Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Mitochondrial DNA variation of the west-coast rock lobster, Jasus lalandii: marked genetic diversity differences among sampling sites

Conrad A. Matthee A D , Andrew C. Cockcroft B , Keshni Gopal A C and Sophie von der Heyden A
+ Author Affiliations
- Author Affiliations

A Evolutionary Genomics Group, Department of Botany and Zoology, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch, 7602, South Africa.

B Marine and Coastal Management, Department of Environment and Tourism, Private Bag X2, Roggebay, Cape Town, 8012, South Africa.

C Present Address: South African National Biodiversity Institute, Kirstenbosch Research Center, Private Bag X7, Claremont, 7735, South Africa.

D Corresponding author. Email: cam@sun.ac.za

Marine and Freshwater Research 58(12) 1130-1135 https://doi.org/10.1071/MF07138
Submitted: 27 July 2007  Accepted: 7 November 2007   Published: 13 December 2007

Abstract

Jasus lalandii (Milne-Edwards 1837), the west-coast rock lobster, occurs in the shallow, cool–temperate waters along the south and west coasts of southern Africa. This species has a long history of intensive exploitation, which has had a significant impact on population numbers in the past. To enhance our current understanding of lobster population structuring, genetic data from the mitochondrial (mt) DNA 16S rRNA gene was generated for 235 adult individuals collected at eight sampling sites. Most individuals (59.6%) share a common haplotype and 35 unique haplotypes were dispersed throughout the range. In total, 97.2% of the variation was found among individuals within sampling sites and 2.8% was among sites. Pairwise ΦST analyses revealed shallow, yet significant structure between Hout Bay individuals and some other sampling sites. The J. lalandii haplotype network indicates a starlike structure with no geographic signal; however, genetic diversity sharply decreases towards the edges of the species distribution. The general lack of phylogeographic structure among J. lalandii populations probably results from the absence of strong barriers to larval dispersal. Based on our mtDNA data there is no justification for the recognition of separate fishing stocks, but the high genetic diversities of populations at Hout Bay and Cape Hangklip, the latter currently outside of marine protected areas, makes these populations critical to conservation efforts.

Additional keywords: 16S rRNA, population structure, South Africa.


Acknowledgements

The skippers and crew of various vessels and the technical staff of the Rock Lobster Section, Marine and Coastal Management are thanked for the collection of lobster samples. The authors also acknowledge the University of Stellenbosch, National Research Foundation (FA2005040400057) and Marine and Coastal Management for proving funding. A SABI (NRF) bursary supported Keshni Gopal and Sophie von der Heyden received financial support in the form of a freestanding postdoctoral fellowship.


References

Atkinson, L. J. , and Branch, G. M. (2003). Longshore movements of adult male Jasus lalandii: evidence from long-term tag recaptures. South African Journal of Marine Science 25, 387–390.
Booth J. D. (2006). Jasus species. In ‘Lobsters: Biology, Management, Aquaculture and Fisheries’. (Ed. B. F. Phillips.) pp. 340–358. (Blackwell Scientific Publications: Oxford.)

Booth, J. D. , and Ovenden, J. R. (2000). Distribution of Jasus spp. (Decapoda: Palinuridae) phyllosomas in southern waters: implications for larval recruitment. Marine Ecology Progress Series 200, 241–255.
Crossref | GoogleScholarGoogle Scholar | Crandall K. A., Templeton A. R., and Sing C. F. (1994). Intraspecific phylogenies: problems and solutions. In ‘Models in Phylogeny Reconstruction’. (Eds R. W. Scotland, D. J. Siebert and D. M. Williams.) pp. 273–279. (Clarendon Press: Oxford.)

Dubber, G. G. , Branch, G. M. , and Atkinson, L. J. (2004). The effects of temperature and diet on the survival, growth and food uptake of aquarium-held postpueruli of the rock lobster Jasus lalandii. Aquaculture 240, 249–266.
Crossref | GoogleScholarGoogle Scholar | Esterhuizen J. A. (2004). Towards the development of a protocol for rearing juvenile rock lobster, Jasus lalandii. MSc Thesis, Rhodes University, South Africa.

