Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of iron additions on filament growth and productivity of the cyanobacterium Lyngbya majuscula

Kathleen S. Ahern A C , Judith M. O’Neil A B , James W. Udy A and Simon Albert A
+ Author Affiliations
- Author Affiliations

A University of Queensland, Centre for Water Studies and Centre for Marine Studies, Brisbane, Qld 4072, Australia.

B University of Maryland Center for Environmental Science, Horn Point Laboratory, Cambridge, MD 21613, USA.

C Corresponding author. Email: k.ahern1@uq.edu.au

Marine and Freshwater Research 57(2) 167-176 https://doi.org/10.1071/MF05022
Submitted: 14 Feb 2005  Accepted: 4 January 2006   Published: 23 February 2006

Abstract

The bioavailability of iron, in combination with essential macronutrients such as phosphorus, has been hypothesised to be linked to nuisance blooms of the toxic cyanobacterium Lyngbya majuscula. The present laboratory study used two biological assay techniques to test whether various concentrations of added iron (inorganic and organically chelated) enhanced L. majuscula filament growth and productivity (14C-bicarbonate uptake rate). Organically chelated iron (FeEDTA) with adequate background concentrations of phosphorus and molybdenum caused the largest increases (up to 4.5 times the control) in L. majuscula productivity and filament growth. The addition of inorganic iron (without added phosphorus or molybdenum) also stimulated L. majuscula filament growth. However, overall the FeEDTA was substantially and significantly more effective in promoting L. majuscula growth than inorganic iron (FeCl3). The organic chelator (EDTA) alone and molybdenum alone also enhanced L. majuscula growth but to a lesser extent than the chelated iron. The results of the present laboratory study support the hypothesis that iron and chelating organic compounds may be important in promoting blooms of L. majuscula in coastal waters of Queensland, Australia.

Extra keywords: algal blooms, FeEDTA, molybdenum, Moreton Bay, nutrients, organics.


Acknowledgments

The authors acknowledge funding support from the Moreton Bay Waterways and Catchment Partnership, Natural Heritage Trust and Australian Research Council Linkage Grant (LP0219352). For valuable discussion thanks to C. Ahern, V. Eldershaw, P. Moody, S. Pointon, B. Powell (Queensland Department of Natural Resources, Mines and Water); W.C. Dennison (University of Queensland and University of Maryland); T.D. Waite and A. Rose (University of New South Wales); and G. Savige (Savige Fisheries). Thanks also to the Marine Botany Group at the Centre for Marine Studies, University of Queensland, and the journal referees who provided helpful critique and suggestions. This is University of Maryland Centre for Environmental Science contribution #3905.


References

Albert, S. , O’Neil, J. M. , Udy, J. W. , Ahern, K. S. , O’Sullivan, C. , and Dennison, W. C. (2005). Blooms of the cyanobacterium Lyngbya majuscula in coastal Queensland, Australia: disparate sites, common factors. Marine Pollution Bulletin 51, 428–437.
Crossref | GoogleScholarGoogle Scholar | PubMed | Burns J. A., Zehr J. P., and Capone D. G. (2002). Effect of EDTA additions on natural Trichodesmium spp populations. In ‘Ocean Science Meeting, 11–15 February 2002, Honolulu, HI’. (American Geophysical Union.)

Byrne, R. H. , and Kester, D. R. (1976). Solubility of hydrous ferric oxide and iron speciation in seawater. Marine Chemistry 4, 255–274.
Crossref | GoogleScholarGoogle Scholar | Dennison W. C., and Abal E. G. (1999). ‘Moreton Bay study: A scientific basis for the healthy waterways campaign.’ (South East Queensland Regional Water Quality Management: Brisbane.)

Dennison, W. C. , O’Neil, J. M. , Duffy, E. J. , Oliver, P. E. , and Shaw, G. R. (1999). Blooms of the cyanobacterium Lyngbya majuscula in coastal waters of Queensland, Australia. Bulletin de l’Institut Oceanographique 19, 265–272.
Moikeha S. N. (1968). A chemical and biological study of toxic Lyngbya majuscula Gomont from Hawaii. Ph.D. Thesis, University of Hawaii.

O’Donohue, M. J. H. , and Dennison, W. C. (1997). Phytoplankton response to nutrient concentrations, light availability and temperature along an Australian Estuarine Gradient. Estuaries 20, 521–533.
Omori M., and Ikeda T. (1984). ‘Methods in Marine Zooplankton Ecology.’ (John Wiley & Sons: New York.)

O’Neil J. M., Albert S., Osborne N., Watkinson A., Shaw G., Heil C., Mulholland M., and Bronk D. (2004). Nitrogen acquisition by the toxic marine cyanobacterium Lyngbya majuscula from Moreton Bay, Australia and Tampa Bay, Florida. In ‘International Conference on Harmful Algae’. (International Society for the Study of Harmful Algae: Cape Town.)

O’Neil J. M., and Dennison W. C. (2005). Lyngbya majuscula in Southeast Queensland waterways. In ‘Healthy Catchment, Health Waterways: South East Queensland Regional Water Quality Strategy’. (Eds E. Abal and W. C. Dennison.) pp. 143. (Brisbane City Council: Brisbane, Queensland.)

Osborne, N. J. T. , Webb, P. M. , and Shaw, G. R. (2001). The toxins of Lyngbya majuscula and their human and ecological health effects. Environment International 27, 381–392.
Crossref | GoogleScholarGoogle Scholar | PubMed | Parsons T. R., Maita Y., and Lalli C. M. (1984). ‘A Manual of Chemical and Biological Methods for Seawater Analysis.’ (Pergamon Press: Oxford, UK.)

Paul, V. J. , and Pennings, S. C. (1991). Diet-derived chemical defences in the sea hare Stylocheilus longicauda. Journal of Experimental Marine Biology and Ecology 151, 227–243.
Crossref | GoogleScholarGoogle Scholar | Whitton B. A., and Potts M. (2000). ‘The Ecology of Cyanobacteria: The Diversity in Time and Space.’ (Kluwer Academic: Boston, MA.)