Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Contrasting population genetic structure of two widespread aquatic insects in the Chilean high-slope rivers

M. C. Sabando A B C , I. Vila A , R. Peñaloza C and D. Véliz A B D
+ Author Affiliations
- Author Affiliations

A Departamento Ciencias Ecológicas, Universidad de Chile, Casilla 653, Santiago, Chile.

B Instituto de Ecología y Biodiversidad (IEB), Universidad de Chile, Santiago, Chile.

C Departamento de Biología, Universidad Metropolitana de Ciencias de la Educación (UMCE), Santiago, Chile.

D Corresponding author. Email: dveliz@uchile.cl

Marine and Freshwater Research 62(1) 1-10 https://doi.org/10.1071/MF10105
Submitted: 3 May 2010  Accepted: 25 September 2010   Published: 18 January 2011

Abstract

Dispersal and many other factors affect population genetic structure. In central Chile, rivers are characterised by strong currents and transverse mountain chains, which impose physical barriers to the populations that inhabit them. The objective of the present study was to study the population genetic structure of two widespread species of aquatic insects, the caddisfly Smicridea annulicornis and the mayfly Andesiops torrens, in three isolated rivers, Choapa, Maipo and Maule. The analysis of population structure, using both mtDNA (cytochrome C oxidase subunit 1, COI) and nuclear markers (amplified fragment length polymorphism, AFLP), considered samples from within and among rivers. In S. annulicornis, we found differentiation within and among rivers, indicating a low dispersal among the study area. Populations of A. torrens shared haplotypes in all three rivers and no differences were found among rivers, indicating that this species probably has more dispersal potential than does S. annulicornis; however, significant differences were observed within rivers. Our results indicate that the transverse mountain chains are not a barrier for A. torrens, which can disperse among rivers. Within rivers, the population structure suggests that these species are probably adapted to avoid drift because of the torrential character of these Chilean rivers.

Additional keywords: AFLP, caddisfly, genetic structure, mayfly, mtDNA.


References

Aljanabi, S. M., and Martinez, I. (1997). Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Research 25, 4692–4693.
Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1cXhsFWrsA%3D%3D&md5=a2de2fee9e1ea95c9a285b05a7789dd9CAS | 9358185PubMed |

Angrisano  E. B., and Sganga  J. V. (2009). Trichoptera. In ‘Macroinvertebrados Bentónicos Sudamericanos: Sistemática y Biología’. (Eds E. Domínguez and H. R. Fernández.) pp. 255–308. (Fundación Miguel Lillo: Tucumán, Argentina.)

Bandelt, H. J., Forster, P., and Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution 16, 37–48..
| 1:CAS:528:DyaK1MXjvVGltA%3D%3D&md5=7aa2fdb34e3cdf2abaf0fe965c942714CAS | 10331250PubMed |

Belkhir  K., Borsa  P., Chikhi  L., Raufaste  N., and Bonhomme  F. (1996–2004). GENETIX 4.05, logiciel sous Windows TM pour la génétique des populations. Laboratoire Génome, Populations, Interactions, CNRS UMR 5000, Université de Montpellier II, Montpellier (France). Available at http://www.genetix.univ-montp2.fr/genetix/genetix.htm [accessed 23 August 2010].

Bilton, D. T., Freeland, J. R., and Okamura, B. (2001). Dispersal in freshwater invertebrates. Annual Review of Ecology and Systematics 32, 159–181.
Dispersal in freshwater invertebrates.Crossref | GoogleScholarGoogle Scholar |

Boizard, J., Magnan, P., and Angers, B. (2009). Effects of dynamics lanscape elements on fish dispersal: the example of creek chub (Semotilus atromaculatus). Molecular Ecology 18, 430–441.
Effects of dynamics lanscape elements on fish dispersal: the example of creek chub (Semotilus atromaculatus).Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1M%2FovV2rtA%3D%3D&md5=d909d1edd10a660b0c423a7182437234CAS | 19161466PubMed |

Bunn, S. T., and Hughes, J. M. (1997). Dispersal and recruitment in streams: evidence from genetic studies. Journal of the North American Benthological Society 16, 338–346.
Dispersal and recruitment in streams: evidence from genetic studies.Crossref | GoogleScholarGoogle Scholar |

Camousseight, A. (2001). Ephemeroptera (Insecta) de Chile su conocimiento actual. Boletín del Museo de Historia Natural, Chile 50, 121–137.

