Macroalgal calcification and the effects of ocean acidification and global warming
Fangfang Yang A B , Zhangliang Wei A B and Lijuan Long A CA Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, PR China.
B Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, 511458, PR China.
C Corresponding author. Email: longlj@scsio.ac.cn
Marine and Freshwater Research 72(12) 1697-1710 https://doi.org/10.1071/MF20316
Submitted: 22 October 2020 Accepted: 5 July 2021 Published: 24 August 2021
Abstract
Calcification by calcified marine macroalgae is crucial to algal growth and the formation and maintenance of coral reefs. It involves complex processes, such as the uptake, transport and storage of Ca2+, HCO3– or CO32–, and the formation of crystals responsible for calcium deposition. Calcification is vulnerable to changes in global climate, including ocean acidification and warming. Studies investigating the mechanisms of macroalgal calcification are limited and restricted to physiological processes; however, the use of new approaches, such as genomics, provides avenues for new understandings. Here, we review the literature on macroalgal calcification from physiological to molecular levels and present a list of key issues that need to be resolved in order to understand the mechanism of calcification. This review offers insights into the potential effects of changing climate conditions on algal calcification to provide an accurate prediction of future changes in reef ecosystems.
Keywords: calcification, calcified macroalgae, ocean acidification, ocean warming.
References
Adey, W. H. (1973). Temperature control of reproduction and productivity in a subarctic coralline alga. Phycologia 12, 111–118.| Temperature control of reproduction and productivity in a subarctic coralline alga.Crossref | GoogleScholarGoogle Scholar |
Amado-Filho, G. M., Bahia, R. G., Mariath, R., Jesionek, M. B., Moura, R. L., Bastos, A. C., Pereira-Filho, G. H., and Francini-Filho, R. B. (2018). Spatial and temporal dynamics of the abundance of crustose calcified algae on the southernmost coral reefs of the western Atlantic (Abrolhos Bank, Brazil). Algae – Korean Phycological Society 33, 85–99.
| Spatial and temporal dynamics of the abundance of crustose calcified algae on the southernmost coral reefs of the western Atlantic (Abrolhos Bank, Brazil).Crossref | GoogleScholarGoogle Scholar |
Anadón, P., Utrilla, R., and Vázquez, A. (2002). Mineralogy and SrMg geochemistry of charophyte carbonates: a new tool for paleolimnological research. Earth and Planetary Science Letters 197, 205–214.
| Mineralogy and SrMg geochemistry of charophyte carbonates: a new tool for paleolimnological research.Crossref | GoogleScholarGoogle Scholar |
Andersson, A. J., Mackenzie, F. T., and Bates, N. R. (2008). Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers. Marine Ecology Progress Series 373, 265–273.
| Life on the margin: implications of ocean acidification on Mg-calcite, high latitude and cold-water marine calcifiers.Crossref | GoogleScholarGoogle Scholar |
Andersson, A. J., Kuffner, I. B., Mackenzie, F. T., Jokiel, P. L., Rodgers, K. S., and Tan, A. (2009). Net loss of CaCO3 from coral reef communities due to human induced seawater acidification. Biogeosciences Discussions 6, 2163–2182.
Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S., and Hoegh-Guldberg, O. (2008). Ocean acidification causes bleaching and productivity loss in coral reef builders. Proceedings of the National Academy of Sciences of the United States of America 105, 17442–17446.
| Ocean acidification causes bleaching and productivity loss in coral reef builders.Crossref | GoogleScholarGoogle Scholar |
Arias, J., and Fernández, M. S. (2008). Polysaccharides and proteoglycans in calcium carbonate-based biomineralization. Chemical Reviews 108, 4475–4482.
| Polysaccharides and proteoglycans in calcium carbonate-based biomineralization.Crossref | GoogleScholarGoogle Scholar | 18652513PubMed |
Ballantine, D. L. (1982). Halimeda hummii sp. nov., Halimeda cryptica v. acerifolia var. nov. (Caulerpales, Chlorophyta), and additional records of Halimeda species from Puerto Rico. Journal of Phycology 18, 86–91.
| Halimeda hummii sp. nov., Halimeda cryptica v. acerifolia var. nov. (Caulerpales, Chlorophyta), and additional records of Halimeda species from Puerto Rico.Crossref | GoogleScholarGoogle Scholar |
Ballantine, D. L., Ruiz, H., Lozada-Troche, C., and Norris, J. N. (2016). The genus Ramicrusta (Peyssonneliales, Rhodophyta) in the Caribbean Sea, including Ramicrusta bonairensis sp. nov. and Ramicrusta monensis sp. nov. Botanica Marina 59, 417–431.
