Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Cost-effective water quality improvement in linked terrestrial and marine ecosystems: a spatial environmental–economic modelling approach

P. C. Roebeling A E , M. E. van Grieken B , A. J. Webster C , J. Biggs D and P. Thorburn D
+ Author Affiliations
- Author Affiliations

A CESAM – University of Aveiro, Department of Environment, 3810-193 Aveiro, Portugal.

B CSIRO Sustainable Ecosystems, Davies Laboratory, PMB PO, Aitkenvale, Qld 4814, Australia.

C CSIRO Sustainable Ecosystems, ATFI, PO Box 12139, Cairns, Qld 4870, Australia.

D CSIRO Sustainable Ecosystems, 306 Carmody Road, St Lucia, Qld 4067, Australia.

E Corresponding author. Email: peter.roebeling@ua.pt

Marine and Freshwater Research 60(11) 1150-1158 https://doi.org/10.1071/MF08346
Submitted: 16 December 2008  Accepted: 7 August 2009   Published: 17 November 2009

Abstract

Worldwide, coastal and marine ecosystems are affected by water pollution originating from coastal river catchments, even though ecosystems such as the Great Barrier Reef are vital from an environmental as well as an economic perspective. Improved management of coastal catchment resources is needed to remediate this serious and growing problem through, e.g. agricultural land use and management practice change. This may, however, be very costly and, consequently, there is a need to explore how water quality improvement can be achieved at least cost. In the present paper, we develop an environmental–economic modelling approach that integrates an agricultural production system simulation model and a catchment water quality model into a spatial environmental–economic land-use model to explore patterns of land use and management practice that most cost-effectively achieve specified water quality targets and, in turn, estimate corresponding water pollution abatement cost functions. In a case study of sediment and nutrient water pollution by the sugarcane and grazing industries in the Tully–Murray catchment (Queensland, Australia), it is shown that considerable improvements in water quality can be obtained at no additional cost, or even benefit, to the agricultural industry, whereas larger water quality improvements come at a significant cost to the agricultural industry.

Additional keywords: cost-effectiveness, diffuse source pollution.


Acknowledgements

The authors gratefully acknowledge the CSIRO Water for a Healthy Country Flagship, the Marine and Tropical Sciences Research Facility and the Terrain-NRM for facilitating this research. The authors thank Anne Henderson and Michael Hartcher (CSIRO) as well as John Armour and Louise Hateley (DNR&M) for their input and help in using SedNet/ANNEX. The authors also thank the anonymous referees for their helpful comments on earlier versions of this paper.


References

Armour, J. D. , Hateley, L. R. , and Pit, G. L. (2009). Catchment modelling of sediment, nitrogen and phosphorus nutrient loads with SedNet/ANNEX in the Tully–Murray basin. Marine and Freshwater Research 60, 1091–1096.
Bouman B. A. M., Nieuwenhuyse A., and Hengsdijk H. (1998). PASTOR: a technical coefficient generator for pasture and livestock systems in the humid tropics, version 2.0. AB-DLO/C.T. de Wit Graduate school for Production Ecology, Quantitative Approaches in Systems Analysis No. 18, Wageningen.

Bramley, R. G. V. , and Roth, C. H. (2002). Land-use effects on water quality in an intensively managed catchment in the Australian humid tropics. Marine and Freshwater Research 53, 931–940.
Crossref | GoogleScholarGoogle Scholar | CAS | Brooke A., Kendrick D., Meeraus A., and Raman R. (1998). ‘GAMS User’s Guide.’ (GAMS Development Corporation: Washington, DC.)

Cesar H. (2000). Coral reefs: their functions, threats and economic value. In ‘Collected Essays on the Economics of Coral Reefs’. (Ed. H. S. J. Cesar.) pp. 14–39. (CORDIO, Kalmar University: Kalmar, Sweden.)

Cogle A. L., Carroll C., and Sherman B. S. (2006). The use of SedNet and ANNEX models to guide GBR catchment sediment and nutrient target setting. Department of Natural Resources, Mines and Water, QNRM06138, Mareeba, Qld.

Davis J. R., and Koop K. (2001). Current understanding of the eutrophication process in Australia. In ‘Regional Management of Water Resources’. (Eds A. H. Schumann, M. C. Acreman, R. Davis, M. A. Marino, D. Rosbjerg and X. Jun.) pp. 89–95. (IAHS Press: Wallingford, UK.)

DeRose R. C., Prosser I. P., Wilkinson L. J., Hughes A. O., and Young W. J. (2002). Regional patterns of erosion and sediment and nutrient transport in the Mary River catchment, Queensland. CSIRO Land and Water, Technical Report 37/02, Canberra.

Dixit A. K., and Pindyck R. S. (1994). ‘Investment Under Uncertainty.’ (Princeton University Press: Princeton, NJ.)

Elofsson, K. , Gren, I. M. , and Folmer, H. (2003). Management of eutrophicated coastal ecosystems: a synopsis of the literature with emphasis on theory and methodology. Ecological Economics 47, 1–11.
Crossref | GoogleScholarGoogle Scholar | Furnas M. (2003). ‘Catchments and Corals: Terrestrial Runoff to the Great Barrier Reef.’ (Australian Institute of Marine Science: Townsville, Qld.)

Gabric, A. J. , and Bell, P. R. F. (1993). Review of the effects of non-point nutrient loading on coastal ecosystems. Australian Journal of Marine and Freshwater Research 44, 261–283.
Crossref | GoogleScholarGoogle Scholar | CAS | Kroon F. J. (2008). Draft Tully Water Quality Improvement Plan. CSIRO Sustainable Ecosystems, Report to Terrain Natural Resource Management, Atherton, Qld.