Castric, V., Bonney, F., and Bernatchez, L. (2001). Landscape structure and hierarchical genetic diversity in the brook charr Salvelinus fontinalis Mitchill. Evolution 55, 1016–1028.
Landscape structure and hierarchical genetic diversity in the brook charr Salvelinus fontinalis Mitchill.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD38%2Fhs1GjtA%3D%3D&md5=eb9f025962e734faeac2eb7291af435eCAS | 11430638PubMed |

Charrier  R., Pinto  L., and Rodríguez  M. P. (2007). Tectonostratigraphic evolution of the Andean Orogen in Chile. In ‘The Geology of Chile’. (Eds T. Moreno and W. Gibbons.) pp. 21–114. (The Geological Society: London.)

Corpet, F. (1988). Multiple sequence alignments with hierarchical clustering. Nucleic Acids Research 16, 10 881–10 890.
Multiple sequence alignments with hierarchical clustering.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1MXjsVOqtA%3D%3D&md5=eafa0966e2474759787797c566803109CAS |

Culp  J. M., Glozier  N. E., Cash  K. J., and Baird  D. J. (2005). Insight into pollution effects in complex riverine habitats: a role for food web experiments. In ‘Dynamics Food Webs: Multispecies Assemblages, Ecosystem Development, and Environmental Change’. (Eds P. de Ruiter, V. Wolters and J. C. Moore.) pp. 354–368. (Academic Press: London.)

Cummins  K. W. (1988). The study of stream ecosystems a functional view. In ‘Concepts of Ecosystem Ecology: A Comparative View’. (Eds L. R. Pomeroy and J. J. Alberts.) pp. 247–262. (Springer-Verlag: New York.)

di Castri  F., and Hajek  E. R. (1976). ‘Bioclimatologia de Chile.’ (Editorial de La Universidad Católica de Chile: Santiago, Chile.)

Domínguez  E., Molineri  C., and Nieto  C. (2009). Ephemeroptera. In ‘Macroinvertebrados Bentónicos Sudamericanos: Sistemática y Biología’. (Eds E. Domínguez and H. R. Fernández.) pp. 55–93. (Fundación Miguel Lillo: Tucumán, Argentina.)

Excoffier, L., Laval, G., and Schneider, S. (2005). Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50..
| 1:CAS:528:DC%2BD28XjsFSltg%3D%3D&md5=7e59c271786b90a74a6cebc76bbe87acCAS | 19325852PubMed |

Falush, D., Stephens, M., and Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: dominant markers and null alleles. Molecular Ecology Notes 7, 574–578.
Inference of population structure using multilocus genotype data: dominant markers and null alleles.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXpslOhtbc%3D&md5=981e2176c15df777cfff25db68801838CAS | 18784791PubMed |

Farías, M., Charrier, R., Carretier, S., Martinod, J., Fock, A., et al. (2008). Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S). Tectonics 27, TC1005.
Late Miocene high and rapid surface uplift and its erosional response in the Andes of central Chile (33°–35°S).Crossref | GoogleScholarGoogle Scholar |

Filatov, D. A. (2002). ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets. Molecular Ecology Notes 2, 621–624.
ProSeq: a software for preparation and evolutionary analysis of DNA sequence data sets.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XpvVSitLw%3D&md5=e8195e5a489b8c8012c343bc751d419cCAS |

Finn, D. S., and Poff, N. L. (2008). Emergence and flight activity of alpine stream insects in two years with contrasting winter snowpack. Arctic, Antarctic, and Alpine Research 40, 638–646.
Emergence and flight activity of alpine stream insects in two years with contrasting winter snowpack.Crossref | GoogleScholarGoogle Scholar |

Flint, O. S. (1989). Studies of Neotropical caddisflies, XXXIX: the genus Smicridea in the Chilean subregion (Trichoptera: Hydropsychidae). Smithsonian Contributions to Zoology 472, 1–45..

