Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Growth, mortality, and reproduction of the oblique-banded snapper (Pristipomoides zonatus) in Guam

Eva Schemmel https://orcid.org/0000-0002-7010-6164 A D , Ryan Nichols A , Eric Cruz B , Jane F. F. Boyer C and Frank A. Camacho C
+ Author Affiliations
- Author Affiliations

A NOAA Fisheries, Pacific Islands Fisheries Science Center, 1845 Wasp Boulevard, Honolulu, HI 96818, USA.

B NOAA Fisheries, Pacific Islands Fisheries Science Center, 770 East Sunset Boulevard, Suite 170, Tiyan, GU 96913, Guam.

C College of Natural and Applied Sciences, University of Guam, UOG Station, Mangilao, GU 96923, Guam.

D Corresponding author. Email: eva.schemmel@noaa.gov

Marine and Freshwater Research 73(3) 351-365 https://doi.org/10.1071/MF21094
Submitted: 30 March 2021  Accepted: 15 September 2021   Published: 29 November 2021

Abstract

Deep-water snapper fisheries in the Mariana Archipelago are important commercial, recreational and subsistence fisheries. Pristipomoides zonatus, one of the top four deep-water snapper species harvested in Guam, lacked life-history information. To fill this gap, a comprehensive life-history assessment for P. zonatus, which included age, growth, mortality and reproduction, was conducted in Guam. The size range of P. zonatus sampled for life history was from 11.5 cm to 40.4 cm (fork length), with ages ranging from 0.5 to 30 years. Von Bertalanffy growth model-combined sex parameters were L = 36.91 cm and K = 0.29. Males obtained a larger average size and a larger asymptotic size (+3.03 cm) than did females. Pristipomoides zonatus matures at a small size and age (L50 ≤ 24.0 cm and A50 ≤ 2.1 years) relative to their maximum size (40.4 cm) and age (30 years). Additionally, P. zonatus has a long spawning season and a short spawning interval, suggesting high reproductive output. Our results expand knowledge on Pristipomoides life history (fast early growth, moderately long-lived, high productivity), providing the necessary information for the management of P. zonatus in Guam.

Keywords: snappers, age and growth, mortality, reproduction, fisheries.


References

Anderson, W. D., and Allen, G. R. (2001). FAO species identification guide for fishery purposes. In ‘The Living Marine Resources of the Western Central Pacific. Vol. 5’. (Eds K. E. Carpenter and V. H. Niem.) pp. 2840–2853. (FAO: Rome, Italy.)

Andrews, A. H., and Scofield, T. R. (2021). Early overcounting in otoliths: a case study of age and growth for gindai (Pristipomoides zonatus) using bomb 14C dating. Fisheries and Aquatic Sciences 24, 53–62.
Early overcounting in otoliths: a case study of age and growth for gindai (Pristipomoides zonatus) using bomb 14C dating.Crossref | GoogleScholarGoogle Scholar |

Beamish, R., and Fournier, D. (1981). A method for comparing the precision of a set of age determinations. Canadian Journal of Fisheries and Aquatic Sciences 38, 982–983.
A method for comparing the precision of a set of age determinations.Crossref | GoogleScholarGoogle Scholar |

Brown-Peterson, N. J. (2003). The reproductive biology of spotted seatrout. In ‘Biology of the Spotted Seatrout’. (Ed. S. A. Bortone.) pp. 99–133. (Routledge.)

Brown‐Peterson, N. J., Wyanski, D. M., Saborido‐Rey, F., Macewicz, B. J., and Lowerre‐Barbieri, S. K. (2011). A standardized terminology for describing reproductive development in fishes. Marine and Coastal Fisheries 3, 52–70.
A standardized terminology for describing reproductive development in fishes.Crossref | GoogleScholarGoogle Scholar |

Burnham, K. P., and Anderson, D. R. (2002). Information and likelihood theory: a basis for model selection and inference. In ‘Model Selection and Multimodel Inference: A Practical Information-theoretic Approach’. 2nd edn. (Eds K. P. Burnham and D. R. Anderson.) pp. 49–96. (Springer: New York, NY, USA.)

