005). Size exclusion chromatography to characterize DOC removal in drinking water treatment. Environmental Science & Technology 39, 2334–2342.
Size exclusion chromatography to characterize DOC removal in drinking water treatment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtl2nsLo%3D&md5=9493922841a5e6406ca099c78215d75bCAS |

Allpike, B. P., Heitz, A., Joll, C. A., and Kagi, R. I. (2007). A new organic carbon detector for size exclusion chromatography. Journal of Chromatography. A 1157, 472–476.
A new organic carbon detector for size exclusion chromatography.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntFeis7g%3D&md5=b404633bc33b667e6bde8e99b869946cCAS | 17568597PubMed |

APHA (1992). ‘Standard Methods for the Examination of Water and Wastewater.’ (American Public Health Association: Washington, DC.)

Baigorri, R., Fuentes, M., Gonzalez-Gaitano, G., and García-Mina, J. M. (2007). Simultaneous presence of diverse molecular patterns in humic substances in solution. The Journal of Physical Chemistry B 111, 10 577–10 582.
Simultaneous presence of diverse molecular patterns in humic substances in solution.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXovFOnt7o%3D&md5=733a3973afef0894fd64a769be94552dCAS |

Barbeau, K., Rue, E. L., Trick, C. G., Bruland, K. T., and Butler, A. (2003). Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups. Limnology and Oceanography 48, 1069–1078.
Photochemical reactivity of siderophores produced by marine heterotrophic bacteria and cyanobacteria based on characteristic Fe(III) binding groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXksFOlt7k%3D&md5=b461a292b57467b8322e95cc76eeae9cCAS |

Bisutti, I., Hilke, I., and Raessler, M. (2004). Determination of total organic carbon – an overview of current methods. Trends in Analytical Chemistry 23, 716–726.
Determination of total organic carbon – an overview of current methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmtbbO&md5=15c4259454b41f91feed1ee926e57eadCAS |

Buffle, J., Deladsey, J. P., and Haerdi, W. (1978). The use of ultrafiltration for the separation and fractionation of organic ligands in fresh waters. Analytica Chimica Acta 101, 339–357.
The use of ultrafiltration for the separation and fractionation of organic ligands in fresh waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhsVWqtLY%3D&md5=e3f4fdc15e708b0b4ef6cbeb53d67070CAS |

Cabaniss, S. E., Zhou, Q., Maurice, P. A., Chin, Y., and Aiken, G. R. (2000). A log-normal distribution model for the molecular weight of aquatic fulvic acids. Environmental Science & Technology 34, 1103–1109.
A log-normal distribution model for the molecular weight of aquatic fulvic acids.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXhtVCkt74%3D&md5=48779f2bf5f094323c5a16f1eafda1daCAS |

Carlson, C. A., Giovannoni, S. J., Hansell, D. A., Goldberg, S. J., Parsons, R., and Vergin, K. (2004). Interactions amongst dissolved organic carbon, microbial processes and community structure in the mesopelagic zone of the northwestern Sargasso Sea. Limnology and Oceanography 49, 1073–1083.
Interactions amongst dissolved organic carbon, microbial processes and community structure in the mesopelagic zone of the northwestern Sargasso Sea.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmvVGjs7o%3D&md5=a4da0f0a3cdd4730454adf369cb322efCAS |

Cottrell, M. I., and Kirchman, D. L. (2000). Natural assemblages of marine proteobacteria and members of the CytophagaFlavobacter cluster consuming low- and high-molecular-weight dissolved organic matter. Applied and Environmental Microbiology 66, 1692–1697.
Natural assemblages of marine proteobacteria and members of the CytophagaFlavobacter cluster consuming low- and high-molecular-weight dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXisVWls7o%3D&md5=193815f4cd0bab144240ed7ec8216e21CAS |