Freeland, J. R., May, M., Lodge, R., and Conrad, K. F. (2003). Genetic diversity and widespread haplotypes in a migratory dragonfly, the common green darner Anax junius. Ecological Entomology 28, 413–421.
Genetic diversity and widespread haplotypes in a migratory dragonfly, the common green darner Anax junius.Crossref | GoogleScholarGoogle Scholar |

Galacatos, K., Cognato, A. I., and Sperling, F. A. (2002). Population genetic structure of two water strider species in the Ecuadorian Amazon. Freshwater Biology 47, 391–399.
Population genetic structure of two water strider species in the Ecuadorian Amazon.Crossref | GoogleScholarGoogle Scholar |

Gibbs, H. L., Gibbs, K. L., Siebermann, M., and Collins, R. (1998). Genetic differentiation among populations of the rare mayfly Siphlonisca aerodronia Needham. Journal of the North American Benthological Society 17, 461–474.
Genetic differentiation among populations of the rare mayfly Siphlonisca aerodronia Needham.Crossref | GoogleScholarGoogle Scholar |

Giller  P. S., and Malmqvist  B. (1998). ‘The Biology of Streams and Rivers.’ (Oxford University Press: New York.)

Hershey, A. E., Pastor, J., Peterson, B. J., and Kling, G. W. (1993). Stable isotopes resolve the paradox for Baetis mayflies in an Arctic River. Ecology 74, 2315–2325.
Stable isotopes resolve the paradox for Baetis mayflies in an Arctic River.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M. (2007). Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52, 616–631.
Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Bunn, S. E., Hurwood, D. A., and Cleary, C. (1998). Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasimiidae) in rainforest streams, south east Queensland, Australia. Freshwater Biology 39, 117–127.
Dispersal and recruitment of Tasiagma ciliata (Trichoptera: Tasimiidae) in rainforest streams, south east Queensland, Australia.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Hillyer, M., and Bunn, S. E. (2003a). Small scale patterns of genetic variation in the mayfly Bungona narilla (Ephemeroptera: Baetidae) in rainforest streams, south-east Queensland. Freshwater Biology 48, 709–717.
Small scale patterns of genetic variation in the mayfly Bungona narilla (Ephemeroptera: Baetidae) in rainforest streams, south-east Queensland.Crossref | GoogleScholarGoogle Scholar |

Hughes, J. M., Mather, P. B., Hillyer, M. J., Clearly, C., and Peckarsky, B. (2003b). Genetic structure in a montane mayfly Baetis bicaudatus (Ephemeroptera: Baetidae), from the Rocky Mountains, Colorado. Freshwater Biology 48, 2149–2162.
Genetic structure in a montane mayfly Baetis bicaudatus (Ephemeroptera: Baetidae), from the Rocky Mountains, Colorado.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXmt1eqsA%3D%3D&md5=93a04b4277753be0567d9918b6307158CAS |

Hughes, J. M., Schmidt, D. J., and Finn, D. S. (2009). Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat. BioScience 59, 573–583.
Genes in streams: using DNA to understand the movement of freshwater fauna and their riverine habitat.Crossref | GoogleScholarGoogle Scholar |

Jackson, J. K., and Resh, V. H. (1992). Variation in genetic structure among populations of the caddisfly Helicopsyche borealis from three streams in northern California, USA. Freshwater Biology 27, 29–42.
Variation in genetic structure among populations of the caddisfly Helicopsyche borealis from three streams in northern California, USA.Crossref | GoogleScholarGoogle Scholar |

Johnson, D., and Horvitz, C. (2005). Estimating potential dispersal: tracking the unseen dispersers. Ecology 86, 1185–1190.
Estimating potential dispersal: tracking the unseen dispersers.Crossref | GoogleScholarGoogle Scholar |

Lampert  W., and Sommer  U. (2007). ‘Limnoecology: the Ecology of Lakes and Streams.’ (Oxford University Press: New York.)