Chang, W. Y. (1982). A statistical method for evaluating the reproducibility of age determination. Canadian Journal of Fisheries and Aquatic Sciences 39, 1208–1210.
A statistical method for evaluating the reproducibility of age determination.Crossref | GoogleScholarGoogle Scholar |

Chang, Y.-J., Hsu, J., Shiao, J.-C., and Chang, S.-K. (2019). Evaluation of the effects of otolith sampling strategies and ageing error on estimation of the age composition and growth curve for Pacific bluefin tuna Thunnus orientalis. Marine and Freshwater Research 70, 1838–1849.
Evaluation of the effects of otolith sampling strategies and ageing error on estimation of the age composition and growth curve for Pacific bluefin tuna Thunnus orientalis.Crossref | GoogleScholarGoogle Scholar |

Chen, Y., and Paloheimo, J. (1994). Estimating fish length and age at 50% maturity using a logistic type model. Aquatic Sciences 56, 206–219.
Estimating fish length and age at 50% maturity using a logistic type model.Crossref | GoogleScholarGoogle Scholar |

Dalzell, P. (1996). Catch rates, selectivity and yields of reef fishing. In ‘Reef Fisheries’. (Eds N. V. C. Polumin and C. M. Roberts.) pp. 161–192. (Springer.)

DeMartini, E. E. (2017). Body size at sexual maturity in the eteline snappers Etelis carbunculus and Pristipomoides sieboldii: subregional comparisons between the main and north-western Hawaiian Islands. Marine and Freshwater Research 68, 1178–1186.
Body size at sexual maturity in the eteline snappers Etelis carbunculus and Pristipomoides sieboldii: subregional comparisons between the main and north-western Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar |

DeMartini, E. E., and Fountain, R. K. (1981). Ovarian cycling frequency and batch fecundity in the queenfish, Seriphus politus: attributes representative of serial spawning fishes. Fishery Bulletin 79, 547–560.

Gompertz, B. (1825). XXIV. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. In a letter to Francis Baily, Esq. FRS &c. Philosophical Transactions of the Royal Society of London , 513–583.

Goodyear, C. P. (2019). Modeling growth: consequences from selecting samples by size. Transactions of the American Fisheries Society 148, 528–551.
Modeling growth: consequences from selecting samples by size.Crossref | GoogleScholarGoogle Scholar |

Grimes, C.B. (1987). Reproductive biology of the Lutjanidae: a review. In ‘Tropical Snappers and Groupers: Biology and Fisheries Management’. (Eds J. J. Polovina and S. Ralston.) pp. 239–294.

Haddon, M. (2010). ‘Modelling and Quantitative Methods in Fisheries.’ (CRC Press.)

Hilborn, R., and Walters, C. J. (2013). ‘Quantitative Fisheries Stock Assessment: Choice, Dynamics and Uncertainty.’ (Springer Science & Business Media.)

Hixon, M. A., Johnson, D. W., and Sogard, S. M. (2014). BOFFFFs: on the importance of conserving old-growth age structure in fishery populations. ICES Journal of Marine Science 71, 2171–2185.
BOFFFFs: on the importance of conserving old-growth age structure in fishery populations.Crossref | GoogleScholarGoogle Scholar |

Hoenig, J. M. (1983). Empirical use of longevity data to estimate mortality rates. Fishery Bulletin 82, 898–903.

Hunter, J. R., and Macewicz, B. J. (1985). Measurement of spawning frequency in multiple spawning fishes. NOAA Technical Report NMFS 36, 79–94.

Jensen, A. (1996). Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival. Canadian Journal of Fisheries and Aquatic Sciences 53, 820–822.
Beverton and Holt life history invariants result from optimal trade-off of reproduction and survival.Crossref | GoogleScholarGoogle Scholar |

Kamikawa, K., Cruz, E., Essington, T., Hospital, J., Brodziak, J., and Branch, T. (2015). Length–weight relationships for 85 fish species from Guam. Journal of Applied Ichthyology 31, 1171–1174.
Length–weight relationships for 85 fish species from Guam.Crossref | GoogleScholarGoogle Scholar |

Kimura, D. K. (1977). Statistical assessment of the age–length key. Journal of the Fisheries Board of Canada 34, 317–324.
Statistical assessment of the age–length key.Crossref | GoogleScholarGoogle Scholar |

Kimura, D. K. (1980). Likelihood methods for the von Bertalanffy growth curve. Fishery Bulletin 77, 765–776.

