Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

The proteomes of Sydney rock oysters vary spatially according to exposure to acid sulfate runoff

Valter Amaral A B C , Emma L. Thompson A , Melanie J. Bishop A and David A. Raftos A
+ Author Affiliations
- Author Affiliations

A Department of Biological Sciences, Macquarie University, North Ryde, NSW 2109, Australia.

B Centro de Oceanografia, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal.

C Corresponding author. Email: vlamaral@fc.ul.pt

Marine and Freshwater Research 63(4) 361-369 https://doi.org/10.1071/MF11213
Submitted: 22 September 2011  Accepted: 22 December 2011   Published: 23 March 2012

Abstract

Runoff from acid sulfate soils (ASS) has severe environmental and economic impacts on estuarine ecosystems. Oysters display reduced abundance, growth rate and shell thickness when exposed to ASS runoff, yet the molecular underpinnings of their responses have not been explored. We hypothesised that the proteomes of wild Sydney rock oysters, Saccostrea glomerata, would differ between populations recurrently exposed to ASS compared with those unaffected by runoff from ASS. We used two-dimensional electrophoresis to compare protein abundances in the gills of S. glomerata collected from two sites close to (acidified) and two sites away from (reference) major ASS outflow drains in a south-east Australian estuary. Approximately 5% of the proteome was differentially expressed between oysters from acidified and reference sites, with five protein spots more abundant and one less abundant at the sites close to drains. Another protein spot was present only in oysters from reference sites. This study is the first screening of spatial variation in the protein expression of S. glomerata with respect to discharge from ASS. Altered protein expression may underpin short-term inducible responses to ASS runoff, or genetic resistance acquired through recurrent exposure of populations to the stressor.

Additional keywords: acidity, anthropogenic stress, estuarine acidification, pH, proteomics, waterlogged soils.


References

Amaral, V., Cabral, H. N., and Bishop, M. J. (2011a). Effects of runoff from acid-sulfate soils on pneumatophores of the grey mangrove Avicennia marina. Marine and Freshwater Research 62, 974–979.
Effects of runoff from acid-sulfate soils on pneumatophores of the grey mangrove Avicennia marina.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhtVOgu7nN&md5=5a9d6b095e811cf6f45afcbec452ed07CAS |

Amaral, V., Cabral, H. N., and Bishop, M. J. (2011b). Resistance among wild invertebrate populations to recurrent estuarine acidification. Estuarine, Coastal and Shelf Science 93, 460–467.
Resistance among wild invertebrate populations to recurrent estuarine acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXptVCis7g%3D&md5=877e9a08e7cdadf24f45693ea435c533CAS |

Amaral, V., Cabral, H. N., and Bishop, M. J. (2012). Effects of estuarine acidification on predator-prey interactions. Marine Ecology Progress Series 445, 117–127.
Effects of estuarine acidification on predator-prey interactions.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J. (2001). A new method for non-parametric multivariate analysis of variance. Austral Ecology 26, 32–46.
A new method for non-parametric multivariate analysis of variance.Crossref | GoogleScholarGoogle Scholar |

Bamber, R. N. (1987). The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea). Journal of Experimental Marine Biology and Ecology 108, 241–260.
The effects of acidic sea water on young carpet-shell clams Venerupis decussata (L.) (Mollusca: Veneracea).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXkslagurc%3D&md5=f5b142d4d5e54e6bd9cb9d9ebd956933CAS |

Bamber, R. N. (1990). The effects of acidic seawater on three species of lamellibranch mollusc. Journal of Experimental Marine Biology and Ecology 143, 181–191.
The effects of acidic seawater on three species of lamellibranch mollusc.Crossref | GoogleScholarGoogle Scholar |

Bayne, B. L., and Svensson, S. (2006). Seasonal variability in feeding behaviour, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata (Gould). Journal of Experimental Marine Biology and Ecology 332, 12–26.
Seasonal variability in feeding behaviour, metabolic rates and carbon and nitrogen balances in the Sydney oyster, Saccostrea glomerata (Gould).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XjvVGmsrY%3D&md5=7ab155e818ef659caabfaec53cd69ee0CAS |

Bezemer, B., Butt, D., Nell, J., Adlard, R., and Raftos, D. (2006). Breeding for QX disease resistance negatively selects one form of the defensive enzyme, phenoloxidase, in Sydney rock oysters. Fish & Shellfish Immunology 20, 627–636.
Breeding for QX disease resistance negatively selects one form of the defensive enzyme, phenoloxidase, in Sydney rock oysters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtFyksb7F&md5=0d377c5e351bfea21e41c400f7dafdefCAS |