| The genus Ramicrusta (Peyssonneliales, Rhodophyta) in the Caribbean Sea, including Ramicrusta bonairensis sp. nov. and Ramicrusta monensis sp. nov.Crossref | GoogleScholarGoogle Scholar |
Barbera, C., Bordehore, C., Borg, J. A., Glemarec, M., Grall, J., Hall-Spencer, J. M., Delahuz, C. H., Lanfranco, E., Lastra, M., Moore, P. G., Mora, J., Pita, M. E., Ramos-Espla, A. A., Rizzo, M., Sanchez-Mata, A., Seva, A., Schembri, P. J., and Valle, C. (2003). Conservation and management of northeast Atlantic and Mediterranean maerl beds. Marine and Freshwater Ecosystems 13, S65–S76.
| Conservation and management of northeast Atlantic and Mediterranean maerl beds.Crossref | GoogleScholarGoogle Scholar |
Beach, K., Walters, L., Vroom, P., Smith, C., Coyer, J., and Hunter, C. (2003). Variability in the ecophysiology of Halimeda spp. on Conch reef, Florida Keys. Journal of Phycology 39, 633–643.
| Variability in the ecophysiology of Halimeda spp. on Conch reef, Florida Keys.Crossref | GoogleScholarGoogle Scholar |
Benita, M., Dubinsky, Z., and Iluz, D. (2018). Padina pavonica: morphology and calcification functions and mechanism. American Journal of Plant Sciences 9, 1156–1168.
| Padina pavonica: morphology and calcification functions and mechanism.Crossref | GoogleScholarGoogle Scholar |
Benner, I., Diner, R. E., Lefebvre, S. C., Li, D., Komada, T., Carpenter, E. J., and Stillman, J. H. (2013). Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2. Philosophical Transactions of the Royal Society of London – B. Biological Sciences 368, 20130049.
| Emiliania huxleyi increases calcification but not expression of calcification-related genes in long-term exposure to elevated temperature and pCO2.Crossref | GoogleScholarGoogle Scholar | 23980248PubMed |
Bergstrom, E., Silva, J., Martins, C., and Horta, P. (2019). Seagrass can mitigate negative ocean acidification effects on calcifying algae. Scientific Reports 9, 1932.
| Seagrass can mitigate negative ocean acidification effects on calcifying algae.Crossref | GoogleScholarGoogle Scholar | 30760724PubMed |
Bergstrom, E., Ordoñez, A., Ho, M., and Hurd, C. (2020). Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming. Marine Environmental Research 161, 105107.
| Inorganic carbon uptake strategies in coralline algae: Plasticity across evolutionary lineages under ocean acidification and warming.Crossref | GoogleScholarGoogle Scholar | 32890983PubMed |
Berkowitz, B., Singurindy, O., and Lowell, R. P. (2001). Calcium carbonate precipitation/dissolution in salt water-fresh water mixing zones. Geophysical Research Letters 30, 1253.
Bilan, M. I., and Usov, A. I. (2001). Polysaccharides of calcareous algae and their effect on the calcification process. Russian Journal of Bioorganic Chemistry 27, 2–16.
| Polysaccharides of calcareous algae and their effect on the calcification process.Crossref | GoogleScholarGoogle Scholar |
Böhm, E. L., Fütterer, D., and Kaminski, E. (1978). Algal calcification in some Codiaceae (Chlorophyta): ultrastructure and location of skeletal deposits. Journal of Phycology 14, 486–493.
| Algal calcification in some Codiaceae (Chlorophyta): ultrastructure and location of skeletal deposits.Crossref | GoogleScholarGoogle Scholar |
Borowitzka, M. A. (1981). Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea. Marine Biology 62, 17–23.
| Photosynthesis and calcification in the articulated coralline red algae Amphiroa anceps and A. foliacea.Crossref | GoogleScholarGoogle Scholar |
Borowitzka, M. A., and Larkum, A. W. D. (1976). Calcification in the green alga Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification. Journal of Experimental Botany 27, 879–893.
| Calcification in the green alga Halimeda. III. The sources of inorganic carbon for photosynthesis and calcification and a model of the mechanism of calcification.Crossref | GoogleScholarGoogle Scholar |
Borowitzka, M. A., and Larkum, A. W. D. (1987). Calcification in algae: Mechanisms and the role of metabolism. Critical Reviews in Plant Sciences 6, 1–45.
| Calcification in algae: Mechanisms and the role of metabolism.Crossref | GoogleScholarGoogle Scholar |
Brown, K. T., Bender-Champ, D., Kenyon, T. M., Rémond, C., Hoegh-Guldberg, O., and Dove, S. (2019). Temporal effects of ocean warming and acidification on coral–algal competition. Coral Reefs 38, 297–309.