Langseth, B.J., Syslo, J., Yau, A., and Carvalho, F. (2019). ‘Stock assessments of the bottomfish management unit species of Guam.’ (The Commonwealth of the Northern Mariana Islands, and American Samoa.)

Leis, J., and Goldman, B. (1987). Composition and distribution of larval fish assemblages in the Great Barrier Reef Lagoon, near Lizard Island, Australia. Marine and Freshwater Research 38, 211–223.
Composition and distribution of larval fish assemblages in the Great Barrier Reef Lagoon, near Lizard Island, Australia.Crossref | GoogleScholarGoogle Scholar |

Lowerre-Barbieri, S. K., Ganias, K., Saborido-Rey, F., Murua, H., and Hunter, J. R. (2011). Reproductive Timing in marine fishes: variability, temporal scales, and methods. Marine and Coastal Fisheries 3, 71–91.
Reproductive Timing in marine fishes: variability, temporal scales, and methods.Crossref | GoogleScholarGoogle Scholar |

Luers, M. A., DeMartini, E. E., and Humphreys, R. L. (2018). Seasonality, sex ratio, spawning frequency and sexual maturity of the opakapaka Pristipomoides filamentosus (Perciformes: Lutjanidae) from the Main Hawaiian Islands: fundamental input to size-at-retention regulations. Marine and Freshwater Research 69, 325–335.
Seasonality, sex ratio, spawning frequency and sexual maturity of the opakapaka Pristipomoides filamentosus (Perciformes: Lutjanidae) from the Main Hawaiian Islands: fundamental input to size-at-retention regulations.Crossref | GoogleScholarGoogle Scholar |

Mannini, A., Pinto, C., Konrad, C., Vasilakopoulos, P., and Winker, H. (2020). ‘The Elephant in the Room’: exploring natural mortality uncertainty in statistical catch at age models. Frontiers in Marine Science 7, 585654.
‘The Elephant in the Room’: exploring natural mortality uncertainty in statistical catch at age models.Crossref | GoogleScholarGoogle Scholar |

Mees, C. (1993). Population biology and stock assessment of Pristipomoides filamentosus on the Mahe Plateau, Seychelles. Journal of Fish Biology 43, 695–708.
Population biology and stock assessment of Pristipomoides filamentosus on the Mahe Plateau, Seychelles.Crossref | GoogleScholarGoogle Scholar |

Moffitt, R. B., and Parrish, F. A. (1997). Habitat and life history of juvenile Hawaiian pink snapper, Pristipomoides filamentosus. Oceanographic Literature Review 4, 387.

Myers, R. F. (1993). Guam’s small-boat-based fisheries. Marine Fisheries Review 55, 117–128.

Nadon, M. O., and Ault, J. S. (2016). A stepwise stochastic simulation approach to estimate life history parameters for data-poor fisheries. Canadian Journal of Fisheries and Aquatic Sciences 73, 1874–1884.
A stepwise stochastic simulation approach to estimate life history parameters for data-poor fisheries.Crossref | GoogleScholarGoogle Scholar |

Nadon, M. O., Ault, J. S., Williams, I. D., Smith, S. G., and DiNardo, G. T. (2015). Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian Islands. PLoS One 10, e0133960.
Length-based assessment of coral reef fish populations in the main and northwestern Hawaiian Islands.Crossref | GoogleScholarGoogle Scholar | 26267473PubMed |

Nanami, A. (2011). Size composition and reproductive biology of the ornate jobfish Pristipomoides argyrogrammicus (Lutjanidae) off Ishigaki Island, Okinawa. Ichthyological Research 58, 310–314.
Size composition and reproductive biology of the ornate jobfish Pristipomoides argyrogrammicus (Lutjanidae) off Ishigaki Island, Okinawa.Crossref | GoogleScholarGoogle Scholar |

Newman, S. J., and Dunk, I. J. (2003). Age validation, growth, mortality, and additional population parameters of the goldband snapper (Pristipomoides multidens) off the Kimberley coast of northwestern Australia. Fishery Bulletin 101, 116–128.