Bibby, R., Widdicombe, S., Parry, H., Spicer, J., and Pipe, R. (2008). Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquatic Biology 2, 67–74.
Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis.Crossref | GoogleScholarGoogle Scholar |

Bishop, M. J., Krassoi, F. R., McPherson, R. G., Brown, K. R., Summerhayes, S. A., Wilkie, E. M., and O’Connor, W. A. (2010). Change in wild-oyster assemblages of Port Stephens, NSW, Australia, since commencement of non-native Pacific oyster (Crassostrea gigas) aquaculture. Marine and Freshwater Research 61, 714–723.
Change in wild-oyster assemblages of Port Stephens, NSW, Australia, since commencement of non-native Pacific oyster (Crassostrea gigas) aquaculture.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXnvFKqtbk%3D&md5=4e9be1588b556fc83c5c98ff12258a11CAS |

Brown, T. E., Morley, A. W., Sanderson, N. T., and Tait, R. D. (1983). Report of a large fish kill resulting from natural acid water conditions in Australia. Journal of Fish Biology 22, 335–350.
Report of a large fish kill resulting from natural acid water conditions in Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXitVeqt7k%3D&md5=a90705544f10d2d5ac0a93ca44532931CAS |

Brown, A. F., Kann, L. M., and Rand, D. M. (2001). Gene flow versus local adaptation in the northern acorn barnacle, Semibalanus balanoides: insights from mitochondrial DNA variation. Evolution 55, 1972–1979.
Gene flow versus local adaptation in the northern acorn barnacle, Semibalanus balanoides: insights from mitochondrial DNA variation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fjt1yrtQ%3D%3D&md5=a2a865bf755116bfa6dfeac54855827aCAS |

Callinan, R. B., Fraser, G. C., and Melville, M. D. (1993) Seasonally recurrent fish mortalities and ulcerative disease outbreaks associated with acid sulphate soils in Australian estuaries. In ‘Selected Papers of the Ho Chi Minh City Symposium on Acid Sulphate Soils’. (Eds D. Dent and M.E.F. van Mensvoort.) pp. 403–410. (The Netherlands International Institute for Land Reclamation and Improvement: Wageningen.)

Clarke, K. R. (1993). Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18, 117–143.
Nonparametric multivariate analyses of changes in community structure.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (1994). Similarity-based testing for community pattern: the 2-way layout with no replication. Marine Biology 118, 167–176.
Similarity-based testing for community pattern: the 2-way layout with no replication.Crossref | GoogleScholarGoogle Scholar |

Clarke, K. R., and Warwick, R. M. (1998). Quantifying structural redundancy in ecological communities. Oecologia 113, 278–289.
Quantifying structural redundancy in ecological communities.Crossref | GoogleScholarGoogle Scholar |

Coen, L. D., and Luckenbach, M. W. (2000). Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation? Ecological Engineering 15, 323–343.
Developing success criteria and goals for evaluating oyster reef restoration: ecological function or resource exploitation?Crossref | GoogleScholarGoogle Scholar |

Dent, D. L., and Pons, L. J. (1995). A world perspective on acid sulfate soils. Geoderma 67, 263–276.
A world perspective on acid sulfate soils.Crossref | GoogleScholarGoogle Scholar |

Diz, A. P., Truebano, M., and Skibinski, D. O. F. (2009). The consequences of sample pooling in proteomics: an empirical study. Electrophoresis 30, 2967–2975.
The consequences of sample pooling in proteomics: an empirical study.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVKntb7F&md5=1b6084940a657ae7ec79c960e6d23bcaCAS |

Dove, M. C. (1997). The deleterious effects of acidified water on the Sydney rock oyster, Saccostrea commercialis. Honours thesis, The University of New South Wales, Sydney.

Dove, M. C., and Sammut, J. (2007a). Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata (Gould 1850). Journal of Shellfish Research 26, 519–527.
Impacts of estuarine acidification on survival and growth of Sydney rock oysters Saccostrea glomerata (Gould 1850).Crossref | GoogleScholarGoogle Scholar |

Dove, M. C., and Sammut, J. (2007b). Histological and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows. Journal of Shellfish Research 26, 509–518.
Histological and feeding response of Sydney rock oysters, Saccostrea glomerata, to acid sulfate soil outflows.Crossref | GoogleScholarGoogle Scholar |

FAO (2008). Fishery Statistical Collections: Global Aquaculture Production. Available at http://www.fao.org/fishery/statistics/global-aquaculture-production/en [Accessed 14 September 2011].

