Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil

Anderson Ferreira A , José Eurico Possebon Cyrino B , Paulo José Duarte-Neto C and Luiz Antonio Martinelli A D
+ Author Affiliations
- Author Affiliations

A Universidade de São Paulo, Centro de Energia Nuclear na Agricultura, Laboratório de Ecologia Isotópica, Av. Centenário, 303, 13416-970 Piracicaba, SP, Brazil.

B Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Zootecnia, Av. Pádua Dias, s/no. Agronomia, 13418-900 Piracicaba, SP, Brazil.

C Unidade Acadêmica de Garanhuns, Universidade Federal Rural de Pernambuco, Garanhuns-PE, Brazil.

D Corresponding author. Email: martinelli@cena.usp.br

Marine and Freshwater Research 63(12) 1272-1282 https://doi.org/10.1071/MF12092
Submitted: 4 April 2012  Accepted: 11 October 2012   Published: 12 December 2012

Abstract

If riparian buffer zones are ineffective in preventing C4 plant carbon from upland areas reaching the stream sediment, the composition of stream fauna can be significantly altered. The permeability of riparian forest strips in agricultural, small subtropical watersheds in south-eastern Brazil was measured in nine watersheds categorised according to the predominant land cover of the legally required 30-m buffer riparian zone. Four watersheds with well preserved riparian forest along the 30-m buffer zone were designated as FOREST watersheds; three watersheds, with a predominance of C4 grasses from sugarcane to pasture, mixed with preserved riparian forests, were designated MIXED watersheds; and two watersheds were termed PASTURE-SUGAR because their entire 30-m buffer zone was covered by C4 plants. Stable carbon (δ13C) isotopes were used as tracers of upland C4 carbon in sediments, suspended particulate organic carbon, terrestrial and aquatic invertebrates and two species of neotropical fish. Although the intact 30-m buffer zone of riparian forests did not entirely prevent the input of C4 to the river environment and food web, there was a significant increase in C4 carbon in those watersheds where the buffer zone was not covered by riparian forests. These findings emphasise the importance of riparian forests in mitigating disturbance in streams and support efforts to preserve such riparian corridors.

Additional keywords: C4 plants carbon, δ13C, riparian land cover, stream.


References

Adis, J., and Victoria, R. L. (2001). C-3 or C-4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta C-13 values. Isotopes in Environmental and Health Studies 37, 193–198.
C-3 or C-4 macrophytes: a specific carbon source for the development of semi-aquatic and terrestrial arthropods in central Amazonian river-floodplains according to delta C-13 values.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xis1Wqsbs%3D&md5=76260fa3e710b981f6508c3fce1d376cCAS |

Alexandre, C. V., Esteves, K. E., and Marcondes de Moura e Mello, M. A. (2010). Analysis of fish communities along a rural–urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil). Hydrobiologia 641, 97–114.
Analysis of fish communities along a rural–urban gradient in a neotropical stream (Piracicaba River Basin, São Paulo, Brazil).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXhsFKjtrY%3D&md5=dfa65f4ac1808652f7c4271d25cb1a34CAS |

Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology Evolution and Systematics 35, 257–284.
Landscapes and riverscapes: the influence of land use on stream ecosystems.Crossref | GoogleScholarGoogle Scholar |

Araújo, N. B., and Tejerina-Garro, F. L. (2009). Influence of environmental variables and anthropogenic perturbations on stream fish assemblages, Upper Paraná River, Central Brazil. Neotropical Ichthyology 7, 31–38.
Influence of environmental variables and anthropogenic perturbations on stream fish assemblages, Upper Paraná River, Central Brazil.Crossref | GoogleScholarGoogle Scholar |

Araujo-Lima, C. A. R. M., Forsberg, B. R., Victoria, R. L., and Martinelli, L. A. (1986). Energy sources for detritivorous fishes in the Amazon. Science 4781, 1256–1258.

Awmack, C. S., and Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of Entomology 47, 817–844.
Host plant quality and fecundity in herbivorous insects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVWlug%3D%3D&md5=9519a0a594c83725fa2eb13eaea5b608CAS |

Barbehenn, R. V., Karowe, D. N., and Spickard, A. (2004a). Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars. Oecologia 140, 86–95.
Effects of elevated atmospheric CO2 on the nutritional ecology of C3 and C4 grass-feeding caterpillars.Crossref | GoogleScholarGoogle Scholar |

Barbehenn, R. V., Chen, Z., Karowe, D. N., and Spickard, A. (2004b). C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2. Global Change Biology 10, 1565–1575.
C3 grasses have higher nutritional quality than C4 grasses under ambient and elevated atmospheric CO2.Crossref | GoogleScholarGoogle Scholar |