Figini, R. V., and Marx-Figini, M. (1981). On the molecular weight determination by vapour pressure osmometry. 3. Relationship between diffusion coefficient of the solute and noncolligative behaviour. Macromolecular Chemistry and Physics 182, 437–443.
On the molecular weight determination by vapour pressure osmometry. 3. Relationship between diffusion coefficient of the solute and noncolligative behaviour.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtVCjtrs%3D&md5=8c462b2fcdc4257b3b6e1cc0c22e9cc1CAS |

Findlay, S., McDowell, W. H., Fischer, D., Pace, M. L., Caraco, N., Kaushal, S. S., and Weathers, K. C. (2010). Total carbon analysis may overestimate organic carbon content of fresh waters in the presence of high dissolved inorganic carbon. Limnology and Oceanography, Methods 8, 196–201.
| 1:CAS:528:DC%2BC3MXjt1WmsL8%3D&md5=de004d33773f258539ab51dcafec20eaCAS |

Fischer, H., Sachse, A., Steinberg, C. E. W., and Pusch, M. (2002). Differential retention and utilization of dissolved organic carbon by bacteria in river sediments. Limnology and Oceanography 47, 1702–1711.
Differential retention and utilization of dissolved organic carbon by bacteria in river sediments.Crossref | GoogleScholarGoogle Scholar |

Giddings, J. C., Williams, P. S., and Beckett, R. (1987). Fractionating power in programmed field-flow fractionation: exponential sedimentation field decay. Analytical Chemistry 59, 28–37.
Fractionating power in programmed field-flow fractionation: exponential sedimentation field decay.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVCgsw%3D%3D&md5=d99cdbaf2ee06770fd143d0d3e109b68CAS | 3826632PubMed |

Her, N., Amy, G., McKnight, D., Sohn, J., and Yoon, Y. (2003). Characterization of DOM as a function of MW by fluorescence detection. Water Research 37, 4295–4303.
Characterization of DOM as a function of MW by fluorescence detection.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXms1Smtrw%3D&md5=51cee20863501aa16e79d94462915f41CAS | 12946913PubMed |

Hirschberg, K. J. B. (1987). Busselton shallow-drilling groundwater investigation. Hydrogeology Report, Western Australian Geological Survey, Perth.

Jansen, B., Nierop, K. G. J., and Verstraten, J. M. (2003). Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios. Geoderma 113, 323–340.
Mobility of Fe(II), Fe(III) and Al in acidic forest soils mediated by dissolved organic matter: influence of solution pH and metal/organic carbon ratios.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhsF2nsb4%3D&md5=c4f8b7784fbdc053e986369685d7efc1CAS |

Kaplan, L. A. (1992). Comparison of high-temperature and persulfate oxidation methods of dissolved organic-carbon in fresh-waters. Limnology and Oceanography 37, 1119–1125.
Comparison of high-temperature and persulfate oxidation methods of dissolved organic-carbon in fresh-waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtlWlsrY%3D&md5=1cb5d1a34d67aafff239f2bc8dd0a145CAS |

Karanfil, T., Schlautman, M. A., and Erdogan, I. (2002). Survey of DOC and UV measurement practices with implications for SUVA determination. Journal - American Water Works Association 94, 68–80.
| 1:CAS:528:DC%2BD38Xps1eisr0%3D&md5=d7e8588f5f2ec38faa853024d05c17c4CAS |

Kunhi Mouvenchery, Y., Kučerík, J., Diehl, D., and Schaumann, G. E. (2012). Cation-mediated cross-linking in natural organic matter: a review. Reviews in Environmental Science and Biotechnology 11, 41–54.
Cation-mediated cross-linking in natural organic matter: a review.Crossref | GoogleScholarGoogle Scholar |

Lankes, U., Lüdemann, H., and Frimmel, F. H. (2008). Search for basic relationships between ‘molecular size’ and ‘chemical structure’ of aquatic natural organic matter – answers from 13C and 15N CPMAS NMR spectroscopy. Water Research 42, 1051–1060.
Search for basic relationships between ‘molecular size’ and ‘chemical structure’ of aquatic natural organic matter – answers from 13C and 15N CPMAS NMR spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhvFyrtr8%3D&md5=bc9bc073bb6898a67639195da61b7a44CAS | 17959215PubMed |

