Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

All good things come in threes – species delimitation through shape analysis of saccular, lagenar and utricular otoliths

Tanja Schulz-Mirbach A C and Martin Plath B
+ Author Affiliations
- Author Affiliations

A University of Vienna, Department of Behavioural Biology, Althanstrasse 14, A-1090 Vienna, Austria.

B J.W. Goethe-University, Frankfurt am Main, Evolutionary Ecology Group, Max-von-Laue Strasse 13, 60438 Frankfurt am Main, Germany.

C Corresponding author. Email: tanja.schulz-mirbach@univie.ac.at

Marine and Freshwater Research 63(10) 934-940 https://doi.org/10.1071/MF12132
Submitted: 15 May 2012  Accepted: 17 August 2012   Published: 24 October 2012

Abstract

Otoliths are calcium carbonate biomineralisates in the inner ear of teleost fishes. Otoliths of the saccule (sagittae) are known to show species-specific (or even population-specific) contour differences and, thus, are regularly used in fisheries management for stock identification. However, the other two otolith types from the utricle (lapilli) and lagena (asterisci) are typically neglected in studies of this kind, such that little information is available regarding potential species-specific contour differences. Using four species of livebearing fishes of the genus Poecilia (Cyprinodontiformes, Poeciliidae), we compared contour outlines of all three otolith types by applying Fourier shape analysis and tested for species delimitation success of the different otolith types alone, and all three otoliths combined. Our results indicated that also lapilli and especially asterisci convey species-specific information, and the classification success of discriminant function analyses was highest when combining shape information from all three otolith types. We propose that future studies on species delimitation or stock identification may benefit from considering all three otolith types together.

Additional keywords : inner ear, Fast Fourier Tranform, freshwater fishes, Guppy, Molly.


References

Adams, L. A. (1940). Some characteristic otoliths of American Ostariophysi. Journal of Morphology 66, 497–527.
Some characteristic otoliths of American Ostariophysi.Crossref | GoogleScholarGoogle Scholar |

Assis, C. A. (2003). The lagenar otoliths of teleosts: their morphology and application in species identification, phylogeny and systematics. Journal of Fish Biology 62, 1268–1295.
The lagenar otoliths of teleosts: their morphology and application in species identification, phylogeny and systematics.Crossref | GoogleScholarGoogle Scholar |

Assis, C. A. (2005). The utricular otoliths, lapilli, of teleosts: their morphology and relevance for species identification and systematics studies. Scientia Marina 69, 259–273.

Backhaus, K., Erichson, B., Plinke, W., and Weiber, R. (2006). ‘Multivariate Analysemethoden. Eine anwendungsorientierte Einführung.’ 11th edn. (Springer-Verlag: Berlin.)

Berinkey, L. (1956). The taxonomical examination of the otoliths of the Cyprinidae of Hungary. Annales Historico–Naturales Musei Nationalis Hungarici 7, 455–462.

Cañás, L., Stransky, C., Schlickeisen, J., Sampedro, M. P., and Fariña, A. C. (2012). Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic. ICES Journal of Marine Science 69, 250–256.
Use of the otolith shape analysis in stock identification of anglerfish (Lophius piscatorius) in the Northeast Atlantic.Crossref | GoogleScholarGoogle Scholar |

Crampton, J. S., and Haines, A. J. (1996). User’s manual for programs HANGLE, HMATCH, and HCURVE for the Fourier shape analysis of two-dimensional outlines. Institute of Geological & Nuclear Sciences, Science Report 96, 1–28.

Deng, X. (2009). Comparative studies on the structure of the ears of deep-sea fishes. Ph.D. Thesis, University of Maryland, College Park, MD.

Fink, S. V., and Fink, W. L. (1996). Interrelationships of Ostariophysan fishes (Teleostei). In ‘Interrelationships of Fishes’. (Eds M. L. Stiassny, L. R. Parenti and G. D. Johnson.) pp. 209–249. (Academic Press: San Diego, CA.)