Lehrian, S., Pauls, S. U., and Haase, P. (2009). Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the central European highlands. Freshwater Biology 54, 283–295.
Contrasting patterns of population structure in the montane caddisflies Hydropsyche tenuis and Drusus discolor in the central European highlands.Crossref | GoogleScholarGoogle Scholar |

Lugo-Ortiz, C. R., and McCafferty, W. P. (1999). Three new genera of small minnow mayflies (Insecta: Ephemeroptera: Baetidae) from the andes and patagonia. Studies on Neotropical Fauna and Environment 34, 88–104.
Three new genera of small minnow mayflies (Insecta: Ephemeroptera: Baetidae) from the andes and patagonia.Crossref | GoogleScholarGoogle Scholar |

Malmqvist, B. (2002). Aquatic invertebrates in riverine landscapes. Freshwater Biology 47, 679–694.
Aquatic invertebrates in riverine landscapes.Crossref | GoogleScholarGoogle Scholar |

Mantel, N. (1967). The detection of disease clustering and generalized regression approach. Cancer Research 27, 209–220..
| 1:STN:280:DyaF2s%2FptlSnsA%3D%3D&md5=e12e80ff59186e03abbfd119db1298ddCAS | 6018555PubMed |

McLean, A. J., Schmidt, D. J., and Hughes, J. M. (2008). Do lowland habitats represent barriers to dispersal for a rainforest mayfly, Bungona narilla, in south-east Queensland? Marine and Freshwater Research 59, 761–771.
Do lowland habitats represent barriers to dispersal for a rainforest mayfly, Bungona narilla, in south-east Queensland?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXht1WnsbvE&md5=ec387702c8c15f455e1c7df544ac42a2CAS |

Miller, M., Blinn, M., and Keim, P. (2002). Correlations between dispersal capabilities and patterns of genetic differentiation in populations of four aquatic insect from the Arizona White Mountains. Freshwater Biology 47, 1660–1673.
Correlations between dispersal capabilities and patterns of genetic differentiation in populations of four aquatic insect from the Arizona White Mountains.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XnvVSrt7o%3D&md5=cef93bdf427a44776bdbadb8f602bcf1CAS |

Monaghan, M. T., Spaak, P., Robinson, C. T., and Ward, J. V. (2002). Population structure of three subalpine stream insects: influences of gene flow, demographics and habitat fragmentation. Journal of the North American Benthological Society 21, 114–131.
Population structure of three subalpine stream insects: influences of gene flow, demographics and habitat fragmentation.Crossref | GoogleScholarGoogle Scholar |

Mullen, L. B., Woods, H. A., Schwartz, M. K., Sepulveda, A. J., and Lowe, W. H. (2010). Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks. Molecular Ecology 19, 898–909.
Scale-dependent genetic structure of the Idaho giant salamander (Dicamptodon aterrimus) in stream networks.Crossref | GoogleScholarGoogle Scholar | 20149085PubMed |

Nieto, C. (2004). South American Baetidae (Ephemeroptera): a new generic synonymy. Studies on Neotropical Fauna and Environment 39, 95–101.
South American Baetidae (Ephemeroptera): a new generic synonymy.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Theissinger, K., Ujvarosi, L., Balint, M., and Haase, P. (2009). Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: historic introgression, limited dispersal, and cryptic diversity. Journal of the North American Benthological Society 28, 517–536.
Patterns of population structure in two closely related, partially sympatric caddisflies in eastern Europe: historic introgression, limited dispersal, and cryptic diversity.Crossref | GoogleScholarGoogle Scholar |