| Temporal effects of ocean warming and acidification on coral–algal competition.Crossref | GoogleScholarGoogle Scholar |
Büdenbender, J., Riebesell, U., and Form, A. (2011). Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2. Marine Ecology Progress Series 441, 79–87.
| Calcification of the Arctic coralline red algae Lithothamnion glaciale in response to elevated CO2.Crossref | GoogleScholarGoogle Scholar |
Bürger, K., Clifford, E. L., and Schagerl, M. (2017). Morphological changes with depth in the calcified brown alga Padina pavonica. Botanica Marina 60, 171–180.
| Morphological changes with depth in the calcified brown alga Padina pavonica.Crossref | GoogleScholarGoogle Scholar |
Campbell, J. E., Fisch, J., Langdon, C., and Paul, V. J. (2016). Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.). Coral Reefs 35, 357–368.
| Increased temperature mitigates the effects of ocean acidification in calcified green algae (Halimeda spp.).Crossref | GoogleScholarGoogle Scholar |
Chan, P. T. W., Halfar, J., and Adey, W. H. (2020). Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature. Geology 48, 226–230.
| Recent density decline in wild-collected subarctic crustose coralline algae reveals climate change signature.Crossref | GoogleScholarGoogle Scholar |
Chisholm, J. R. M. (2003). Primary productivity of reef-building crustose coralline algae. Limnology and Oceanography 48, 1376–1387.
Colthart, B. J., and Johansen, H. W. (1973). Growth rates of Corallina officinalis (Rhodophyta) at different temperatures. Marine Biology 18, 46–49.
| Growth rates of Corallina officinalis (Rhodophyta) at different temperatures.Crossref | GoogleScholarGoogle Scholar |
Comeau, S., Carpenter, R., and Edmunds, P. J. (2013). Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate. Proceedings of the Royal Society of London – B. Biological Sciences 280, 20122374.
| Coral reef calcifiers buffer their response to ocean acidification using both bicarbonate and carbonate.Crossref | GoogleScholarGoogle Scholar |
Comeau, S., Carpenter, R. C., and Edmunds, P. J. (2014). Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification. Journal of Experimental Marine Biology and Ecology 453, 28–35.
| Effects of irradiance on the response of the coral Acropora pulchra and the calcifying alga Hydrolithon reinboldii to temperature elevation and ocean acidification.Crossref | GoogleScholarGoogle Scholar |
Comeau, S., Carpenter, R. C., Lantz, C. A., and Edmunds, P. J. (2016). Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum. Coral Reefs 35, 929–939.
| Parameterization of the response of calcification to temperature and pCO2 in the coral Acropora pulchra and the alga Lithophyllum kotschyanum.Crossref | GoogleScholarGoogle Scholar |
Comeau, S., Cornwall, C. E., DeCarlo, T. M., Krieger, E., and McCulloch, M. T. (2018). Similar controls on calcification under ocean acidification across unrelated coral reef taxa. Global Change Biology 24, 4857–4868.
| Similar controls on calcification under ocean acidification across unrelated coral reef taxa.Crossref | GoogleScholarGoogle Scholar | 29957854PubMed |
Cornwall, C. E., Boyd, P. W., Mcgraw, C. M., Hepburn, C. D., Pilditch, C. A., Morris, J. N., Smith, A. M., and Hurd, C. L. (2014). Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. PLoS One 9, e97235.
| Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa.Crossref | GoogleScholarGoogle Scholar | 24824089PubMed |
Cornwall, C. E., Comeau, S., and McCulloch, M. T. (2017). Coralline algae elevate pH at the site of calcification under ocean acidification. Global Change Biology 23, 4245–4256.
| Coralline algae elevate pH at the site of calcification under ocean acidification.Crossref | GoogleScholarGoogle Scholar | 28370806PubMed |
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D’Alexis, Q., and McCulloch, M. T. (2018). Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Proceedings of the Royal Society of London – B. Biological Sciences 285, 20181168.
| Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability.Crossref | GoogleScholarGoogle Scholar |
Cornwall, C. E., Diaz-Pulido, G., and Comeau, S. (2019). Impacts of ocean warming on coralline algal calcification: meta-analysis, knowledge gaps, and key recommendations for future research. Frontiers in Marine Science 6, 186.
| Impacts of ocean warming on coralline algal calcification: meta-analysis, knowledge gaps, and key recommendations for future research.Crossref | GoogleScholarGoogle Scholar |
Cornwall, C. E., Comeau, S., DeCarlo, T. M., Larcombe, E., Moore, B., Giltrow, K., Puerzer, F., D’Alexis, Q., and McCulloch, M. T. (2020). A coralline alga gains tolerance to ocean acidification over multiple generations of exposure. Nature Climate Change 10, 143–146.