Leenheer, J. A. (1981). Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters. Environmental Science & Technology 15, 578–587.
Comprehensive approach to preparative isolation and fractionation of dissolved organic carbon from natural waters and wastewaters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXlvFaju7Y%3D&md5=c7f81ca9509d97ff86aee107540c06a9CAS |

Leenheer, J. A., and Croué, J. P. (2003). Characterizing aquatic dissolved organic matter. Environmental Science & Technology 37, 18A–26A.
Characterizing aquatic dissolved organic matter.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXls1em&md5=00e2099c4c7a14da882cd542ca702754CAS |

Li, C.-W., Benjamin, M. M., and Korshin, G. V. (2006). Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy. Journal of Environmental Engineering and Science 5, 467–472.
Characterization of NOM and its adsorption by iron oxide coated sand (IOCS) using UV and fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVSksb4%3D&md5=dbf61b1085e8a3719a1991a591c64d3cCAS |

McDonald, S., Bishop, A. G., Prenzler, P. D., and Robards, K. (2004). Analytical chemistry of freshwater humic substances. Analytica Chimica Acta 527, 105–124.
Analytical chemistry of freshwater humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXhtVCmtbjN&md5=95aa46adb3c26d444c296b4ecaaf3029CAS |

Meunier, L., Laubscher, H., Hug, S. J., and Sulzberger, B. (2005). Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters. Aquatic Sciences 67, 292–307.
Effects of size and origin of natural dissolved organic matter compounds on the redox cycling of iron in sunlit surface waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtF2msb3K&md5=93006701ddf7d2bf7b5f29e7c64869a8CAS |

Molot, L., and Dillon, P. J. (2003). Variation in iron, aluminum and dissolved organic carbon mass transfer coefficients in lakes. Water Research 37, 1759–1768.
Variation in iron, aluminum and dissolved organic carbon mass transfer coefficients in lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXivVCrtr4%3D&md5=65cdb73d0c31cc500cfedd7f8f4c8f15CAS | 12697220PubMed |

Nath, B., Lillicrap, A. M., Ellis, L. C., Boland, D. D., and Oldham, C. E. (2013). Seasonal hydrological connectivity across an acidic coastal wetland and its impact on contaminant discharge and habitat of endangered species. Water Resources Research 49, 441–457.
Seasonal hydrological connectivity across an acidic coastal wetland and its impact on contaminant discharge and habitat of endangered species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXptVCit78%3D&md5=68f8371ab6f9f73d09e19883c4841509CAS |

Nelson, C. E., and Carlson, C. A. (2012). Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton. Environmental Microbiology 14, 1500–1516.
Tracking differential incorporation of dissolved organic carbon types among diverse lineages of Sargasso Sea bacterioplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XhtFOhsbbM&md5=a3dc7009c47d4113539c7545e16b3d5dCAS | 22507662PubMed |

Ocampo, C. J., Sivapalan, M., and Oldham, C. E. (2006). Hydrological connectivity of upland riparian zones in agricultural catchments: implications for runoff generation and nitrate transport. Journal of Hydrology 331, 643–658.
Hydrological connectivity of upland riparian zones in agricultural catchments: implications for runoff generation and nitrate transport.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtF2gu7jE&md5=5c748eaddab539b4d77bea159b297d91CAS |

Oldham, C. E., Farrow, D., and Peiffer, S. (2013). A generalized Damköhler number for classifying material processing in hydrological systems. Hydrology and Earth System Sciences 17, 1133–1148.
A generalized Damköhler number for classifying material processing in hydrological systems.Crossref | GoogleScholarGoogle Scholar |

Pan, X. F., Yan, B. X., Yoh, M., Wang, L. X., and Liu, X. Q. (2010). Temporal variability of iron concentrations and fractions in wetland waters in Sanjiang Plain, northeast China. Journal of Environmental Sciences (China) 22, 968–974.
Temporal variability of iron concentrations and fractions in wetland waters in Sanjiang Plain, northeast China.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhtVehtLfK&md5=cd4ae8bf67e2e4fc514a2af1ea93f3dbCAS |