Field, J. M., Clarke, K. R., and Warwick, R. M. (1982). A practical atrategy for analysing multispecies distribution patterns. Marine Ecology Progress Series 8, 37–52.
A practical atrategy for analysing multispecies distribution patterns.Crossref | GoogleScholarGoogle Scholar |

GeneBio (2008). MELANIE 2DE Gel analysis software: user manual ver. 7.0. Genebio, Geneva. Available at http://www.genebio.com/_library/Manual_Melanie7.pdf [Acessed 25 August 2011].

Green, T. J., and Barnes, A. C. (2010). Reduced salinity, but not estuarine acidification, is a cause of immune-suppression in the Sydney rock oyster Saccostrea glomerata. Marine Ecology Progress Series 402, 161–170.
Reduced salinity, but not estuarine acidification, is a cause of immune-suppression in the Sydney rock oyster Saccostrea glomerata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXovVGhu7w%3D&md5=bf047145ff19b62dcbfe89bcae529f51CAS |

Green, R., Macdonald, B. C. T., Melville, M. D., and Waite, T. D. (2006). Hydrochemistry of episodic drainage waters discharged from an acid sulfate soil affected catchment. Journal of Hydrology 325, 356–375.
Hydrochemistry of episodic drainage waters discharged from an acid sulfate soil affected catchment.Crossref | GoogleScholarGoogle Scholar |

Green, T. J., Raftos, D., O’Connor, W., Adlard, R. D., and Barnes, A. C. (2011). Disease prevention strategies for QX disease (Marteilia sydneyi) of Sydney rock oysters (Saccostrea glomerata). Journal of Shellfish Research 30, 47–53.
Disease prevention strategies for QX disease (Marteilia sydneyi) of Sydney rock oysters (Saccostrea glomerata).Crossref | GoogleScholarGoogle Scholar |

Hamdoun, A. M., Cheney, D. P., and Cherr, G. N. (2003). Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance. The Biological Bulletin 205, 160–169.
Phenotypic plasticity of HSP70 and HSP70 gene expression in the Pacific oyster (Crassostrea gigas): implications for thermal limits and induction of thermal tolerance.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpsVOitL8%3D&md5=67818c263c7e0ec1728c702be44e375fCAS |

Hoffmann, A. A., and Willi, Y. (2008). Detecting genetic responses to environmental change. Nature Reviews. Genetics 9, 421–432.
Detecting genetic responses to environmental change.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXlvFKrtLw%3D&md5=83f1705972dcebd7c9483351b681c1d0CAS |

Jackson, R. B., Linder, C. R., Lynch, M., Purugganan, M., Somerville, S., and Thayer, S. S. (2002). Linking molecular insight and ecological research. Trends in Ecology & Evolution 17, 409–414.
Linking molecular insight and ecological research.Crossref | GoogleScholarGoogle Scholar |

Johnston, S. G., Slavich, P. G., and Hirst, P. (2005). The impact of controlled tidal exchange on drainage water quality in acid sulphate soil backswamps. Agricultural Water Management 73, 87–111.
The impact of controlled tidal exchange on drainage water quality in acid sulphate soil backswamps.Crossref | GoogleScholarGoogle Scholar |

Kuchel, R. P., Raftos, D. A., and Nair, S. (2010). Immunosuppressive effects of environmental stressors on immunological function in Pinctada imbricata. Fish & Shellfish Immunology 29, 930–936.
Immunosuppressive effects of environmental stressors on immunological function in Pinctada imbricata.Crossref | GoogleScholarGoogle Scholar |

Naylor, S. D., Chapman, G. A., Atkinson, G., Murphy, C. L., Tulau, M. J., Flewin, T. C., Milford, H. B., and Morand, D. T. (1998). Guidelines for the use of acid sulfate soil risk maps, 2nd edn. NSW Department of Land and Water Conservation, Sydney. Available at http://www.environment.nsw.gov.au/resources/acidsulfatesoil/assmapsguide.pdf[Accessed 14 September 2011].

Newell, R. I. E. (2004). Ecosystem influences of natural and cultivated populations of suspension-feeding bivalve molluscs: a review. Journal of Shellfish Research 23, 51–61.

NSW DECCW (2010). NSW Department of Environment, Climate Change and Water. Available at http://www.environment.nsw.gov.au/acidsulfatesoil/index.htm [Accessed 3 June 2011].

NSW DPI (2006). Assay: a newsletter about acid sulfate soils. NSW Department of Primary Industries, Wollongbar. Available at http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/168557/assay-40.pdf[Accessed 14 September 2011].

