Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

DNA barcoding to support conservation: species identification, genetic structure and biogeography of fishes in the Murray—Darling River Basin, Australia

Christopher M. Hardy A D , Mark Adams B , Dean R. Jerry C , Leon N. Court A , Matthew J. Morgan A and Diana M. Hartley A
+ Author Affiliations
- Author Affiliations

A CSIRO Ecosystem Sciences, GPO Box 1700, Canberra, ACT 2601, Australia.

B Evolutionary Biology Unit, South Australian Museum, North Terrace, Adelaide, SA 5000, Australia.

C Aquaculture Genetics Research Group, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.

D Corresponding author. Email: chris.hardy@csiro.au

Marine and Freshwater Research 62(8) 887-901 https://doi.org/10.1071/MF11027
Submitted: 3 February 2011  Accepted: 11 March 2011   Published: 22 August 2011

Abstract

Freshwater fish stocks worldwide are under increasing threat of overfishing, disease, pollution and competition from introduced species. In the Murray—Darling Basin (MDB), the largest river system of Australia, more than half the native species are listed as rare or endangered. Active management is required to counteract reduction in population sizes, prevent local extinctions and to maintain genetic diversity. We describe the first comprehensive set of DNA barcodes able to discriminate between all 58 native and introduced species of freshwater fish recorded in the MDB. These barcodes also distinguish populations from those in adjacent basins, with estimated separation times as short as 0.1 million years ago. We demonstrate the feasibility of using DNA fingerprinting of ribosomal RNA (12S and 18S rRNA) genes and mitochondrial DNA control region (mtDNA CR) sequences to identify species from eggs, larvae, tissues and predator gut contents as well as differentiate populations, morphologically cryptic species and hybrids. The DNA barcode resource will enhance capacity in many areas of fish conservation biology that can benefit from improved knowledge of genetic provenance. These include captive breeding and restocking programs, life history studies and ecological research into the interactions between populations of native and exotic species.

Additional keywords: 12S rRNA, 18S rRNA, mtDNA control region.


References

Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403–410.
| 1:CAS:528:DyaK3MXitVGmsA%3D%3D&md5=17bd3c7a67391cabdba4ac4bb6e64d83CAS |

Barrett, J., and Mallen-Cooper, M. (2006). The Murray River’s ‘Sea to Hume Dam’ fish passage program: progress to date and lessons learned. Ecological Management & Restoration 7, 173–183.
The Murray River’s ‘Sea to Hume Dam’ fish passage program: progress to date and lessons learned.Crossref | GoogleScholarGoogle Scholar |

Bertozzi, T., Adams, M., and Walker, K. F. (2000). Species boundaries in carp gudgeons (Eleotrididae: Hypseleotris) from the River Murray, South Australia: evidence for multiple species and extensive hybridization. Marine and Freshwater Research 51, 805–815.
Species boundaries in carp gudgeons (Eleotrididae: Hypseleotris) from the River Murray, South Australia: evidence for multiple species and extensive hybridization.Crossref | GoogleScholarGoogle Scholar |

Brown, J. M., Hedtke, S. M., Lemmon, A. R., and Lemmon, E. M. (2010). When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates. Systematic Biology 59, 145–161.
When trees grow too long: investigating the causes of highly inaccurate Bayesian branch-length estimates.Crossref | GoogleScholarGoogle Scholar |

Cook, B. D., Bunn, S. E., and Hughes, J. M. (2007). Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis). Biological Conservation 138, 60–72.
Molecular genetic and stable isotope signatures reveal complementary patterns of population connectivity in the regionally vulnerable southern pygmy perch (Nannoperca australis).Crossref | GoogleScholarGoogle Scholar |

Davies, P. E., Harris, J. H., Hillman, T. J., and Walker, K. F. (2010). The Sustainable Rivers Audit: assessing river ecosystem health in the Murray—Darling Basin, Australia. Marine and Freshwater Research 61, 764–777.
The Sustainable Rivers Audit: assessing river ecosystem health in the Murray—Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGrs7Y%3D&md5=4f28a4e5622032c57e03c810de587d26CAS |