Parazols, M., Marinoni, A., Amato, P., Abida, O., Laj, P., Mailhot, G., Delort, A. M., and Sergio, Z. (2007). Speciation and role of iron in cloud droplets at the Puy de Dome station. Journal of Atmospheric Chemistry 57, 299–300.
Speciation and role of iron in cloud droplets at the Puy de Dome station.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXntlajsb0%3D&md5=2d5d0cbe9bb209a119078a09b962dfefCAS |

Pédrot, M., Dia, A., and Davranche, M. (2010). Dynamic structure of humic substances: rare earth elements as fingerprint. Journal of Colloid and Interface Science 345, 206–213.
Dynamic structure of humic substances: rare earth elements as fingerprint.Crossref | GoogleScholarGoogle Scholar | 20206939PubMed |

Petrone, K., Richards, J., and Grierson, P. (2009). Bioavailability and composition of dissolved organic carbon and nitrogen in a near coastal catchment of south-western Australia. Biogeochemistry 92, 27–40.
Bioavailability and composition of dissolved organic carbon and nitrogen in a near coastal catchment of south-western Australia.Crossref | GoogleScholarGoogle Scholar |

Peuravuori, J., and Pihlaja, K. (2004). Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly. Environmental Science & Technology 38, 5958–5967.
Preliminary study of lake dissolved organic matter in light of nanoscale supramolecular assembly.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXotVSiu7w%3D&md5=3f5c757385714ea63007af7e681fcf7fCAS |

Peuravuori, J., Koivikko, R., and Pihlaja, K. (2002). Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy. Water Research 36, 4552–4562.
Characterization, differentiation and classification of aquatic humic matter separated with different sorbents: synchronous scanning fluorescence spectroscopy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmvF2ktLo%3D&md5=b9241de084ea982fd2255a02766cf9eeCAS | 12418658PubMed |

Peuravuori, J., Monteiro, A., Eglite, L., and Pihlaja, K. (2005). Comparative study for separation of aquatic humic-type organic constituents by DAX-8, PVP and DEAE sorbing solids and tangential ultrafiltration: elemental composition, size exclusion chromatography, UV-Vis and FT-IR. Talanta 65, 408–422.
Comparative study for separation of aquatic humic-type organic constituents by DAX-8, PVP and DEAE sorbing solids and tangential ultrafiltration: elemental composition, size exclusion chromatography, UV-Vis and FT-IR.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpslyjtL8%3D&md5=cf36f6b2b05ca55d8d26635eb10ce57aCAS | 18969814PubMed |

Peyton, G. R. (1993). The free-radical chemistry of persulfate-based total organic carbon analyzers. Marine Chemistry 41, 91–103.
The free-radical chemistry of persulfate-based total organic carbon analyzers.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3sXhtV2htro%3D&md5=16018cda3bad56184d2ca1580425e555CAS |

Piccolo, A. (2001). The supramolecular structure of humic substances. Soil Science 166, 810–832.
The supramolecular structure of humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXovVertrs%3D&md5=a25742391951e69e6450f6ceb3eae563CAS |

Piccolo, A. (2002). The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Advances in Agronomy 75, 57–134.
The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSjsL0%3D&md5=d4b126ebc34227d6c4b798ceebe0d00cCAS |

Schaumann, G. E. (2006a). Soil organic matter beyond molecular structure. Part I: Macromolecular and supramolecular characteristics. Journal of Plant Nutrition and Soil Science 169, 145–156.
Soil organic matter beyond molecular structure. Part I: Macromolecular and supramolecular characteristics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFaisb0%3D&md5=3470ba8405d2df9974e5ecc5f0bb47e2CAS |