Pauls, S. U., Blahnik, R. J., Zhou, X., Wardwell, C. T., and Holzenthal, R. W. (2010). DNA barcode data corfirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society 29, 1058–1074.
DNA barcode data corfirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae).Crossref | GoogleScholarGoogle Scholar |

Petersen, I., Masters, Z., Hildrew, A. G., and Ormerod, S. J. (2004). Dispersal of adult aquatic insects in catchments of differing land use. Journal of Applied Ecology 41, 934–950.
Dispersal of adult aquatic insects in catchments of differing land use.Crossref | GoogleScholarGoogle Scholar |

Pollux, B. J. A., Luteijn, A., van Groenendael, J. M., and Ouborg, N. J. (2009). Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river. Freshwater Biology 54, 64–76.
Gene flow and genetic structure of the aquatic macrophyte Sparganium emersum in a linear unidirectional river.Crossref | GoogleScholarGoogle Scholar |

Pritchard, J. K., Stephens, M., and Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics 155, 945–959..
| 1:STN:280:DC%2BD3cvislKrtA%3D%3D&md5=263285c923a71bc162cca82d05d25828CAS | 10835412PubMed |

Quezada-Romegialli, C., Fuentes, M., and Véliz, D. (2010). Comparative population genetics of Basilichthys microlepidotus (Atheriniformes: Atherinopsidae) and Trichomycterus areolatus (Siluriformes: Trichomycteridae) in north central Chile. Environmental Biology of Fishes 89, 173–186.
Comparative population genetics of Basilichthys microlepidotus (Atheriniformes: Atherinopsidae) and Trichomycterus areolatus (Siluriformes: Trichomycteridae) in north central Chile.Crossref | GoogleScholarGoogle Scholar |

Rojas, F. (2006). Estado de conocimiento de los Trichoptera de Chile. Gayana Zoologica 70, 65–71..

Romero  H. (1982). ‘Geografía de Chile. Tomo XI: Geografía de los Climas.’ (Instituto Geográfico Militar: Santiago, Chile.)

Rozas, J., Sánchez-DelBarrio, J. C., Messeguer, X., and Rozas, R. (2003). DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics 19, 2496–2497.
DnaSP, DNA polymorphism analyses by the coalescent and other methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXpvVSisLo%3D&md5=0169a23eacc4a1663959dbdbae60c17bCAS | 14668244PubMed |

Schultheis, A. S., Weigt, L. A., and Hendricks, A. C. (2002). Gene flow, dispersal, and nested clade analysis among populations of the stonefly Peltoperla tarteri in the southern Appalachians. Molecular Ecology 11, 317–327.
Gene flow, dispersal, and nested clade analysis among populations of the stonefly Peltoperla tarteri in the southern Appalachians.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XislCgsbs%3D&md5=8ab403870398a3ffb6728a3e8fffaf0fCAS | 11928706PubMed |

Schultheis, A. S., Marchant, R., and Hughes, J. M. (2008). Contrasting patterns of genetic structure and disequilibrium in populations of a stone-cased caddisfly (Tasimiidae) from northern and southern Australia. Marine and Freshwater Research 59, 235–245.
Contrasting patterns of genetic structure and disequilibrium in populations of a stone-cased caddisfly (Tasimiidae) from northern and southern Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXltl2jtL0%3D&md5=6ac41cdb7294e233e0741f0e2fd356d6CAS |

Sganga, J. V., and Fontanarrosa, M. S. (2006). Contribution to the knowledge of the preimaginal stages of the genus Smicridea McLachlan in South America (Trichoptera: Hydropsychidae: Smicrideinae). Zootaxa 1258, 1–15..

Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., and Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America 87, 651–701..
| 1:CAS:528:DyaK2MXis1Wiu7g%3D&md5=a69927716398b48289773d905eb65927CAS |

Slatkin, M. (1995). A measure of population subdivision based on microsatellite allele frequencies. Genetics 139, 457–462..
| 1:STN:280:DyaK2M3itVKrtw%3D%3D&md5=c541d267a93593974db26ccd9293a8aeCAS | 7705646PubMed |

Smith, P. J., and Smith, B. J. (2009). Small-scale population-genetic differentiation in the New Zealand caddisfly Orthopsyche fimbrata and the crayfish Paranephrops planifrons. New Zealand Journal of Marine and Freshwater Research 43, 723–734.
Small-scale population-genetic differentiation in the New Zealand caddisfly Orthopsyche fimbrata and the crayfish Paranephrops planifrons.Crossref | GoogleScholarGoogle Scholar |

Smith, R. F., Alexander, L. C., and Lamp, W. O. (2009). Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge. Journal of the North American Benthological Society 28, 1022–1037.
Dispersal by terrestrial stages of stream insects in urban watersheds: a synthesis of current knowledge.Crossref | GoogleScholarGoogle Scholar |

Solbrig, O. T., Baker, P. T., and Ives, J. D. (1984). The southern Andes and Sierras Pampeanas. Mountain Research and Development 4, 97–190..

Sweeney, B. W. (1993). Effects of streamside vegetation on macroinvertebrate communities of White Clay Creek in eastern North America. Proceedings. Academy of Natural Sciences of Philadelphia 144, 291–340..

Vicuña, S., Garreaud, R. D., and McPhee, J. (in press). Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Climatic Change , .
Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile.Crossref | GoogleScholarGoogle Scholar |

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research 23, 4407–4414.
AFLP: a new technique for DNA fingerprinting.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK2MXpslensbo%3D&md5=058bd6d5b37d622adedd22412411a4f7CAS | 7501463PubMed |

Watanabe, K., Monaghan, M. T., and Omura, T. (2008). Longitudinal patterns of genetic diversity and larval density of the riverine caddisfly Hydropsyche orientalis (Trichoptera). Aquatic Sciences 70, 377–387.
Longitudinal patterns of genetic diversity and larval density of the riverine caddisfly Hydropsyche orientalis (Trichoptera).Crossref | GoogleScholarGoogle Scholar |

Wetzel  R. G., and Likens  G. E. (2000). ‘Limnological Analyses.’ (Springer: New York.)

Wilcock, H. R., Nichols, R. A., and Hildrew, A. G. (2003). Genetic population structure and neighbourhood population size estimates of the caddisfly Plectrocnemia conspersa. Freshwater Biology 48, 1813–1824.
Genetic population structure and neighbourhood population size estimates of the caddisfly Plectrocnemia conspersa.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXovFWgsrg%3D&md5=144eb48756d151e59c4022e43a5d9a90CAS |

Winterbourn, M. J., Chadderton, W. L., Entrekin, S. A., Tank, J. L., and Harding, J. S. (2007). Distribution and dispersal of adult stream insects in a heterogeneous montane environment. Archiv fuer Hydrobiologie 168, 127–135..

Wishart, M. J., and Hughes, J. M. (2003). Genetic population structure of the net-winged midge Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal. Freshwater Biology 48, 28–38.
Genetic population structure of the net-winged midge Elporia barnardi (Diptera: Blephariceridae) in streams of the south-western Cape, South Africa: implications for dispersal.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXhtFGisLc%3D&md5=d403a699b86e62447e829cf0172cb5a2CAS |

Zickovich, J. M., and Bohonak, A. J. (2007). Dispersal ability and genetic structure in aquatic invertebrates: a comparative study in southern California streams and reservoirs. Freshwater Biology 52, 1982–1996.
Dispersal ability and genetic structure in aquatic invertebrates: a comparative study in southern California streams and reservoirs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXhtF2qsL%2FP&md5=2b649d14dd6379b0ada5cb0fa6ffc5f5CAS |