Douglas, J. W., Gooley, G. J., Ingram, B. A., Murray, N. D., and Brown, L. D. (1995). Natural hybridization between Murray cod, Maccullochella peelii peelii (Mitchell), and trout cod, Maccullochella macquariensis (Cuvier) (Percichthyidae), in the Murray River, Australia. Marine and Freshwater Research 46, 729–734.
Natural hybridization between Murray cod, Maccullochella peelii peelii (Mitchell), and trout cod, Maccullochella macquariensis (Cuvier) (Percichthyidae), in the Murray River, Australia.Crossref | GoogleScholarGoogle Scholar |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2008). Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications. Marine and Freshwater Research 59, 89–96.
Phylogeography of a threatened freshwater fish (Mogurnda adspersa) in eastern Australia: conservation implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXhtFKntL8%3D&md5=17287ad891ce56d3f535a417c0508758CAS |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2010a). Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica. Conservation Genetics 11, 921–934.
Evolution and maintenance of divergent lineages in an endangered freshwater fish, Macquaria australasica.Crossref | GoogleScholarGoogle Scholar |

Faulks, L. K., Gilligan, D. M., and Beheregaray, L. B. (2010b). Clarifying an ambiguous evolutionary history: range-wide phylogeography of an Australian freshwater fish, the golden perch (Macquaria ambigua). Journal of Biogeography 37, 1329–1340.
Clarifying an ambiguous evolutionary history: range-wide phylogeography of an Australian freshwater fish, the golden perch (Macquaria ambigua).Crossref | GoogleScholarGoogle Scholar |

Fuller, S., Baverstock, P., and King, D. (1998). Biogeographic origins of goannas (Varanidae): a molecular perspective. Molecular Phylogenetics and Evolution 9, 294–307.
Biogeographic origins of goannas (Varanidae): a molecular perspective.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXivVaiuro%3D&md5=30294124bd3cc54f3b4ecbc7167e327cCAS |

Gillespie, J. J. (2004). Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules. Molecular Phylogenetics and Evolution 33, 936–943.
Characterizing regions of ambiguous alignment caused by the expansion and contraction of hairpin-stem loops in ribosomal RNA molecules.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXpt1Wjtrc%3D&md5=d8644605b91bf580b30f789fd47bf2c5CAS |

Gleeson, D. J., McCallum, H. I., and Owens, I. P. F. (2000). Differences in initial and acquired resistance to Ichthyohthirius multifiliis between populations of rainbowfish. Journal of Fish Biology 57, 466–475.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41, 95–98.
| 1:CAS:528:DC%2BD3cXhtVyjs7Y%3D&md5=7e6a900ad57d863015a4f91e2efdd7c1CAS |

Hammer, M. P., and Walker, K. F. (2004). A catalogue of South Australian freshwater fishes, including new records, range extensions and translocations. Transactions of the Royal Society of South Australia 128, 85–97.

Hammer, M. P., Adams, M., Unmack, P. J., and Walker, K. F. (2007). A rethink on Retropinna: conservation implications of new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae). Marine and Freshwater Research 58, 327–341.
A rethink on Retropinna: conservation implications of new taxa and significant genetic sub-structure in Australian smelts (Pisces: Retropinnidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkt1entbY%3D&md5=7478be288cda71c5d495195dc6e6702dCAS |

Hardy, C. M., Krull, E. S., Hartley, D. M., and Oliver, R. L. (2010). Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool. Molecular Ecology 19, 197–212.
Carbon source accounting for fish using combined DNA and stable isotope analyses in a regulated lowland river weir pool.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXitVSrsb4%3D&md5=4a6d527c65f7c8f87d6b087862688730CAS |

Harper, G. L., King, R. A., Dodd, C. S., Harwood, J. D., Glen, D. M., Bruford, M. W., and Symondson, W. O. C. (2005). Rapid screening of invertebrate predators for multiple prey DNA targets. Molecular Ecology 14, 819–827.
Rapid screening of invertebrate predators for multiple prey DNA targets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXjtVGit70%3D&md5=2c0408c41aa5058fe232390d73d8bb87CAS |

Higham, J., Hammer, M., and Geddes, M. (2002). Fish and invertebrates. In ‘The Murray Mouth. Exploring the Implications of Closure or Restricted Flow’. (Eds N. Goodwin and S. Bennett.) pp. 53–64. (Murray—Darling Basin Commission and Department of Land and Biodiversity Conservation: Canberra.)