Bukovinszky, T., van Veen, F. J. F., Jongema, Y., and Dicke, M. (2008). Direct and indirect effects of resource quality on food web structure. Science 319, 804–807.
Direct and indirect effects of resource quality on food web structure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhsFGhs70%3D&md5=5239ed36e0ff2d93bf13c97c357434ebCAS |

Bunn, S. E., Davies, P. M., and Kellaway, D. M. (1997). Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream. Marine and Freshwater Research 48, 173–179.
Contributions of sugar cane and invasive pasture grass to the aquatic food web of a tropical lowland stream.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2sXjtFemur0%3D&md5=8dc883401020012e30fbf96539d32993CAS |

Casatti, L., Ferreira, C. P., and Carvalho, F. R. (2009). Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins. Hydrobiologia 632, 273–283.
Grass-dominated stream sites exhibit low fish species diversity and dominance by guppies: an assessment of two tropical pasture river basins.Crossref | GoogleScholarGoogle Scholar |

Caswell, H., Reed, F., Stephenson, S. N., and Werner, P. A. (1973). Photosytnthetic pathways and selective herbivory: a hypothesis. American Naturalist 107, 465–480.
Photosytnthetic pathways and selective herbivory: a hypothesis.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE3sXkvV2rsL8%3D&md5=f2ff0b54c2ce8b25576a4b72eb8d2fd8CAS |

Clapcott, J. E., and Bunn, S. E. (2003). Can C4 plants contribute to aquatic food webs of subtropical streams? Freshwater Biology 48, 1105–1116.
Can C4 plants contribute to aquatic food webs of subtropical streams?Crossref | GoogleScholarGoogle Scholar |

Cross, W. F., Benstead, J. P., Frost, P. C., and Thomas, S. A. (2005). Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50, 1895–1912.
Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXht1CgsLvE&md5=c21b6e74776120c49228c0fd58b71085CAS |

Ehleringer, J. R., Cerling, T. E., and Dearing, M. D. (2002). Atmospheric CO2 as a global change driver influencing plant–animal interactions. Integrative and Comparative Biology 42, 424–430.
Atmospheric CO2 as a global change driver influencing plant–animal interactions.Crossref | GoogleScholarGoogle Scholar |

England, L. E., and Rosemond, A. D. (2004). Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams. Freshwater Biology 49, 721–734.
Small reductions in forest cover weaken terrestrial-aquatic linkages in headwater streams.Crossref | GoogleScholarGoogle Scholar |

Ferreira, A., Paula, F. R. P., Ferraz, S. F. B., Gerhard, P., Kashiwaqui, E. A. L., Cyrino, J. E. P., and Martinelli, L. A. (2012). Riparian coverage affects diets of characids in neotropical streams. Ecology Freshwater Fish 21, 12–22.
Riparian coverage affects diets of characids in neotropical streams.Crossref | GoogleScholarGoogle Scholar |

Fialho, A. P., Oliveira, L. G., Tejerina-Garro, F. L., and Mérona, B. (2008). Fish–habitat relationship in a tropical river under anthropogenic influences. Hydrobiologia 598, 315–324.
Fish–habitat relationship in a tropical river under anthropogenic influences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhsVKhtbrN&md5=c5cd3841a080d7c84152b46868d75a9eCAS |

France, R. L. (1995). Carbon-13 enrichment in benthic compared to planktonic algae: food web implications. Marine Ecology Progress Series 124, 307–312.
Carbon-13 enrichment in benthic compared to planktonic algae: food web implications.Crossref | GoogleScholarGoogle Scholar |

Garutti, V., and Britski, H. A. (2000). Descrição de uma espécie nova de Astyanax (Teleostei: Characidae) da bacia do alto rio Paraná e considerações sobre as demais espécies do gênero na bacia. Comunicações do Museu de Ciências e Tecnologia da PUCRS Série Zoologia 13, 65–88.

Henry, R., Uieda, V. S., Afonso, A. A., and Kikuchi, R. M. (1994). Input of allochthonous matter and structure of fauna in a Brazilian headstream. Verhandlungen des Internationalen Verein Limnologie 25, 1866–1870.