Frost, G. A. (1925). A comparative study of the otoliths of the neopterygian fishes. Annals & Magazine of Natural History 15, 152–163.
A comparative study of the otoliths of the neopterygian fishes.Crossref | GoogleScholarGoogle Scholar |

Frost, G. A. (1926). A comparative study of the otoliths of the neopterygian fishes. Annals & Magazine of Natural History 17, 99–104.
A comparative study of the otoliths of the neopterygian fishes.Crossref | GoogleScholarGoogle Scholar |

Haines, A. J., and Crampton, J. S. (2000). Improvements to the method of Fourier shape analysis as applied in morphometric studies. Palaeontology 43, 765–783.
Improvements to the method of Fourier shape analysis as applied in morphometric studies.Crossref | GoogleScholarGoogle Scholar |

Hammer, Ø., Harper, D. A. T., and Ryan, P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4, 1–9.

Jackson, D. A. (1993). Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74, 2204–2214.
Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches.Crossref | GoogleScholarGoogle Scholar |

Knudsen, S. W., Møller, P. R., and Gravlund, P. (2007). Phylogeny of the snailfishes (Teleostei: Liparidae) based on molecular and morphological data. Molecular Phylogenetics and Evolution 44, 649–666.
Phylogeny of the snailfishes (Teleostei: Liparidae) based on molecular and morphological data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXnslGgs7s%3D&md5=fbe886cd4434d50c1882d443956efa05CAS |

Lamatsch, D. K., Nanda, I., Schlupp, I., Epplen, J. T., Schmid, M., and Schartl, M. (2004). Distribution and stability of supernumerary microchromosomes in natural populations of the Amazon molly, Poecilia formosa. Cytogenetic and Genome Research 106, 189–194.
Distribution and stability of supernumerary microchromosomes in natural populations of the Amazon molly, Poecilia formosa.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD2czoslOksA%3D%3D&md5=e1e4f6c3337ea6d2f7af9f6c5373be08CAS |

Lombarte, A., Chic, Ò., Parisi-Baradad, V., Olivella, R., Piera, J., and García-Ladona, E. (2006). A web-based environment from shape analysis of fish otoliths. The AFORO database. Scientia Marina 70, 147–152.

Lombarte, A., Palmer, M., Matallanas, J., Gómez-Zurita, J., and Morales-Nin, B. (2010). Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae. Environmental Biology of Fishes 89, 607–618.
Ecomorphological trends and phylogenetic inertia of otolith sagittae in Nototheniidae.Crossref | GoogleScholarGoogle Scholar |

Nolf, D. (1985). Otolithi piscium. In ‘Handbook of Paleoichthyology 10’. (Ed. H.-P. Schultze.) (Gustav Fischer Verlag: Stuttgart.)

Nolf, D., and Tyler, J. C. (2006). Otolith evidence concerning interrelationships of caproid, zeiform and tetraodontiform fishes. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique. Biologie 76, 147–189.

Popper, A. N. (2011). Auditory system morphology. In ‘Encyclopedia of Fish Physiology: from Genome to Environment’. (Ed. A. P. Farrell.) Vol. 1. pp. 252–261. (Academic Press: San Diego, CA.)

Popper, A. N., and Coombs, S. (1982). The morphology and evolution of the ear in Actinopterygian fishes. American Zoologist 22, 311–328.

Popper, A. N., and Platt, C. (1979). The herring ear has a unique receptor pattern. Nature 280, 832–833.
The herring ear has a unique receptor pattern.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DyaE1M3ksVOnsw%3D%3D&md5=03b7142b03c537d9b09e516cd7f13c17CAS |

Popper, A. N., and Schilt, C. R. (2008). Hearing and acoustic behavior: basic and applied considerations. In ‘Fish Bioacoustics’. (Eds J. F. Webb, R. R. Fay and A. N. Popper.) pp. 17–48. (Springer: New York.)

Reichenbacher, B., and Kowalke, T. (2009). Neogene and present-day zoogeography of killifishes (Aphanius and Aphanolebias) in the Mediterranean and Paratethys areas. Palaeogeography, Palaeoclimatology, Palaeoecology 281, 43–56.
Neogene and present-day zoogeography of killifishes (Aphanius and Aphanolebias) in the Mediterranean and Paratethys areas.Crossref | GoogleScholarGoogle Scholar |

Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution 43, 223–225.
Analyzing tables of statistical tests.Crossref | GoogleScholarGoogle Scholar |

Rohlf, F. J. (2004). ‘tpsDIG2’. Available at http://life.bio.sunysb.edu/morph/ [accessed 8 June 2011].