Higham, J., Ye, Q., and Ferguson, G. (2005). Murray—Darling Basin drought monitoring. Monitoring small-bodied fish in the lower Murray during and after drought conditions in 2003–2004. RD04/0154. South Australian Research Development Institute (Aquatic Sciences), Adelaide.

Huey, J. A., Hughes, J. M., and Baker, A. M. (2006). Patterns of gene flow in two species of eel-tailed catfish, Neosilurus hyrtlii and Porochilus argenteus (Siluriformes: Plotosidae), in western Queensland’s dryland rivers. Biological Journal of the Linnean Society. Linnean Society of London 87, 457–467.
Patterns of gene flow in two species of eel-tailed catfish, Neosilurus hyrtlii and Porochilus argenteus (Siluriformes: Plotosidae), in western Queensland’s dryland rivers.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., and Hillyer, M. J. (2006). Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia. Journal of Fish Biology 68, 270–291.
Mitochondrial DNA and allozymes reveal high dispersal abilities and historical movement across drainage boundaries in two species of freshwater fishes from inland rivers in Queensland, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XntFaktr8%3D&md5=105a5d35faad6c8a8f64029272bd667dCAS |

Jansen, G., Devaere, S., Weekers, P. H. H., and Adriaens, D. (2006). Phylogenetic relationships and divergence time estimate of African anguilliform catfish (Siluriformes: Clariidae) inferred from ribosomal gene and spacer sequences. Molecular Phylogenetics and Evolution 38, 65–78.
Phylogenetic relationships and divergence time estimate of African anguilliform catfish (Siluriformes: Clariidae) inferred from ribosomal gene and spacer sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2MXhtlSiu7nO&md5=7ebf6ae67c245cb7650944634da585e6CAS |

Jerry, D. R. (2005). Electrophoretic evidence for the presence of Tandanus tandanus (Pisces: Plotosidae) immediately north and south of the Hunter River, New South Wales. Proceedings of the Linnean Society of New South Wales 126, 121–124.

Jerry, D. R. (2008). Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern Australian freshwater fish fauna. Marine and Freshwater Research 59, 351–360.
Phylogeography of the freshwater catfish Tandanus tandanus (Plotosidae): a model species to understand evolution of the eastern Australian freshwater fish fauna.Crossref | GoogleScholarGoogle Scholar |

Jerry, D. R., Raadik, T. A., Cairns, S. C., and Baverstock, P. R. (1999). Evidence for natural interspecific hybridization between the Australian bass (Macquaria novemaculeata) and estuary perch (M. colonorum). Marine and Freshwater Research 50, 661–666.
Evidence for natural interspecific hybridization between the Australian bass (Macquaria novemaculeata) and estuary perch (M. colonorum).Crossref | GoogleScholarGoogle Scholar |

Jerry, D. R., Elphinstone, M. S., and Baverstock, P. R. (2001). Phylogenetic relationships of Australian members of the family Percichthyidae inferred from mitochondrial 12S rRNA sequence data. Molecular Phylogenetics and Evolution 18, 335–347.
Phylogenetic relationships of Australian members of the family Percichthyidae inferred from mitochondrial 12S rRNA sequence data.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXit1ansbo%3D&md5=d9abadf92830a0399488e4ebfbf46b18CAS |

Katoh, T., and Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286–298.
Recent developments in the MAFFT multiple sequence alignment program.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpt1artrs%3D&md5=fd070dd6568393f58082ad11cd4d239fCAS |

Kjer, K. M. (1995). Use of ribosomal RNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs. Molecular Phylogenetics and Evolution 4, 314–330.
Use of ribosomal RNA secondary structure in phylogenetic studies to identify homologous positions: an example of alignment and data presentation from the frogs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXptFShur0%3D&md5=bd6e6f3389c12997e1c80ad0aafd0d8dCAS |

Krieger, J., Hett, A. K., Fuerst, P. A., Birstein, V. J., and Ludwig, A. (2006). Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae. The Journal of Heredity 97, 218–225.
Unusual intraindividual variation of the nuclear 18S rRNA gene is widespread within the Acipenseridae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xmt1Wksbs%3D&md5=69ff73382701862a028f86a39c56b8bfCAS |

Kuiter, R. H. (2008). The southern pygmy perch. Fishes of Sahul 22, 414–417.

