Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Homing in the New Zealand eagle ray, Myliobatis tenuicaudatus

Megan M. Marcotte
+ Author Affiliations
- Author Affiliations

School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand.Present address: Kwantlen Polytechnic University, Surrey, BC, Canada.Email: megan.marcotte@kpu.ca

Marine and Freshwater Research 65(4) 306-311 https://doi.org/10.1071/MF12288
Submitted: 10 October 2012  Accepted: 6 August 2013   Published: 14 October 2013

Abstract

Homing after experimental displacement is widespread among bony fishes but has only been documented in two species of elasmobranchs, lemon sharks, Negaprion brevirostris, and Port Jackson sharks, Heterodontus portusjacksoni. To test if a species of batoid was capable of homing, New Zealand eagle rays, Myliobatis tenuicaudatus, were experimentally displaced 1.3–9.4 km from the Whangateau Estuary, where they feed, rest and are protected from predators. Significantly more rays returned to the estuary than expected by chance (seven out of eleven rays). The present study demonstrated for the first time that rays are capable of homing after experimental displacement. Homing success was not predicted by day or night capture, displacement distance, ray size, water depth at the displacement site or time in captivity. The homing rates and speeds of the rays were lower than those recorded for sharks, possibly due to a disparity in motivation and behavioural differences. Analysis of active tracks for associations with potential navigational stimuli may indicate which stimuli the rays use to home.

Additional keywords: elasmobranch, homing speed, homing success, navigation.


References

Ajemian, M. J., Powers, S. P., and Murdoch, J. T. (2012). Estimating the potential impacts of large mesopredators on benthic resources: integrative assessment of spotted eagle ray foraging ecology in Bermuda. PLoS ONE 7, e40227.
| 1:CAS:528:DC%2BC38XhtVWgsLvJ&md5=8167c015e046c888d1d9bbe3e4a40988CAS | 22802956PubMed |

Bres, M. (1993). The behaviour of sharks. Reviews in Fish Biology and Fisheries 3, 133–159.
The behaviour of sharks.Crossref | GoogleScholarGoogle Scholar |

Cartamil, D. P., Vaudo, J. J., Lowe, C. G., Wetherbee, B. N., and Holland, K. N. (2003). Diel movement patterns of the Hawaiian stingray, Dasyatis lata: implications for ecological interactions between sympatric elasmobranch species. Marine Biology 142, 841–847.

Collins, A. B., Heupel, M. R., and Motta, P. J. (2007). Residence and movement patterns of cownose rays Rhinoptera bonasus within a south-west Florida estuary. Journal of Fish Biology 71, 1159–1178.
Residence and movement patterns of cownose rays Rhinoptera bonasus within a south-west Florida estuary.Crossref | GoogleScholarGoogle Scholar |

Edrén, S. M. C., and Gruber, S. H. (2005). Homing ability of young lemon sharks, Negaprion brevirostris. Environmental Biology of Fishes 72, 267–281.
Homing ability of young lemon sharks, Negaprion brevirostris.Crossref | GoogleScholarGoogle Scholar |

Franks, B. F. (2007). The spatial ecology and resource selection of juvenile lemon sharks (Negaprion brevirostris) in their primary nursery areas. Ph.D. Thesis, Drexel University, Philadelphia.

Fraser, P. J., and Shelmerdine, R. L. (2002). Dogfish hair cells sense hydrostatic pressure. Nature 415, 495–496.
Dogfish hair cells sense hydrostatic pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xht1Gis7s%3D&md5=89ca1b1a8e59e478c8567222800c06eaCAS | 11823850PubMed |

Gardiner, J. M., and Atema, J. (2007). Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. The Journal of Experimental Biology 210, 1925–1934.
Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis.Crossref | GoogleScholarGoogle Scholar | 17515418PubMed |

Gerking, S. D. (1959). The restricted movement of fish populations. Biological Reviews of the Cambridge Philosophical Society 34, 221–242.
The restricted movement of fish populations.Crossref | GoogleScholarGoogle Scholar |

Grace, R. V. (1972). The benthic ecology of the entrance to the Whangateau Harbour, Northland, New Zealand. Ph.D. Thesis, University of Auckland, Auckland.

Gruber, S. H., Nelson, D. R., and Morrissey, J. F. (1988). Patterns of activity and space utilization of lemon sharks, Negaprion brevirostris, in a shallow Bahamian lagoon. Bulletin of Marine Science 43, 61–76.