NSW DPI (2009). Tilligerry Creek. Floodgate Assessment. Report to the Hunter-Central Rivers. Catchment Management Authority. Project number HCR07_106, Orange. Available at http://www.dpi.nsw.gov.au/__data/assets/pdf_file/0005/280922/Tilligerry-creek-floodgate-assessment-report.pdf [Accessed 14 September 2011].

O’Connor, W. A., and Dove, M. C. (2009). The changing face of oyster culture in New South Wales, Australia. Journal of Shellfish Research 28, 803–811.
The changing face of oyster culture in New South Wales, Australia.Crossref | GoogleScholarGoogle Scholar |

Powell, B., and Martens, M. (2005). A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Marine Pollution Bulletin 51, 149–164.
A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXitF2gtL0%3D&md5=e20ae52326229f0c7405bdaa9b2f56dbCAS |

Ries, J. B., Cohen, A. L., and McCorkle, D. C. (2009). Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134.
Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXjvVartg%3D%3D&md5=485d3f77ee14740e9aaf2c94de7a5c1bCAS |

Rodríguez-Ortega, M. J., Grosvik, B. E., Rodriguez-Ariza, A., Goksoyr, A., and Lopez-Barea, J. (2003). Changes in protein expression profiles in bivalve molluscs (Chamaelea gallina) exposed to four model environmental pollutants. Proteomics 3, 1535–1543.
Changes in protein expression profiles in bivalve molluscs (Chamaelea gallina) exposed to four model environmental pollutants.Crossref | GoogleScholarGoogle Scholar |

Russell, D. J., and Helmke, S. A. (2002). Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia. Marine and Freshwater Research 53, 19–33.
Impacts of acid leachate on water quality and fisheries resources of a coastal creek in northern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XitVSns78%3D&md5=dfe94887105b0c346acd14a9bc805293CAS |

Sammut, J., Melville, M., Callinan, R., and Fraser, G. (1995). Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils. Australian Geographical Studies 33, 89–100.
Estuarine acidification: impacts on aquatic biota of draining acid sulphate soils.Crossref | GoogleScholarGoogle Scholar |

Sammut, J., White, I., and Melville, M. D. (1996). Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils. Marine and Freshwater Research 47, 669–684.
Acidification of an estuarine tributary in eastern Australia due to drainage of acid sulfate soils.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK28XmvF2jtLk%3D&md5=8487975b81a0e43667d9dfff210c53feCAS |

Simonian, M., Nair, S. V., Nell, J. A., and Raftos, D. A. (2009). Proteomic clues to the identification of QX disease-resistance biomarkers in selectively bred Sydney rock oysters, Saccostrea glomerata. Journal of Proteomics 73, 209–217.
Proteomic clues to the identification of QX disease-resistance biomarkers in selectively bred Sydney rock oysters, Saccostrea glomerata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhsVWqu73O&md5=5dd09cd0fdb1a18e6e0c09f773fca426CAS |

Thompson, E. L., Taylor, D. A., Nair, S. V., Birch, G., Haynes, P. A., and Raftos, D. A. (2011). A proteomic analysis of the effects of metal contamination on Sydney rock oyster (Saccostrea glomerata) haemolymph. Aquatic Toxicology 103, 241–249.
A proteomic analysis of the effects of metal contamination on Sydney rock oyster (Saccostrea glomerata) haemolymph.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlvVaiu74%3D&md5=a1d656582a4ee00fcf3bb8d404a0b659CAS |

Tomanek, L., Zuzow, M. J., Ivanina, A. V., Beniash, E., and Sokolova, I. M. (2011). Proteomic response to elevated P-CO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress. The Journal of Experimental Biology 214, 1836–1844.
Proteomic response to elevated P-CO2 level in eastern oysters, Crassostrea virginica: evidence for oxidative stress.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXpsFGju7o%3D&md5=1961bf2b7c3de423280b9e302eaf6ac1CAS |

Tyers, M., and Mann, M. (2003). From genomics to proteomics. Nature 422, 193–197.
From genomics to proteomics.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhvFKgs7o%3D&md5=41eafd92acd9bac8ffe71317fbfaa5afCAS |

Underwood, A. J. (1997). ‘Experiments in Ecology: their Logical Design and Interpreation Using Analysis of Variance.’ (Cambridge University Press: Cambridge.)

Volckaert, F. A. M. J., Barbier, M., Canário, A. V. M., Olsen, J. L., Wesnigk, J., Clark, M., and Boyen, C. (2008). Empowering marine science through genomics. Marine Genomics 1, 33–35.
Empowering marine science through genomics.Crossref | GoogleScholarGoogle Scholar |

Zar, J. H. (1984). ‘Biostatistical Analysis.’ 2nd edn. (Prentice-Hall, Inc.: Englewood Cliffs, NJ.)