Li, J., Xia, R., McDowall, R. M., Lopez, J. A., Lei, G., and Fu, C. (2010). Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleosean fishes. Molecular Phylogenetics and Evolution 57, 932–936.
Phylogenetic position of the enigmatic Lepidogalaxias salamandroides with comment on the orders of lower euteleosean fishes.Crossref | GoogleScholarGoogle Scholar |

Lintermans, M. (2000). Recolonization by the mountain galaxias Galaxias olidus of a montane stream after the eradication of rainbow trout Oncorhynchus mykiss. Marine and Freshwater Research 51, 799–804.
Recolonization by the mountain galaxias Galaxias olidus of a montane stream after the eradication of rainbow trout Oncorhynchus mykiss.Crossref | GoogleScholarGoogle Scholar |

Lintermans, M. (2007). ‘Fishes of the Murray—Darling Basin: An Introductory Guide.’ (Murray—Darling Basin Commission: Canberra.)

McDonald, D. B., Parchman, T. L., Bower, M. R., Hubert, W. A., and Rahel, F. J. (2008). An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species. Proceedings of the National Academy of Sciences, USA 105, 10 837–10 842.
An introduced and a native vertebrate hybridize to form a genetic bridge to a second native species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXpvFOju7g%3D&md5=116a46ee6b261bea0bb3038c769dffdeCAS |

McDowall, R. M. (2006). Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes? Reviews in Fish Biology and Fisheries 16, 233–422.
Crying wolf, crying foul, or crying shame: alien salmonids and a biodiversity crisis in the southern cool-temperate galaxioid fishes?Crossref | GoogleScholarGoogle Scholar |

McGlashan, D. J., and Hughes, J. M. (2001). Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Dividing Range. Journal of Fish Biology 59, 55–67.
Genetic evidence for historical continuity between populations of the Australian freshwater fish Craterocephalus stercusmuscarum (Atherinidae) east and west of the Great Dividing Range.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XntlKksg%3D%3D&md5=4585166c32cc163679fe1d470f5b9184CAS |

McNeil, D. G., Wilson, P. J., Hartwell, D., and Pellizzari, M. (2008). Olive perchlet (Ambassis agassizii) in the Lachlan River: population status and sustainability in the Lake Brewster region. A report submitted to the Lachlan Catchment Management Authority. South Australian Research and Development Institute (Aquatic Sciences), No. F2008/000846-1, Adelaide.

Miller, A. D., Waggy, G., Ryan, S. G., and Austin, C. M. (2004). Mitochondrial 12S rRNA sequences support the existence of a third species of freshwater blackfish (Percicthyidae: Gadopsis) from south-eastern Australia. Memoirs of the Museum Victoria 61, 121–127.

Miller, M. A., Holder, M. T., Vos, R., Midford, P. E., Liebowitz, T., et al. (2009). ‘The CIPRES Portals (CIPRES 2009–08–04).’ Available at http://www.phylo.org/sub_sections/portal [Verified 4 March 2011].

Moore, A., Ingram, B. A., Friend, S., King Ho, H., Robinson, N., et al. (2010). ‘Management of Genetic Resources for Fish and Crustaceans in the Murray—Darling Basin.’ (Bureau of Rural Sciences: Canberra.)