Guttridge, T., Gruber, S. H., Gledhill, K. S., Croft, D. P., Sims, D. W., and Krause, J. (2009). Social preferences of juvenile lemon sharks, Negaprion brevirostris. Animal Behaviour 78, 543–548.
Social preferences of juvenile lemon sharks, Negaprion brevirostris.Crossref | GoogleScholarGoogle Scholar |

Hair, J. F., Anderson, R. E., Tatham, R. L., and Black, W. C. (1998). ‘Multivariate Data Analysis.’ 5th edn. (Prentice Hall: Sydney.)

Hartill, B. W. (1989). The influence of behaviour on the distribution and abundance of Myliobatus tenuicaudatus. M.Sc. Thesis, University of Auckland, Auckland.

Hines, A. H., Whitlatch, R. B., Thrush, S. F., Hewitt, J. E., Cummings, V. J., Dayton, P. K., and Legendre, P. (1997). Nonlinear foraging response of a large marine predator to benthic prey: eagle ray pits and bivalves in a New Zealand sandflat. Journal of Experimental Marine Biology and Ecology 216, 191–210.
Nonlinear foraging response of a large marine predator to benthic prey: eagle ray pits and bivalves in a New Zealand sandflat.Crossref | GoogleScholarGoogle Scholar |

Hodgson, E. S., and Mathewson, R. F. (1971). Chemosensory orientation in sharks. Annals of the New York Academy of Sciences 188, 175–181.
Chemosensory orientation in sharks.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE38%2FmvVehtg%3D%3D&md5=d0e223824aadb7f222627010d55d3c8eCAS | 5288853PubMed |

Hunter, E., Buckley, A. A., Stewart, C., and Metcalfe, J. D. (2005). Repeated seasonal migration by a thornback ray in the southern North Sea. Journal of the Marine Biological Association of the United Kingdom 85, 1199–1200.
Repeated seasonal migration by a thornback ray in the southern North Sea.Crossref | GoogleScholarGoogle Scholar |

Kalmijn, A. J. (1982). Theory of electromagnetic orientation: a further analysis. In ‘Comparative Physiology of Sensory Systems’. (Eds L. Bous, R. D. Keynes and S. H. P. Maddrel.) pp. 525–560. (Cambridge University Press: Cambridge, UK.)

Kirschvink, J. L., and Gould, J. L. (1981). Biogenic magnetite as a basis for magnetic field detection in animals. Bio Systems 13, 181–201.
Biogenic magnetite as a basis for magnetic field detection in animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhtlCmur0%3D&md5=6aef126cc9e546017a392cdfbfe66a23CAS | 7213948PubMed |

Kirschvink, J. L., and Walker, M. M. (1985). Particle-size considerations for magnetite-based magnetoreceptors. In ‘Magnetite Biomineralization and Magnetoreception in Organisms, a New Biomagnetism’. (Eds J. L. Kirschvink, D. S. Jones and B. J. MacFadden) pp. 243–254. (Plenum Press: London.)

Klecka, W. R. (1980). ‘Discriminant Analysis.’ (Sage Publications: London.)

Klimley, A. P. (1987). The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini. Environmental Biology of Fishes 18, 27–40.
The determinants of sexual segregation in the scalloped hammerhead shark, Sphyrna lewini.Crossref | GoogleScholarGoogle Scholar |

Klimley, A. P. (1993). Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field. Marine Biology 117, 1–22.
Highly directional swimming by scalloped hammerhead sharks, Sphyrna lewini, and subsurface irradiance, temperature, bathymetry, and geomagnetic field.Crossref | GoogleScholarGoogle Scholar |

Klimley, A. P., Kihslinger, R. L., and Kelly, J. T. (2005). Directional and non-directional movements of bat rays, Myliobatis californica, in Tomales Bay, California. Environmental Biology of Fishes 74, 79–88.
Directional and non-directional movements of bat rays, Myliobatis californica, in Tomales Bay, California.Crossref | GoogleScholarGoogle Scholar |

Le Port, A. (2003). Diel movement patterns and foraging activity of the New Zealand eagle ray (Myliobatis tenuicaudatus) in Whangateau Estuary, New Zealand. M.Sc. Thesis, University of Auckland, Auckland.

Leggett, W. C. (1977). The ecology of fish migrations. Annual Review of Ecology and Systematics 8, 285–308.
The ecology of fish migrations.Crossref | GoogleScholarGoogle Scholar |

LINZ (2012). NZ Coastlines and Islands Polygons (Topo 1 : 50k). (Land Information New Zealand, Wellington.)

