Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Extracellular phosphatase activity of freshwater phytoplankton exposed to different in situ phosphorus concentrations

A. Štrojsová A B C , J. Vrba A B , J. Nedoma B and K. Šimek A B
+ Author Affiliations
- Author Affiliations

A University of South Bohemia, Faculty of Biological Sciences, Branišovská 31, CZ-370 05 České Budějovice, Czech Republic.

B Hydrobiological Institute, Academy of Sciences of the Czech Republic, Na Sádkách 7, CZ-370 05 České Budějovice, Czech Republic.

C Corresponding author. Email: alena.strojsova@seznam.cz

Marine and Freshwater Research 56(4) 417-424 https://doi.org/10.1071/MF04283
Submitted: 25 November 2004  Accepted: 8 March 2005   Published: 27 June 2005

Abstract

Extracellular phosphatase production and biomass change were investigated in phytoplankton species transplanted from the phosphorus-limited dam area of a eutrophic reservoir and exposed to the phosphorus-sufficient inflow part and vice versa. Extracellular phosphatase activity was studied using the enzyme-labelled fluorescence (ELF) technique, allowing for direct microscopic detection of enzyme activity and, moreover, its quantification using image cytometry. Several phytoplankton species (e.g. Anabaena planctonica, Microcystis aeruginosa, Fragilaria crotonensis, Ankyra ancora and Planktosphaeria gelatinosa) regulated phosphatase activity according to external phosphorus concentration. On the contrary, picocyanobacteria and several green algae (Coelastrum microporum, Crucigeniella sp., Pediastrum tetras, and Staurastrum planctonicum) did not produce extracellular phosphatases at all. The species-specific extracellular phosphatase activity of F. crotonensis, A. ancora, and P. gelatinosa ranged between 0.02 and 3.5 fmol μm−2 h−1.

Extra keywords: Ankyra ancora, ectoenzyme, ELF97 phosphate, Fragilaria crotonensis, image analysis, Microcystis aeruginosa, species-specific activity.


Acknowledgments

This project was supported by the Grant Agency of the Czech Republic (research grant A 206/02/0003, awarded to K. Šimek), the Grant Agency of the ASCR (A 6017202, awarded to J. Vrba) and the Ministry of Education (FRVS G4 1841, awarded to A. Štrojsová). We gratefully acknowledge M. Mašín, J. Jezbera and K. Horňák for assistance with experimental sampling in the reservoir and V. Hejzlarová, J. Kroupová and K. Murtinger for chemical analysis. We thank M. Štojdlová, S. Smrčková and R. Malá for laboratory assistance. P. Znachor made valuable comments on an earlier version of the paper.


References

Chróst R. J. (1991). Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In ‘Microbial Enzymes in Aquatic Environments’. (Ed. R. J. Chróst.) pp. 29–59. (Springer-Verlag: New York.)

Clegg, M. R. , Maberly, S. C. , and Jones, R. I. (2004). Dominance and compromise in freshwater phytoplanktonic flagellates: the interaction of behavioural preferences for conflicting environmental gradients. Functional Ecology 18, 371–380.
Crossref | GoogleScholarGoogle Scholar | Graham L. E., and Wilcox L. W. (2000). ‘Algae.’ (Prentice Hall, Inc.: Upper Saddle River, NJ.)

Havens, K. E. , Phlips, E. J. , Cichra, M. F. , and Li, B. (1998). Light availability as a possible regulator of cyanobacteria species composition in a shallow subtropical lake. Freshwater Biology 39, 547–556.
Crossref | GoogleScholarGoogle Scholar | Horn H. (2002). Climate versus nutrients – or – can we ever control the phytoplankton growth? Results of the 26-years-investigations in the reservoir Saidenbach. In ‘Extended Abstract of the 4th International Conference on Reservoir Limnology and Water Quality’. pp. 135–138. (České Budějovice, Czech Republic.)

Huang, Z. , Terpetschnig, E. , You, W. , and Haugland, R. P. (1992). 2-(2′-phosphoryloxyphenyl)-4(3H)-quinazolinone derivates as fluorogenic precipitating substrates of phosphatases. Analytical Biochemistry 207, 32–39.
Crossref | GoogleScholarGoogle Scholar | PubMed | Norland S. (1993). The relationship between biomass and volume of bacteria. In ‘Handbook of Methods in Aquatic Microbial Ecology’. (Eds P. F. Kemp, B. F. Sherr, E. B. Sherr and J. Cole.) pp. 303–308. (Lewis: Boca Raton, FL.)

Olden, J. D. (2000). An artificial neural network approach for studying phytoplankton succession. Hydrobiologia 436, 131–143.
Crossref | GoogleScholarGoogle Scholar | Psenner R. (1993). Determination of size and morphology of aquatic bacteria by automated image analysis. In ‘Handbook of Methods in Aquatic Microbial Ecology’. (Eds P. F. Kemp, B. F. Sherr, E. B. Sherr and J. Cole.) pp. 339–345. (Lewis: Boca Raton, FL.)

Rengefors, K. , Pettersson, K. , Blenckner, T. , and Anderson, D. M. (2001). Species-specific alkaline phosphatase activity in freshwater spring phytoplankton: Application of a novel method. Journal of Plankton Research 23, 435–443.
Crossref | GoogleScholarGoogle Scholar | Reynolds C. S. (1997). ‘Vegetation Processes in the Pelagic: a Model for Ecosystem Theory.’ (Ecology Institute: Oldendorf.)

Singh, D. P. , Tyagi, M. B. , Kumar, A. , Thakur, J. K. , and Kumar, A. (2001). Antialgal activity of a hepatoxin-producing cyanobacterim Microcystis aeruginosa. World Journal of Microbiology and Biotechnology 17, 15–22.
Crossref | GoogleScholarGoogle Scholar | Sommer U. (1989). The role of competition for resources in phytoplankton succession. In ‘Plankton Ecology: Succession in Plankton Communities’. (Ed. U. Sommer.) pp. 57–106. (Springer-Verlag: Berlin.)

Stevenson R. J. (1985). ‘Phytoplankton: Composition, Abundance and Distribution in Lake Huron.’ (Environmental Protection Agency: Washington, DC.)

Štrojsová, M. , and Vrba, J. (2005). Direct detection of digestive enzymes in planktonic rotifers using enzyme labelled fluorescence (ELF). Marine and Freshwater Research 56, 189–195.
Crossref | GoogleScholarGoogle Scholar | Wetzel R. G. (2001). ‘Limnology. Lake and River Ecosystems.’ 3rd edn. (Academic Press: London.)

Whittington, J. , Sherman, B. , Green, D. , and Oliver, R. L. (2000). Growth of Ceratium hirundinella in a subtropical Australian reservoir: the role of vertical migration. Journal of Plankton Research 22, 1025–1045.
Crossref | GoogleScholarGoogle Scholar |

Whitton, B. A. , Grainger, S. L. J. , Hawley, G. R. W. , and Simon, J. W. (1991). Cell bound and extracellular phosphatase activities of cyanobacterial isolates. Microbial Ecology 21, 85–98.