Newman, S. J., Wakefield, C. B., Williams, A. J., O’Malley, J. M., Nicol, S. J., DeMartini, E. E., Halafihi, T., Kaltavara, J., Humphreys, R. L., Taylor, B. M., Andrews, A. H., and Nichols, R. S. (2015). International workshop on methodological evolution to improve estimates of life history parameters and fisheries management of data-poor deep-water snappers and groupers. Marine Policy 60, 182–185.
International workshop on methodological evolution to improve estimates of life history parameters and fisheries management of data-poor deep-water snappers and groupers.Crossref | GoogleScholarGoogle Scholar |

Newman, S. J., Williams, A. J., Wakefield, C. B., Nicol, S. J., Taylor, B. M., and O’Malley, J. M. (2016). Review of the life history characteristics, ecology and fisheries for deep-water tropical demersal fish in the Indo-Pacific region. Reviews in Fish Biology and Fisheries 26, 537–562.
Review of the life history characteristics, ecology and fisheries for deep-water tropical demersal fish in the Indo-Pacific region.Crossref | GoogleScholarGoogle Scholar |

Nichols, R. S. (2019). Sex-specific growth and longevity of ‘Ehu’, Etelis carbunculus (family Lutjanidae), within the Hawaiian Archipelago. MSc Thesis, University of Hawai’i at Manoa, HI, USA.

O’Malley, J.M., Taylor, B.M., and Andrews, A.H. (2016). Feasibility of ageing Hawaiian Archipelago uku (Aprion virescens). Administrative Report H-16-06. https://doi.org/
| Crossref |

O’Malley, J. M., Wakefield, C. B., Oyafuso, Z. S., Nichols, R. S., Taylor, B., Williams, A. J., Sapatu, M., and Marsik, M. (2019). Effects of exploitation evident in age-based demography of 2 deepwater snappers, the goldeneye jobfish (Pristipomoides flavipinnis) in the Samoa Archipelago and the goldflag jobfish (P. auricilla) in the Mariana Archipelago. Fishery Bulletin 117, 322–336.
Effects of exploitation evident in age-based demography of 2 deepwater snappers, the goldeneye jobfish (Pristipomoides flavipinnis) in the Samoa Archipelago and the goldflag jobfish (P. auricilla) in the Mariana Archipelago.Crossref | GoogleScholarGoogle Scholar |

Pauly, D. (1980). On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks. ICES Journal of Marine Science 39, 175–192.
On the interrelationships between natural mortality, growth parameters, and mean environmental temperature in 175 fish stocks.Crossref | GoogleScholarGoogle Scholar |

Prince, J., Hordyk, A., Valencia, S. R., Loneragan, N., and Sainsbury, K. (2015). Revisiting the concept of Beverton–Holt life-history invariants with the aim of informing data-poor fisheries assessment. ICES Journal of Marine Science 72, 194–203.
Revisiting the concept of Beverton–Holt life-history invariants with the aim of informing data-poor fisheries assessment.Crossref | GoogleScholarGoogle Scholar |

Punt, A. E., Castillo-Jordán, C., Hamel, O. S., Cope, J. M., Maunder, M. N., and Ianelli, J. N. (2021). Consequences of error in natural mortality and its estimation in stock assessment models. Fisheries Research 233, 105759.
Consequences of error in natural mortality and its estimation in stock assessment models.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2018). ‘R: a Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing.)

Ralston, S., and Williams, H. A. (1989). Numerical integration of daily growth increments: an efficient means of ageing tropical fishes for stock assessment. Fishery Bulletin 87, 1–16.

Ricker, W. E. (1975). Computation and interpretation of biological statistics of fish populations. Bulletin - Fisheries Research Board of Canada Vol. 191, pp. 1–382.

Roff, D. A. (1983). An allocation model of growth and reproduction in fish. Canadian Journal of Fisheries and Aquatic Sciences 40, 1395–1404.
An allocation model of growth and reproduction in fish.Crossref | GoogleScholarGoogle Scholar |

Schenker, N., and Gentleman, J. F. (2001). On judging the significance of differences by examining the overlap between confidence intervals. The American Statistician 55, 182–186.
On judging the significance of differences by examining the overlap between confidence intervals.Crossref | GoogleScholarGoogle Scholar |

Schnute, J. (1981). A versatile growth model with statistically stable parameters. Canadian Journal of Fisheries and Aquatic Sciences 38, 1128–1140.
A versatile growth model with statistically stable parameters.Crossref | GoogleScholarGoogle Scholar |

Smith, M. W., Then, A. Y., Wor, C., Ralph, G., Pollock, K. H., and Hoenig, J. M. (2012). Recommendations for catch-curve analysis. North American Journal of Fisheries Management 32, 956–967.
Recommendations for catch-curve analysis.Crossref | GoogleScholarGoogle Scholar |