Hoeinghaus, D. J., Winemiller, K. O., and Agostinho, A. A. (2007). Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs. Ecosystems 10, 1019–1033.
Landscape-scale hydrologic characteristics differentiate patterns of carbon flow in large-river food webs.Crossref | GoogleScholarGoogle Scholar |

Lambin, E. F., and Meyfroidt, P. (2011). Inaugural Article: Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, USA 108, 3465–3472.
Inaugural Article: Global land use change, economic globalization, and the looming land scarcity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXivFGlu70%3D&md5=7e609fcd9da7f8fd642d42c3e2a0ffa2CAS |

Langeani, F., Castro, R. M. C., Oyakawa, O. T., Shibatta, O. A., Pavanelli, C. S., and Casatti, L. (2007). Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras. Biota Neotropica 7, 181–197.
Diversidade da ictiofauna do Alto Rio Paraná: composição atual e perspectivas futuras.Crossref | GoogleScholarGoogle Scholar |

Leite, C. C., Costa, M. H., Soares-Filho, B. S., and Hissa, L. B. V. (2012). Historical land use change and associated carbon emissions in Brazil from 1940 to 1995. Global Biogeochemical Cycles 26, GB2011.
Historical land use change and associated carbon emissions in Brazil from 1940 to 1995.Crossref | GoogleScholarGoogle Scholar |

Lopes, C. A., Benedito-Cecilio, E., and Martinelli, L. A. (2007). Variability in the carbon isotope signature of Prochilodus lineatus (Prochilodontidae, Characiformes) a bottom-feeding fish of the Neotropical region. Journal of Fish Biology 70, 1649–1659.
Variability in the carbon isotope signature of Prochilodus lineatus (Prochilodontidae, Characiformes) a bottom-feeding fish of the Neotropical region.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotFyls7w%3D&md5=421c175833b723e4432b13a192bece13CAS |

Lorion, C. M., and Kennedy, B. P. (2009). Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams. Ecological Applications 19, 468–479.
Riparian forest buffers mitigate the effects of deforestation on fish assemblages in tropical headwater streams.Crossref | GoogleScholarGoogle Scholar |

Martinelli, L. A., Victoria, R. L., de Camargo, P. B., Piccolo, M. C., Mertes, L., Richey, J. E., Devol, A. H., and Forsberg, B. R. (2003). Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment. Hydrological Processes 17, 1419–1430.
Inland variability of carbon-nitrogen concentrations and δ13C in Amazon floodplain (várzea) vegetation and sediment.Crossref | GoogleScholarGoogle Scholar |

McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390.
Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmsl2qurg%3D&md5=d7aa12957879a8df567561f9189dc330CAS |

Metzger, J. P., Lewinsohn, T. M., Joly, C. A., Verdade, L. V., Martinelli, L. A., and Rodrigues, R. R. (2010). Brazilian law: full speed in reverse? Science 329, 276–277.
Brazilian law: full speed in reverse?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptlertLg%3D&md5=9b5a936df71ee9943a860ccd3f653823CAS |

Nepstad, D., Soares-Filho, B. S., Merry, F., Lima, A., Moutinho, P., Carter, J., Bowman, M., Cattaneo, A., Rodrigues, H., Schwartzman, S., McGrath, S. G., Stickler, C. M., Lubowski, R., Piris-Cabezas, P., Rivero, S., Alencar, A., Almeida, O., and Stella, O. (2009). The end of deforestation in the Brazilian Amazon. Science 326, 1350–351.
The end of deforestation in the Brazilian Amazon.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsFOgsr7O&md5=62102a5a610222a4762e002a646d300eCAS |

Nessimian, J. L., Venticinque, E. M., Zuanon, J., De Marco, P., Gordo, M., Fidelis, L., Batista, J. D., and Juen, L. (2008). Land use, habitat integrity, and aquatic insect assemblages in central Amazonian streams. Hydrobiologia 614, 117–131.
Land use, habitat integrity, and aquatic insect assemblages in central Amazonian streams.Crossref | GoogleScholarGoogle Scholar |

Oliveira, A. C. B., Soares, M. G., Martinelli, L. A., and Moreira, M. Z. (2006). Carbon sources of fish in an Amazonian floodplain lake. Aquatic Sciences 68, 229–238.
Carbon sources of fish in an Amazonian floodplain lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XotVekt70%3D&md5=38fbc8001c3c9405868559840dd76107CAS |

Ometo, J. P. H. B., Martinelli, L. A., Ballester, M. V. R., Gessner, A., Krusche, A., Victoria, R. L., and Willians, M. (2000). Effects of land use on water chemistry and macroinvertebrates in two streams of Piracicaba river basin, southeast Brazil. Freshwater Biology 44, 327–337.
Effects of land use on water chemistry and macroinvertebrates in two streams of Piracicaba river basin, southeast Brazil.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXksFCjsr4%3D&md5=c1b8ce45c8d33c7c96997d669957b412CAS |

Parnell, A. C., Inger, R., Bearhop, S., and Jackson, A. L. (2010). Source partitioning using stable isotopes : coping with too much variation. PLoS ONE 5, e9672.
Source partitioning using stable isotopes : coping with too much variation.Crossref | GoogleScholarGoogle Scholar |