Rohtla, M., Vetemaa, M., Urtson, K., and Soesoo, A. (2012). Early life migration patterns of Baltic Sea pike Esox lucius. Journal of Fish Biology 80, 886–893.
Early life migration patterns of Baltic Sea pike Esox lucius.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC38rhvV2lsg%3D%3D&md5=e595d16cf5be7041ed42f8352bf13d37CAS |

Schartl, M., Wilde, B., Schlupp, I., and Parzefall, J. (1995). Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy. Evolution 49, 827–835.
Evolutionary origin of a parthenoform, the Amazon molly Poecilia formosa, on the basis of a molecular genealogy.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XktlyisA%3D%3D&md5=b7832a4d4b3c76210c9ac133a9aabfa5CAS |

Schlupp, I., Parzefall, J., and Schartl, M. (2002). Biogeography of the Amazon molly, Poecilia formosa. Journal of Biogeography 29, 1–6.
Biogeography of the Amazon molly, Poecilia formosa.Crossref | GoogleScholarGoogle Scholar |

Schulz-Mirbach, T., and Reichenbacher, B. (2006). Reconstruction of Oligocene and Neogene freshwater fish faunas – an actualistic study on cypriniform otoliths. Acta Palaeontologica Polonica 51, 283–304.

Schulz-Mirbach, T., Scherb, H., and Reichenbacher, B. (2008a). Are hybridization and polyploidization phenomena detectable in the fossil record? – A case study on otoliths of a natural hybrid, Poecilia formosa (Teleostei: Poeciliidae). Neues Jahrbuch für Geologie und Palaontologie. Abhandlungen 249, 223–238.
Are hybridization and polyploidization phenomena detectable in the fossil record? – A case study on otoliths of a natural hybrid, Poecilia formosa (Teleostei: Poeciliidae).Crossref | GoogleScholarGoogle Scholar |

Schulz-Mirbach, T., Stransky, C., Schlickeisen, J., and Reichenbacher, B. (2008b). Differences in otolith morphologies between surface- and cave-dwelling populations of Poecilia mexicana (Teleostei, Poeciliidae) reflect adaptations to life in an extreme habitat. Evolutionary Ecology Research 10, 537–558.

Schulz-Mirbach, T., Ladich, F., Riesch, R., and Plath, M. (2010). Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae). Hearing Research 267, 137–148.
Otolith morphology and hearing abilities in cave- and surface-dwelling ecotypes of the Atlantic molly, Poecilia mexicana (Teleostei: Poeciliidae).Crossref | GoogleScholarGoogle Scholar |

Schulz-Mirbach, T., Riesch, R., García de León, F. J., and Plath, M. (2011a). Effects of extreme habitat conditions on otolith morphology – a case study on extremophile livebearing fishes (Poecilia mexicana, P. sulphuraria). Zoology (Jena, Germany) 114, 321–334.
Effects of extreme habitat conditions on otolith morphology – a case study on extremophile livebearing fishes (Poecilia mexicana, P. sulphuraria).Crossref | GoogleScholarGoogle Scholar |

Schulz-Mirbach, T., Heß, M., and Plath, M. (2011b). Inner ear morphology in the Atlantic Molly, Poecilia mexicana – first detailed microanatomical study of the inner ear of a cyprinodontiform species. PLoS ONE 6, e27734.
Inner ear morphology in the Atlantic Molly, Poecilia mexicana – first detailed microanatomical study of the inner ear of a cyprinodontiform species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsF2is7fK&md5=bee481184de62456b433e018c268129bCAS |

SPSS Inc (2006). ‘SPSS. Ver. 15.0. Base.’ (SPSS Inc.: Chicago, IL.)

Stransky, C., Garbe-Schönberg, C.-D., and Günther, D. (2005). Geographic variation and juvenile migration in Atlantic redfish inferred from otolith microchemistry. Marine and Freshwater Research 56, 677–691.
Geographic variation and juvenile migration in Atlantic redfish inferred from otolith microchemistry.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXmsVyqsb4%3D&md5=28e602b66dbce1ca34e834ab895c43e5CAS |

Tuset, V.M., Lombarte, A., and Assis, C.A. (2008). Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina 72, 7–198.
Otolith atlas for the western Mediterranean, north and central eastern Atlantic.Crossref | GoogleScholarGoogle Scholar |

Tuset, V. M., Azzurro, E., and Lombarte, A. (2012). Identification of Lessepsian fish species using the sagittal otolith. Scientia Marina 76, 289–299.
Identification of Lessepsian fish species using the sagittal otolith.Crossref | GoogleScholarGoogle Scholar |