Sundberg, M., Humphreys, R., Lowe, M. K., Cruz, E., Gourley, J., and Ochavillo, D. (2015). Status of life history sampling conducted through the commercial fisheries biosampling programs in the Western Pacific Territories of American Samoa and Guam and in the Commonwealth of the Northern Mariana Islands. Pacific Islands Fisheries Science Center, NOAA, Honolulu, HI. Pacific Islands Fisheries Science Center Administrative Report H-15-08.10.7289/V5XD0ZP5

Then, A. Y., Hoenig, J. M., Hall, N. G., Hewitt, D. A., and Jardim, H. E. (2015). Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species. ICES Journal of Marine Science 72, 82–92.
Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species.Crossref | GoogleScholarGoogle Scholar |

Uehara, M., Ebisawa, A., and Ohta, I. (2018). Reproductive traits of deep-sea snappers (Lutjanidae): implication for Okinawan bottomfish fisheries management. Regional Studies in Marine Science 17, 112–126.
Reproductive traits of deep-sea snappers (Lutjanidae): implication for Okinawan bottomfish fisheries management.Crossref | GoogleScholarGoogle Scholar |

Uehara, M., Ebisawa, A., and Ohta, I. (2020). Comparative age‐specific demography of four commercially important deep‐water snappers: implication for fishery management of a long‐lived lutjanid. Journal of Fish Biology 97, 121–136.
Comparative age‐specific demography of four commercially important deep‐water snappers: implication for fishery management of a long‐lived lutjanid.Crossref | GoogleScholarGoogle Scholar | 32232856PubMed |

Usseglio, P., Friedlander, A. M., DeMartini, E. E., Schuhbauer, A., Schemmel, E., and de Léon, P. S. (2015). Improved estimates of age, growth and reproduction for the regionally endemic Galapagos sailfin grouper Mycteroperca olfax (Jenyns, 1840). PeerJ 3, e1270.
| 26401463PubMed |

Von Bertalanffy, L. (1938). A quantitative theory of organic growth (inquiries on growth laws. II). Human Biology 10, 181–213.

Wakefield, C. B., O’Malley, J. M., Williams, A. J., Taylor, B. M., Nichols, R. S., Halafihi, T., Humphreys, R. L., Kaltavara, J., Nicol, S. J., and Newman, S. J. (2017). Ageing bias and precision for deep-water snappers: evaluating nascent otolith preparation methods using novel multivariate comparisons among readers and growth parameter estimates. ICES Journal of Marine Science 74, 193–203.
Ageing bias and precision for deep-water snappers: evaluating nascent otolith preparation methods using novel multivariate comparisons among readers and growth parameter estimates.Crossref | GoogleScholarGoogle Scholar |

Williams, A. J., Nicol, S. J., Bentley, N., Starr, P. J., Newman, S. J., McCoy, M. A., Kinch, J., Williams, P. G., Magron, F., and Pilling, G. M. (2012). International workshop on developing strategies for monitoring data-limited deepwater demersal line fisheries in the Pacific Ocean. Reviews in Fish Biology and Fisheries 22, 527–531.
International workshop on developing strategies for monitoring data-limited deepwater demersal line fisheries in the Pacific Ocean.Crossref | GoogleScholarGoogle Scholar |

Williams, A., Loeun, K., Nicol, S., Chavance, P., Ducrocq, M., Harley, S., Pilling, G., Allain, V., Mellin, C., and Bradshaw, C. (2013). Population biology and vulnerability to fishing of deep‐water eteline snappers. Journal of Applied Ichthyology 29, 395–403.
Population biology and vulnerability to fishing of deep‐water eteline snappers.Crossref | GoogleScholarGoogle Scholar |

Williams, A. J., Wakefield, C. B., Newman, S. J., Vourey, E., Abascal, F. J., Halafihi, T., Kaltavara, J., and Nicol, S. J. (2017). Oceanic, latitudinal, and sex-specific variation in demography of a tropical deepwater snapper across the Indo-Pacific Region. Frontiers in Marine Science 4, 382.
Oceanic, latitudinal, and sex-specific variation in demography of a tropical deepwater snapper across the Indo-Pacific Region.Crossref | GoogleScholarGoogle Scholar |