Moritz, C. (1994). Defining evolutionarily-significant-units for conservation. Trends in Ecology & Evolution 9, 373–375.
Defining evolutionarily-significant-units for conservation.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFWhsA%3D%3D&md5=b42572090b29ca45e5a1c72d4b6cb237CAS |

Moritz, C., and Cicero, C. (2004). DNA barcoding: promise and pitfalls. PLoS Biology 2, 1529–1531.
DNA barcoding: promise and pitfalls.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXosVShtro%3D&md5=a6c39d0c5c849839ea239b627dc7045eCAS |

Nock, C. J., Elphinstone, M. S., Rowland, S. J., and Baverstock, P. R. (2010). Phylogenetics and revised taxonomy of the Australian freshwater cod genus, Maccullochella (Percichthyidae). Marine and Freshwater Research 61, 980–991.
Phylogenetics and revised taxonomy of the Australian freshwater cod genus, Maccullochella (Percichthyidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1Snt7nK&md5=eed96b3be71a7dd85aff45820a124ba4CAS |

Osinov, A. G., and Lebedev, V. S. (2000). Genetic divergence and phylogeny of the Salmoninae based on allozyme data. Journal of Fish Biology 57, 354–381.
| 1:CAS:528:DC%2BD3cXms1eisLg%3D&md5=1365d60fb491318c54060db17077b993CAS |

Ovenden, J. R., Lloyd, J., Newman, S. J., Keenan, C. P., and Slater, L. S. (2002). Spatial genetic subdivision between northern Australian and southeast Asian populations of Pristipomoides multidens: a tropical marine reef fish species. Fisheries Research 59, 57–69.
Spatial genetic subdivision between northern Australian and southeast Asian populations of Pristipomoides multidens: a tropical marine reef fish species.Crossref | GoogleScholarGoogle Scholar |

Page, T. J., and Hughes, J. M. (2010). Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes. Journal of Fish Biology 77, 2093–2122.
Comparing the performance of multiple mitochondrial genes in the analysis of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXhsFKitrs%3D&md5=9f4efdafdad3491e2ee42d70437cd7e0CAS |

Raadik, T. (2001). When is a mountain galaxias not a mountain galaxias? Fishes of Sahul 15, 785–789.

Raadik, T. A., Saddlier, S. R., and Koehn, J. D. (1996). Threatened fishes of the world: Galaxias fuscus Mack, 1936 (Galaxiidae). Environmental Biology of Fishes 47, 108.
Threatened fishes of the world: Galaxias fuscus Mack, 1936 (Galaxiidae).Crossref | GoogleScholarGoogle Scholar |

Ronquist, F., and Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics (Oxford, England) 19, 1572–1574.
MrBayes 3: Bayesian phylogenetic inference under mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXntlKms7k%3D&md5=3fa26b349c610271d42b964bf7884dcaCAS |

Rourke, M., Teske, P., Attard, C., Gilligan, D., and Beheregaray, L. (2010). Isolation and characterisation of microsatellite loci in the Australian freshwater catfish (Tandanus tandanus). Conservation Genetics Resources 2, 245–248.
Isolation and characterisation of microsatellite loci in the Australian freshwater catfish (Tandanus tandanus).Crossref | GoogleScholarGoogle Scholar |

Rowland, S. J. (1984). Hybridization between the estuarine fishes yellowfin bream, Acanthopagrus australis (Gunther), and black bream, Acanthopagrus butcheri (Munro) (Pisces, Sparidae). Australian Journal of Marine and Freshwater Research 35, 427–440.
Hybridization between the estuarine fishes yellowfin bream, Acanthopagrus australis (Gunther), and black bream, Acanthopagrus butcheri (Munro) (Pisces, Sparidae).Crossref | GoogleScholarGoogle Scholar |

Rowland, S. J. (1993). Maccullochella ikei, an endangered species of freshwater cod (Pisces: Percichthyidae) from the Clarence River system, NSW and M. peelii mariensis, a new subspecies from the Mary River system, Qld. Records of the Australian Museum 45, 121–145.
Maccullochella ikei, an endangered species of freshwater cod (Pisces: Percichthyidae) from the Clarence River system, NSW and M. peelii mariensis, a new subspecies from the Mary River system, Qld.Crossref | GoogleScholarGoogle Scholar |

Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics (Oxford, England) 22, 2688–2690.
RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28XhtFKlsbfI&md5=4ae3f18e04644479416afa6f8c5e63caCAS |

Stamatakis, A., Hoover, P., and Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology 57, 758–771.
A rapid bootstrap algorithm for the RAxML web servers.Crossref | GoogleScholarGoogle Scholar |

Swartz, E. R., Mwale, M., and Hanner, R. (2008). A role for barcoding in the study of African fish diversity and conservation. South African Journal of Science 104, 293–298.

Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17, 57–86.

Thacker, C. E., Unmack, P. J., Matsui, L., Duong, P., and Huang, E. (2008). Phylogeography of Philypnodon species (Teleostei: Eleotridae) across south-eastern Australia: testing patterns of connectivity across drainage divides and among coastal rivers. Biological Journal of the Linnean Society. Linnean Society of London 95, 175–192.
Phylogeography of Philypnodon species (Teleostei: Eleotridae) across south-eastern Australia: testing patterns of connectivity across drainage divides and among coastal rivers.Crossref | GoogleScholarGoogle Scholar |

Unmack, P. J. (2001). Biogeography of Australian freshwater fishes. Journal of Biogeography 28, 1053–1089.
Biogeography of Australian freshwater fishes.Crossref | GoogleScholarGoogle Scholar |

Walker, K. F. (1985). A review of the ecological effects of river regulation in Australia. Hydrobiologia 125, 111–129.
A review of the ecological effects of river regulation in Australia.Crossref | GoogleScholarGoogle Scholar |

Wang, H. Y., Tsai, M. P., Dean, J., and Lee, S. C. (2001). Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences. Molecular Phylogenetics and Evolution 20, 390–408.
Molecular phylogeny of gobioid fishes (Perciformes: Gobioidei) based on mitochondrial 12S rRNA sequences.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmtleisrk%3D&md5=13f1f8ae4096d29f0d23b1e368055f29CAS |

Waples, R. S. (1991). Genetic interactions between hatchery and wild salmonids—Lessons from the Pacific-Northwest. Canadian Journal of Fisheries and Aquatic Sciences 48, 124–133.

Ward, R. D., Hanner, R., and Hebert, P. D. N. (2009). The campaign to DNA barcode all fishes, FISH-BOL. Journal of Fish Biology 74, 329–356.
The campaign to DNA barcode all fishes, FISH-BOL.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjvVWrsbw%3D&md5=2729087f3a42bb3f3a225dfe3e3643ccCAS |

Waters, J. M., Esa, Y. B., and Wallis, G. P. (2001). Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand. Biological Journal of the Linnean Society. Linnean Society of London 73, 287–298.
Genetic and morphological evidence for reproductive isolation between sympatric populations of Galaxias (Teleostei: Galaxiidae) in South Island, New Zealand.Crossref | GoogleScholarGoogle Scholar |

Wilson, W. D., and Turner, T. F. (2009). Phylogenetic analysis of the Pacific cutthroat trout (Oncorhynchus clarki ssp.: Salmonidae) based on partial mtDNA ND4 sequences: a closer look at the highly fragmented inland species. Molecular Phylogenetics and Evolution 52, 406–415.
Phylogenetic analysis of the Pacific cutthroat trout (Oncorhynchus clarki ssp.: Salmonidae) based on partial mtDNA ND4 sequences: a closer look at the highly fragmented inland species.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXms12hsb8%3D&md5=8db2575f4da8ce8697bfbaecb1bf1fc2CAS |

Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J., and Mallatt, J. (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution 19, 762–776.
| 1:CAS:528:DC%2BD38XjsFaku7k%3D&md5=7bc59269ca5fac692426a10d88d76dd4CAS |

Wong, C. M., Williams, C. E., Pittock, J., Collier, U., and Schelle, P. (2007). ‘World’s Top 10 Rivers at Risk.’ (WWF International: Gland, Switzerland.)

Wuyts, J., Perriere, G., and Van de Peer, Y. (2004). The European ribosomal RNA database. Nucleic Acids Research 32, D101–D103.
The European ribosomal RNA database.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtVSrurvI&md5=27b31df6cad5b822bfde093089069fccCAS |

Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology & Evolution 11, 367–372.
Among-site rate variation and its impact on phylogenetic analyses.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3M7itFGjtw%3D%3D&md5=ef3ac8942e80edcd0a4d4a1e5f8f8aacCAS |