Excoffier, L. , Laval, G. , and Schneider, S. (2005). Arlequin ver. 3.0: An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online 1, 47–50.
Jensen J. L., Bohonak A. J., and Kelley S. T. (2005). Isolation by distance, web service. BMC Genetics 6: 13. v.3.14. Available at http://ibdws.sdsu.edu/ [Verified 2 October 2007].

Johnston, S. J. , and Butterworth, D. S. (2005). Evolution of operational management procedures for the South African west coast rock lobster (Jasus lalandii) fishery. New Zealand Journal of Marine and Freshwater Research 39, 687–702.
Maddison W. P., and Maddison D. K. (2000). ‘MacClade: Analysis of Phylogeny and Character Evolution. Version 4.0.’ (Sinauer Associates: Sunderland, MA.)

Mayfield, S. , Branch, G. M. , and Cockcroft, A. C. (2005). Role and efficacy of marine protected areas for the South African rock lobster, Jasus lalandii. Marine and Freshwater Research 56, 913–924.
Crossref | GoogleScholarGoogle Scholar | Newman G. G. (1973). Assessment and management of some marine stocks in southern Africa. Ph.D. Thesis, University of Stellenbosch.

Ovenden J. R., and Brasher D. J. (2000). Stock identity of the red (Jasus edwardsii) and green (J. verreauxi) rock lobsters inferred from mitochondrial DNA analysis. In ‘Spiny Lobster Management’. (Eds B. F. Phillips, J. S. Cobb and J. Kittaka.) pp. 230–249. (Blackwell Scientific Publications: Oxford.)

Ovenden, J. R. , Booth, J. D. , and Smolenski, A. J. (1997). Mitochondrial DNA phylogeny of red and green rock lobsters (genus Jasus). Marine and Freshwater Research 48, 1131–1136.
Crossref | GoogleScholarGoogle Scholar | Palumbi S. R. (1996). Nucleic acids II: The polymerase chain reaction. In ‘Molecular Systematics’. (Eds D. M. Hillis, C. Moritz and B. K. Mable.) pp. 205–247. (Sinauer Associates: Sunderland, MA.)

Pollock, D. E. (1986). Review of the fishery for and biology of the Cape rock lobster Jasus lalandii with notes on larval recruitment. Canadian Journal of Fisheries and Aquatic Sciences 43, 2107–2117.


Pollock, D. E. , Cockcroft, A. C. , and Goosen, P. C. (1997). A note on reduced rock lobster growth rates and related environmental anomalies in the southern Benguela, 1988–1995. South African Journal of Marine Science 18, 287–293.


Ravago, R. G. , and Juinio-Menez, M. A. (2002). Phylogenetic position of the striped-legged forms of the Panulirus longipes (A. Milne-Edwards, 1868) (Decapoda, Palinuridae) inferred from mitochondrial DNA sequences. Crustaceana 75, 1047–1059.
Crossref | GoogleScholarGoogle Scholar |

Sarver, S. K. , Silberman, J. D. , and Walsh, P. J. (1998). Mitochondrial DNA sequence evidence supporting the recognition of two subspecies or species of the Florida spiny lobster Panulirus argus. Journal of Crustacean Biology 18, 177–186.
Crossref | GoogleScholarGoogle Scholar |

Schneider, S. , and Excoffier, L. (1999). Estimation of past demographic parameters from the distribution of pairwise differences when mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079–1089.
PubMed |

Tolley, K. A. , Groeneveld, J. C. , Gopal, K. , and Matthee, C. A. (2005). MtDNA panmixia in spiny lobster, Palinurus gilchristi, supports a recent population expansion. Marine Ecology Progress Series 297, 225–231.
Crossref | GoogleScholarGoogle Scholar |

von der Heyden, S. , Groeneveld, J. C. , and Matthee, C. A. (in press). Long current to nowhere? – Genetic connectivity of Jasus tristani populations in the southern Atlantic Ocean. African Journal of Marine Science. ,