Schaumann, G. E. (2006b). Soil organic matter beyond molecular structure. Part II. Amorphous nature and physical aging. Journal of Plant Nutrition and Soil Science 169, 157–167.
Soil organic matter beyond molecular structure. Part II. Amorphous nature and physical aging.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvFais7g%3D&md5=a2fba1c5aee84a804c2c52c692f40966CAS |

Schaumann, G. E., and Thiele-Bruhn, S. (2011). Molecular modeling of soil organic matter: squaring the circle? Geoderma 166, 1–14.
Molecular modeling of soil organic matter: squaring the circle?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXht1CltrfK&md5=e84517991e533252621805e4694ff5e2CAS |

Schindler, D., Jefferson Curtis, P., Bayley, S., Parker, B., Beaty, K., and Stainton, M. (1997). Climate-induced changes in the dissolved organic carbon budgets of boreal lakes. Biogeochemistry 36, 9–28.
Climate-induced changes in the dissolved organic carbon budgets of boreal lakes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXhvVejtbY%3D&md5=d0f132aec8670e86d73d32af72ab0073CAS |

Schneckenburger, T., Lattao, C., Pignatello, J. J., Schaumann, G. E., Thiele-Bruhn, S., Cao, X., and Mao, J. (2012). Preparation and characterization of humic acid cross-linked with organic bridging groups. Organic Geochemistry 47, 132–138.
Preparation and characterization of humic acid cross-linked with organic bridging groups.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XmsFelsrw%3D&md5=8a615f8d133360f5a1f3e1db8e76ce6aCAS |

Senesi, N., Plaza, C., Brunetti, G., and Polo, A. (2007). A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances. Soil Biology & Biochemistry 39, 1244–1262.
A comparative survey of recent results on humic-like fractions in organic amendments and effects on native soil humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjsVWju7Y%3D&md5=08289c41f4eca3bf62aa3dec5c0378e2CAS |

Šmejkalová, D., and Piccolo, A. (2008). Aggregation and disaggregation of humic supramolecular assemblies by NMR diffusion ordered spectroscopy (DOSY-NMR). Environmental Science & Technology 42, 699–706.
Aggregation and disaggregation of humic supramolecular assemblies by NMR diffusion ordered spectroscopy (DOSY-NMR).Crossref | GoogleScholarGoogle Scholar |

Świetlik, J., and Sikorska, E. (2006). Characterization of natural organic matter fractions by high pressure size-exclusion chromatography, specific UV absorbance and total luminescence spectroscopy. Polish Journal of Environmental Studies 15, 145–153.

Szabo, H., and Tuhkanen, T. (2010). The application of HPLC-SEC for the simultaneous characterization of NOM and nitrate in well waters. Chemosphere 80, 779–786.
The application of HPLC-SEC for the simultaneous characterization of NOM and nitrate in well waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptVCmtbY%3D&md5=e004ec15322acf03551c1b5829e8c626CAS | 20553934PubMed |

Tipping, E., Rey-Castro, C., Bryan, S. E., and Hamilton-Taylor, J. (2002). Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation. Geochimica et Cosmochimica Acta 66, 3211–3224.
Al(III) and Fe(III) binding by humic substances in freshwaters, and implications for trace metal speciation.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XmslKktbk%3D&md5=5e519fbd3a9caf0ec3c9d01404acff16CAS |

Wangersky, P. J. (2000). Intercomparisons and intercalibrations in marine chemistry. In ‘Handbook of Environmental Chemistry. Vol. 5’. (Ed. P. J. Wangersky.) pp. 167–191. (Springer-Verlag: Berlin.)

Yau, W. W., Kirkland, J. J., and Bly, D. D. (1979). ‘Modern Size Exclusion Chromatography.’ (Wiley: New York.)

Zhou, Q., Cabaniss, S., and Maurice, P. (2000). Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances. Water Research 34, 3505–3514.
Considerations in the use of high-pressure size exclusion chromatography (HPSEC) for determining molecular weights of aquatic humic substances.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlt1Clt7k%3D&md5=83b8bc031283d1f099fec0a3c7c186a0CAS |