Pusey, B. J., and Arthington, A. H. (2003). Importance of the riparian zone to the conservation and management of freshwater fish: a review. Marine and Freshwater Research 54, 1–16.
Importance of the riparian zone to the conservation and management of freshwater fish: a review.Crossref | GoogleScholarGoogle Scholar |

Ramankutty, N., Evan, A. T., Monfreda, C., and Foley, J. A. (2008). Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Global Biogeochemical Cycles 22, GB1003.
Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000.Crossref | GoogleScholarGoogle Scholar |

Ribeiro, M. C., Metzger, J. P., Martensen, A. C., Ponzoni, F. J., and Hirota, M. M. (2009). The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation. Biological Conservation 142, 1141–1153.
The Brazilian Atlantic Forest: how much is left, and how is the remaining forest distributed? Implications for conservation.Crossref | GoogleScholarGoogle Scholar |

Scheirs, J., de Debruyn, L., and Verhagen, R. (2001). A test of the C3–C4 hypothesis with two grass miners. Ecology 82, 410–421.

Spence, K. O., and Rosenheim, J. A. (2005). Isotopic enrichment in herbivorous insects: a comparative field-based study of variation. Oecologia 146, 89–97.
Isotopic enrichment in herbivorous insects: a comparative field-based study of variation.Crossref | GoogleScholarGoogle Scholar |

StatSoft, Inc. (2009). ‘Statistica (Data Analysis Software System). Version 9.’ Available at http://statsoft.com [accessed January 2009 ].

Suriano, M. T., Gessner, A. F., Roque, F. O., and Froehlich, C. G. (2011). Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil. Environmental Monitoring and Assessment 175, 87–101.
Choice of macroinvertebrate metrics to evaluate stream conditions in Atlantic Forest, Brazil.Crossref | GoogleScholarGoogle Scholar |

Sweeney, B. W., Thomas, B. L., Jackson, J. K., Kaplan, L. A., Newbold, J. D., Standley, L. J., Hession, W. C., and Horwitz, R. J. (2004). Riparian deforestation, stream narrowing, and loss of stream ecosystem services. Proceedings of the National Academy of Science, USA 101, 14 132–14 137.
Riparian deforestation, stream narrowing, and loss of stream ecosystem services.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVylsLs%3D&md5=cf7c4c90f0cf0f1c4fe6673040849002CAS |

Thomas, S., Neill, C., Deegan, L. A., Krusche, A. V., Ballester, V. M., and Victoria, R. L. (2004). Influences land use and stream on particulate and dissolved materials in a small Amazonian stream network. Biogeochemistry 68, 135–151.
Influences land use and stream on particulate and dissolved materials in a small Amazonian stream network.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXjsV2nt7k%3D&md5=15ada0f0825b8b5246200182bc539c13CAS |

Valente, R. O. A., and Vettorazzi, C. A. (2003). Mapeamento de uso e cobertura do solo da bacia do rio Corumbataí. Piracicaba. Circular técnica IPEF 186, 1–9.

Vanderklift, M. A., and Ponsard, S. (2003). Sources of variation in consumer-diet δ15N enrichment: a meta-analysis. Oecologia 136, 169–182.
Sources of variation in consumer-diet δ15N enrichment: a meta-analysis.Crossref | GoogleScholarGoogle Scholar |

Vaz, M. M., Petrere, M., Martinelli, L. A., and Mozeto, A. A. (1999). The dietary regime of detritivorous fish from the Jacaré-Pepira River, Brazil. Fisheries Management and Ecology 6, 121–132.
The dietary regime of detritivorous fish from the Jacaré-Pepira River, Brazil.Crossref | GoogleScholarGoogle Scholar |

Vieira, I. (2005). Alterações nas fontes alimentares disponíveis a ictiofauna, utilizando isótopos estáveis de carbono. Doctoral Thesis, Universidade de São Paulo, Brazil.

Vitorello, V. A., Cerri, C. C., Andreux, F., Feller, C., and Victória, R. L. (1989). Organic matter and natural carbon-13 distribution in forest and cultivated oxisols. Soil Science Society of America Journal 53, 773–778.
Organic matter and natural carbon-13 distribution in forest and cultivated oxisols.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXlsFalurw%3D&md5=c1f1a0dfbd0e176acfce989e092e655fCAS |

Warne, R. W., Pershall, A. D., and Wolf, B. O. (2010). Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers. Ecology 91, 1628–1638.
Linking precipitation and C3–C4 plant production to resource dynamics in higher-trophic-level consumers.Crossref | GoogleScholarGoogle Scholar |