Lucas, M., and Baras, E. (2001). ‘Migration of freshwater fishes.’ (Wiley-Blackwell: Malden, MA.)

Mackay, K. A. Mackay, E. J., Neil, H. L., Mitchell, J. S., and Bardsley, S. A. (2012) Hauraki Gulf. In NIWA Chart, Miscellaneous Series 91. (National Institute of Water & Atmospheric Research, Auckland)

Marcotte, M. M. (2010). Experimental analysis of navigation and homing in fluid environments. Ph.D. Thesis, University of Auckland, Auckland.

Marshall, A. D., Dudgeon, C. L., and Bennett, M. B. (2011). Size and structure of a photographically identified population of manta rays Manta alfredi in southern Mozambique. Marine Biology 158, 1111–1124.
Size and structure of a photographically identified population of manta rays Manta alfredi in southern Mozambique.Crossref | GoogleScholarGoogle Scholar |

Matern, S. A., Cech, J. J., and Hopkins, T. E. (2000). Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: evidence for behavioral thermoregulation? Environmental Biology of Fishes 58, 173–182.
Diel movements of bat rays, Myliobatis californica, in Tomales Bay, California: evidence for behavioral thermoregulation?Crossref | GoogleScholarGoogle Scholar |

Meyer, C. G., Holland, K. N., and Papastamatiou, Y. P. (2005). Sharks can detect changes in the geomagnetic field. Journal of the Royal Society 2, 129–130.

Michael, S. W. (2005). ‘Reef Sharks & Rays of the World: a Guide to their Identification, Ecology, and Behaviour.’ (Lighthouse Press: Annapolis, MD.)

Montgomery, J. C., Baker, C. F., and Carton, A. G. (1997). The lateral line can mediate rheotaxis in fish. Nature 389, 960–963.
The lateral line can mediate rheotaxis in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXntValt70%3D&md5=410ef477b033e9d5aeada713a25e6dd1CAS |

Morrissey, J. F., and Gruber, S. H. (1993a). Habitat selection by juvenile lemon sharks, Negaprion brevirostris. Environmental Biology of Fishes 38, 311–319.
Habitat selection by juvenile lemon sharks, Negaprion brevirostris.Crossref | GoogleScholarGoogle Scholar |

Morrissey, J. F., and Gruber, S. H. (1993b). Home range of juvenile lemon sharks, Negaprion brevirostris. Copeia 1993, 425–434.
Home range of juvenile lemon sharks, Negaprion brevirostris.Crossref | GoogleScholarGoogle Scholar |

Nearing, J., Betka, M., Quinn, S., Hentschel, H., Elger, M., Baum, M., Bal, M., Chattopadyhay, N., Brown, E. M., Hebert, S. C., and Harris, H. W. (2002). Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish. Proceedings of the National Academy of Sciences of the United States of America 99, 9231–9236.
Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XlsVGgs7s%3D&md5=64ba89d1eff9ee4f7935cd2df2f7956eCAS | 12093923PubMed |

Nelson, D. R. (1967). Hearing thresholds, frequency discrimination, and acoustic orientation in the lemon shark, Negaprion brevirostris (Poey). Bulletin of Marine Science 17, 741–768.

Nelson, D. R., and Gruber, S. H. (1963). Sharks: attraction by low-frequency sounds. Science 142, 975–977.
Sharks: attraction by low-frequency sounds.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvgt12htg%3D%3D&md5=d24b232a53c6efe3ffbb82e1699478c1CAS | 17753802PubMed |

O’Gower, A. K. (1995). Speculations on spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Meyer) (Heterodontidae). Marine and Freshwater Research 46, 861–871.
Speculations on spatial memory for the Port Jackson shark (Heterodontus portusjacksoni) (Meyer) (Heterodontidae).Crossref | GoogleScholarGoogle Scholar |

Robbins, R. L. (2007). Environmental variables affecting the sexual segregation of great white sharks Carcharodon carcharias at the Neptune Islands South Australia. Journal of Fish Biology 70, 1350–1364.
Environmental variables affecting the sexual segregation of great white sharks Carcharodon carcharias at the Neptune Islands South Australia.Crossref | GoogleScholarGoogle Scholar |

Ruckstuhl, K. E., and Neuhaus, P. (2000). Sexual segregation in ungulates: a new approach. Behaviour 137, 361–377.
Sexual segregation in ungulates: a new approach.Crossref | GoogleScholarGoogle Scholar |

Russell, B. C. (1983). The food and feeding habits of rocky reef fish of north-eastern New Zealand. New Zealand Journal of Marine and Freshwater Research 17, 121–145.
The food and feeding habits of rocky reef fish of north-eastern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Sand, O., and Karlsen, H. E. (2000). Detection of infrasound and linear acceleration in fishes. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 355, 1295–1298.
Detection of infrasound and linear acceleration in fishes.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3M7psF2rug%3D%3D&md5=f9238a672e80f22d860531ed7245509bCAS | 11079418PubMed |

Schmidt-Koenig, K. (1975). ‘Migration and Homing in Animals.’ (Springer-Verlag: New York.)

