Free Standard AU & NZ Shipping For All Book Orders Over $80!
Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Sea-surface temperatures predict targeted visual surveys of octopus abundance

D. Scheel https://orcid.org/0000-0001-6223-7124 A C and C. Johnson https://orcid.org/0000-0003-2855-4606 B
+ Author Affiliations
- Author Affiliations

A Alaska Pacific University, 4101 University Drive, Anchorage, AK 99508, USA.

B Email: curtis@curtismasonjohnson.com

C Corresponding author. Email: dscheel@alaskapacific.edu

Marine and Freshwater Research 72(9) 1321-1328 https://doi.org/10.1071/MF20318
Submitted: 26 October 2020  Accepted: 22 March 2021   Published: 5 May 2021

Abstract

In upwelling systems around the world, octopus abundance is forecast by marine productivity linked to upwelling strength, often indicated by sea-surface temperatures. Climate change may disrupt populations of marine animals that are linked to such temperature-dependent events. We analysed the relationship of the abundance of giant Pacific octopuses (Enteroctopus dofleini) to Gulf of Alaska and Washington State water temperatures. Abundance was measured in targeted visual surveys in Prince William Sound, Alaska, over the period 1995–2016 and from REEF.org diver surveys in Washington State from 2003 to 2019. Octopus counts from both survey programs had significant negative correlations with water temperatures over the previous 2.5–4 years. Water temperature accounted for from 0.41 to 0.71 of the variance (R2) in octopus abundance in eastern Gulf of Alaska waters located in ocean currents up-stream of the survey areas, and up to 0.81 of the variance in Washington State waters. These negative correlations provide a possible predictive index for octopus abundance as measured by targeted visual surveys. These methods may be useful tools in management of octopuses and indicate impacts of climate change on North Pacific coastal marine ecosystems.

Keywords: population, environmental variability, recruitment, fisheries assessment, Enteroctopus dofleini, Prince William Sound, Puget Sound, climate change.


References

Adams, P. B., Butler, J. L., Baxter, C. H., Laidig, T. E., Dahlin, K. A., and Wakefield, W. W. (1995). Population estimates of Pacific coast groundfishes from video transects and swept-area trawls. Fish Bulletin 93, 446–455.

de Lima, F. D., Leite, T. S., Haimovici, M., and Oliveira, J. E. L. (2014). Gonadal development and reproductive strategies of the tropical octopus (Octopus insularis) in northeast Brazil. Hydrobiologia 725, 7–21.
Gonadal development and reproductive strategies of the tropical octopus (Octopus insularis) in northeast Brazil.Crossref | GoogleScholarGoogle Scholar |

Doubleday, Z. A., Prowse, T. A., Arkhipkin, A., Pierce, G. J., Semmens, J., Steer, M., Leporati, S. C., Lourenço, S., Quetglas, A., and Sauer, W. (2016). Global proliferation of cephalopods. Current Biology 26, R406–R407.
Global proliferation of cephalopods.Crossref | GoogleScholarGoogle Scholar | 27218844PubMed |

Garstang, W. (1900). The plague of octopus on the south coast, and its effect on the crab and lobster fisheries. Journal of the Marine Biological Association of the United Kingdom 6, 260–273.
The plague of octopus on the south coast, and its effect on the crab and lobster fisheries.Crossref | GoogleScholarGoogle Scholar |

Gillespie, G. E., Parker, G., and Morrison, J. (1998) ‘A Review of Octopus Fisheries Biology and British Columbia Octopus Fisheries.’ (Fisheries and Oceans Canada: Ottawa, ON, Canada.)

Hartwick, E. B. (1983) Octopus dofleini. In ‘Cephalopod Life Cycles. Vol. I. Species Accounts’. (Ed. P. R. Boyle.) pp. 277–291. (Academic Press: London, UK.)

Herwig, J. N., Depczynski, M., Roberts, J. D., Semmens, J. M., Gagliano, M., and Heyward, A. J. (2012). Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea. PLoS One 7, e43679.
Using age-based life history data to investigate the life cycle and vulnerability of Octopus cyanea.Crossref | GoogleScholarGoogle Scholar | 22912898PubMed |

Higgins, K. L., Semmens, J. M., Doubleday, Z. A., and Burridge, C. P. (2013). Life history matters: comparisons of population structuring in sympatric octopus species that differ in the presence of a pelagic larval stage. Marine Ecology Progress Series 486, 203–212.
Life history matters: comparisons of population structuring in sympatric octopus species that differ in the presence of a pelagic larval stage.Crossref | GoogleScholarGoogle Scholar |

Holt, B. G., Rioja‐Nieto, R., MacNeil, M. A., Lupton, J., and Rahbek, C. (2013). Comparing diversity data collected using a protocol designed for volunteers with results from a professional alternative. Methods in Ecology and Evolution 4, 383–392.
Comparing diversity data collected using a protocol designed for volunteers with results from a professional alternative.Crossref | GoogleScholarGoogle Scholar |

Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D. (1996). The NCEP/NCAR Reanalysis 40-year Project. Bulletin of the American Meteorological Society 77, 437–471.
The NCEP/NCAR Reanalysis 40-year Project.Crossref | GoogleScholarGoogle Scholar |

Katsanevakis, S., and Verriopoulos, G. (2004). Abundance of Octopus vulgaris on soft sediment. Scientia Marina 68, 553–560.
Abundance of Octopus vulgaris on soft sediment.Crossref | GoogleScholarGoogle Scholar |

Leporati, S. C., Ziegler, P. E., and Semmens, J. M. (2009). Assessing the stock status of holobenthic octopus fisheries: is catch per unit effort sufficient? ICES Journal of Marine Science 66, 478–487.
Assessing the stock status of holobenthic octopus fisheries: is catch per unit effort sufficient?Crossref | GoogleScholarGoogle Scholar |

Lima, F. D., Leite, T. S., Haimovici, M., Nóbrega, M. F., and Oliveira, J. E. L. (2014). Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil. Fisheries Research 152, 86–92.
Population structure and reproductive dynamics of Octopus insularis (Cephalopoda: Octopodidae) in a coastal reef environment along northeastern Brazil.Crossref | GoogleScholarGoogle Scholar |

Litzow, M. A., Hunsicker, M. E., Bond, N. A., Burke, B. J., Cunningham, C. J., Gosselin, J. L., Norton, E. L., Ward, E. J., and Zador, S. G. (2020). The changing physical and ecological meanings of North Pacific Ocean climate indices. Proceedings of the National Academy of Sciences of the United States of America 117, 7665–7671.
The changing physical and ecological meanings of North Pacific Ocean climate indices.Crossref | GoogleScholarGoogle Scholar | 32205439PubMed |

Pattengill-Semmens, C. V., and Semmens, B. X. (2003). Conservation and management applications of the reef volunteer fish monitoring program. Environmental Monitoring and Assessment 81, 43–50.
Conservation and management applications of the reef volunteer fish monitoring program.Crossref | GoogleScholarGoogle Scholar | 12620003PubMed |

Rees, W. J., and Lumby, J. R. (1954). The abundance of octopus in the English Channel. Journal of the Marine Biological Association of the United Kingdom 33, 515–536.
The abundance of octopus in the English Channel.Crossref | GoogleScholarGoogle Scholar |

Reuter, R. F., Conners, M. E., DiCosimo, J., Gaichas, S., Ormseth, O., and Tenbrink, T. T. (2010). Managing non-target, data-poor species using catch limits: lessons from the Alaskan groundfish fishery. Fisheries Management and Ecology 2010, 1–13.
Managing non-target, data-poor species using catch limits: lessons from the Alaskan groundfish fishery.Crossref | GoogleScholarGoogle Scholar |

Scheel, D. (2002). Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska. Marine Ecology (Berlin) 23, 185–206.
Characteristics of habitats used by Enteroctopus dofleini in Prince William Sound and Cook Inlet, Alaska.Crossref | GoogleScholarGoogle Scholar |

Scheel, D. (2015). Sea-surface temperature used to predict the relative density of giant Pacific octopuses (Enteroctopus dofleini) in intertidal habitats of Prince William Sound, Alaska. Marine and Freshwater Research 66, 866–876.
Sea-surface temperature used to predict the relative density of giant Pacific octopuses (Enteroctopus dofleini) in intertidal habitats of Prince William Sound, Alaska.Crossref | GoogleScholarGoogle Scholar |

Scheel, D., Lauster, A., and Vincent, T. L. S. (2007) Habitat ecology of Enteroctopus dofleini from middens and live prey surveys in Prince William Sound, AK. In ‘Cephalopods Present and Past: New Insights and Fresh Perspectives’. (Eds N. H. Landman, R. A. Davis, and R. H. Mapes.) pp. 434–458. (Springer: Dordrecht, Netherlands.)

Thiaw, M., Gascuel, D., Thiao, D., Thiaw, O. T., and Jouffre, D. (2011). Analysing environmental and fishing effects on a short-lived species stock: the dynamics of the octopus Octopus vulgaris population in Senegalese waters. African Journal of Marine Science 33, 209–222.
Analysing environmental and fishing effects on a short-lived species stock: the dynamics of the octopus Octopus vulgaris population in Senegalese waters.Crossref | GoogleScholarGoogle Scholar |

Zhang, Y., Wallace, J. M., and Battisti, D. S. (1997). ENSO-like interdecadal variability: 1900–93. Journal of Climate 10, 1004–1020.
ENSO-like interdecadal variability: 1900–93.Crossref | GoogleScholarGoogle Scholar |