Lu, H. , Moran, C. J. , Prosser, I. P. , and DeRose, R. (2004). Investment prioritization based on broadscale spatial budgeting to meet downstream targets for suspended sediment loads. Water Resources Research 40, 1–16.
Crossref | GoogleScholarGoogle Scholar | Murtha G. G., and Smith C. D. (1994). Key to the soils and land suitability of the wet tropical coast: Cardwell – Cape Tribulation. CSIRO Division of Soils and Queensland Department of Primary Industries, Brisbane.

Neil, D. T. , Orpin, A. R. , Ridd, P. V. , and Yu, B. (2002). Sediment yield and impacts from river catchments to the Great Barrier Reef lagoon. Marine and Freshwater Research 53, 733–752.
Crossref | GoogleScholarGoogle Scholar | Neitsch S. L., Arnold J. G., Williams J. R., and Kiniry K. W. (2002). Soil and Water Assessment Tool theoretical documentation. Texas Water Resources Institute, TWRI report TR-191, College Station TX.

Nelson, G. C. (2002). Introduction to the special issue on spatial analysis for agricultural economists. Agricultural Economics 27, 197–200.
Crossref | GoogleScholarGoogle Scholar | OESR (2004). ‘Queensland Regional Profiles 2003: Far North Statistical Division.’ (Office of Economic and Statistical Research, Queensland Government: Brisbane.)

Productivity Commission (2003). Industries, land use and water quality in the Great Barrier Reef catchment. Australian Government, Research Report, Canberra.

Prosser I., Young B., Rustomji P., Moran C., and Hughes A. (2001). Constructing river basin sediment budgets for the national land and water resources audit. CSIRO Land and Water, Technical Report 15/01, Canberra.

QLUMP (2004). ‘Queensland Land Use Mapping Program (QLUMP).’ (Queensland Department of Natural Resources and Mines: Australia.)

Renard K. G., Foster G. A., Weesies D. K., McCool D. K., and Yoder D. C. (1997). Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation. United States Department of Agriculture, Agriculture Handbook 703, Washington, DC.

Roebeling P. C., Smith D. M., and Van Grieken M. E. (2006). Exploring environmental-economic benefits from agri-industrial diversification in the sugar industry: an integrated land use and value chain approach. In ‘CD-ROM Proceedings 26th Conference of the International Association of Agricultural Economists’. (International Association of Agricultural Economists: Gold Coast, Qld.)

Roebeling P. C., Webster A. J., Biggs J., and Thorburn P. (2007a). Financial-economic analysis of current best management practices for sugarcane, horticulture, grazing and forestry industries in the Tully–Murray catchment. CSIRO Sustainable Ecosystems, Report to MTSRF and FNQ–NRM Ltd, Townsville, Qld.

Roebeling P. C., Van Grieken M. E., and Webster A. J. (2007b). Environmental-economic analysis for exploration of efficient land use and land management arrangements, water quality improvement targets and incentives for best management practice adoption in the Tully–Murray catchment. CSIRO Sustainable Ecosystems, Report to FNQ–NRM Ltd, Townsville, Qld.

Rounsevell, M. D. A. , Annetts, J. E. , Audsley, E. , Mayr, T. , and Reginster, I. (2003). Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture Ecosystems and Environment 95, 465–479.
Crossref | GoogleScholarGoogle Scholar | SILO (2006). SILO. Available at http://www.bom.gov.au/silo/ [accessed 7 February 2007].

Stone R. P., and Hilborn D. (2000). Universal Soil Loss Equation (USLE). Ministry of Agriculture and Food, Factsheet ISSN 1198–712X, Ontario, Canada.

Teitzel, J. K. (1992). Sustainable pasture systems in the humid tropics of Queensland. Tropical Grasslands 26, 196–205.
Thomas C. R., Gordon I. J., Wooldridge S., Van Grieken M., and Marshall P. (2009). The development of an integrated systems model for balancing coral reef health, land management and tourism risks on the Great Barrier Reef. In ‘CD-ROM Proceedings MODSIM09’. pp. 4346–4352. (Modelling and Simulation Society: Cairns, Qld.)

Thorburn, P. J. , Webster, A. J. , Biggs, I. M. , Biggs, J. S. , and Park, S. E. , et al. (2007). Towards innovative management of nitrogen fertilizer for a sustainable sugar industry. Proceedings of the Australian Society of Sugar Cane Technologists 25, 85–96.
Vanclay F., and Lawrence G. (1995). ‘The Environmental Imperative: Eco-Social Concerns for Australian Agriculture.’ (Central Queensland University Press: Rockhampton, Qld.)

Wilkinson S., Henderson R. A., Chen Y., and Sherman B. (2004). SedNet user guide. CSIRO Land and Water, Client Report, Canberra.

Yang, W. , and Weersink, A. (2004). Cost-effective targeting of riparian buffers. Canadian Journal of Agricultural Economics 52, 17–34.
Crossref | GoogleScholarGoogle Scholar |

Yang, W. , Sheng, C. , and Voroney, P. (2005). Spatial targeting of conservation tillage to improve water quality and carbon retention benefits. Canadian Journal of Agricultural Economics 53, 477–500.
Crossref | GoogleScholarGoogle Scholar |

Yiridoe, E. K. , and Weersink, A. (1998). Marginal abatement costs of reducing groundwater N pollution with intensive and extensive farm management choices. Agricultural and Resource Economics Review 27, 169–185.