Smith, M. F. L. (1992). Capture and transportion of elasmobranchs, with emphasis on the grey nurse shark (Carcharius taurus). Australian Journal of Marine and Freshwater Research 43, 325–343.
Capture and transportion of elasmobranchs, with emphasis on the grey nurse shark (Carcharius taurus).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVOhsr4%3D&md5=5f33480330cc1df8c8132530097f8750CAS |

Springer, S. (1967). Social organization of shark populations. In ‘Sharks, Skates, and Rays’. (Eds. P. W. Gilbert, R. F. Mathewson and D. P. Rall.) pp. 149–174. (John Hopkins Press: Baltimore, MD.)

Sundström, L. F., Gruber, S. H., Clermont, S. M., Correia, J. P. S., de Marignac, J. R. C., Morrissey, J. F., Lowrance, C. R., Thomassen, L., and Oliveira, M. T. (2001). Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas. Environmental Biology of Fishes 60, 225–250.
Review of elasmobranch behavioral studies using ultrasonic telemetry with special reference to the lemon shark, Negaprion brevirostris, around Bimini Islands, Bahamas.Crossref | GoogleScholarGoogle Scholar |

Taylor, B. (2000). Hydrodynamic flow mediates behaviour in Myliobatis tenuicaudatus. M.Sc. Thesis, University of Auckland, Auckland.

Taylor, R. B., and Morrison, A. (2008). Soft-sediment habitats and fauna of Omaha Bay, northeastern New Zealand. Journal of the Royal Society of New Zealand 38, 187–214.
Soft-sediment habitats and fauna of Omaha Bay, northeastern New Zealand.Crossref | GoogleScholarGoogle Scholar |

Vaudo, J. J., and Lowe, C. G. (2006). Movement patterns of the round stingray Urobatis halleri (Cooper) near a thermal outfall. Journal of Fish Biology 68, 1756–1766.
Movement patterns of the round stingray Urobatis halleri (Cooper) near a thermal outfall.Crossref | GoogleScholarGoogle Scholar |

Visser, I. (1999). Benthic foraging on stingrays by killer whales (Orcinus orca) in New Zealand waters. Marine Mammal Science 15, 220–227.
Benthic foraging on stingrays by killer whales (Orcinus orca) in New Zealand waters.Crossref | GoogleScholarGoogle Scholar |

Walker, P., Howlett, G., and Millner, R. (1997). Distribution, movement and stock structure of three ray species in the North Sea and eastern English Channel. ICES Journal of Marine Science 54, 797–808.
Distribution, movement and stock structure of three ray species in the North Sea and eastern English Channel.Crossref | GoogleScholarGoogle Scholar |

Wearmouth, V. J., and Sims, D. W. (2008). Sexual segregation in marine fish, reptiles, birds and mammals: behaviour patterns, mechanisms and conservation implications. In ‘Advances in Marine Biology’. Vol. 54. (Ed. D. W. Sims) pp. 107–170. (Academic Press: San Francisco, CA.)

Wetherbee, B. N., Gruber, S. H., and Rosa, R. S. (2007). Movement pattern of juvenile lemon sharks Negaprion brevirostris within Atol das Rocas, Brazil: a nursery characterized by tidal extremes. Marine Ecology Progress Series 343, 283–293.
Movement pattern of juvenile lemon sharks Negaprion brevirostris within Atol das Rocas, Brazil: a nursery characterized by tidal extremes.Crossref | GoogleScholarGoogle Scholar |

Young, F. A., Kajiura, S. M., Visser, G. J., Correia, J. P. S., and Smith, M. F. L. (2002). Notes on the long-term transport of the scalloped hammerhead shark (Sphyrna lewini). Zoo Biology 21, 243–251.
Notes on the long-term transport of the scalloped hammerhead shark (Sphyrna lewini).Crossref | GoogleScholarGoogle Scholar |