| A coralline alga gains tolerance to ocean acidification over multiple generations of exposure.Crossref | GoogleScholarGoogle Scholar |
Couradeau, E., Benzerara, K., Gerard, E., Moreira, D., Bernard, S., Brown, G. E., and Lopez-Garcia, P. (2012). An early-branching microbialite cyanobacterium forms intracellular carbonates. Science 336, 459–462.
| An early-branching microbialite cyanobacterium forms intracellular carbonates.Crossref | GoogleScholarGoogle Scholar | 22539718PubMed |
Cremen, M. C. M., Huisman, J. M., Marcelino, V. R., and Verbruggen, H. (2016). Taxonomic revision of Halimeda (Bryopsidales, Chlorophyta) in south-western Australia. Australian Systematic Botany 29, 41–54.
| Taxonomic revision of Halimeda (Bryopsidales, Chlorophyta) in south-western Australia.Crossref | GoogleScholarGoogle Scholar |
De Beer, D., and Larkum, A. W. D. (2001). Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors. Plant, Cell & Environment 24, 1209–1217.
| Photosynthesis and calcification in the calcifying algae Halimeda discoidea studied with microsensors.Crossref | GoogleScholarGoogle Scholar |
Demes, K. W., Bell, S. S., and Dawes, C. J. (2009). The effects of phosphate on the biomineralization of the green alga, Halimeda incrassata (Ellis) Lam. Journal of Experimental Marine Biology and Ecology 374, 123–127.
| The effects of phosphate on the biomineralization of the green alga, Halimeda incrassata (Ellis) Lam.Crossref | GoogleScholarGoogle Scholar |
Demes, K. W., Littler, M. M., and Littler, D. S. (2010). Comparative phosphate acquisition in giant-celled rhizophytic algae (Bryopsidales, Chlorophyta): fleshy vs. calcified forms. Aquatic Botany 92, 157–160.
| Comparative phosphate acquisition in giant-celled rhizophytic algae (Bryopsidales, Chlorophyta): fleshy vs. calcified forms.Crossref | GoogleScholarGoogle Scholar |
Diaz-Pulido, G., Anthony, K., Kline, D. I., Dove, S., and Hoegh-Guldberg, O. (2012). Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. Journal of Phycology 48, 32–39.
| Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae.Crossref | GoogleScholarGoogle Scholar | 27009647PubMed |
Diaz-Pulido, G., Nash, M. C., Anthony, K. R. N., Bender, D., Opdyke, B. N., Reyes-Nivia, C., and Troitzsch, U. (2014). Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs. Nature Communications 5, 3310.
| Greenhouse conditions induce mineralogical changes and dolomite accumulation in coralline algae on tropical reefs.Crossref | GoogleScholarGoogle Scholar | 24518160PubMed |
Dong, M., and Tseng, C. K. (1980). Studies on some marine green algae from the Xisha Islands, Guandong Province, China II. Studia Marina Sinica 17, 1–10.
Drake, J. L., Schaller, M. F., Mass, T., Godfrey, L., Fu, A., Sherrell, R. M., Rosenthal, Y., and Falkowski, P. G. (2018). Molecular and geochemical perspectives on the influence of CO2 on calcification in coral cell cultures. Limnology and Oceanography 63, 107–121.
| Molecular and geochemical perspectives on the influence of CO2 on calcification in coral cell cultures.Crossref | GoogleScholarGoogle Scholar |
Drew, E. A. (1983). Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province. Coral Reefs 2, 101–110.
| Halimeda biomass, growth rates and sediment generation on reefs in the central Great Barrier Reef province.Crossref | GoogleScholarGoogle Scholar |
Drew, E. A. (1995). Diversity of the green algal genus Halimeda in the Chagos Archipelago, central Indian Ocean. Aquatic Botany 52, 143–150.
| Diversity of the green algal genus Halimeda in the Chagos Archipelago, central Indian Ocean.Crossref | GoogleScholarGoogle Scholar |
Dupraz, C., and Visscher, P. T. (2005). Microbial lithification in marine stromatolites and hypersaline mats. Trends in Microbiology 13, 429–438.
| Microbial lithification in marine stromatolites and hypersaline mats.Crossref | GoogleScholarGoogle Scholar | 16087339PubMed |
Egilsdottir, H., Noisette, F., Noël, L. M. L., Olafsson, J., and Martin, S. (2013). Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata. Marine Biology 160, 2103–2112.
| Effects of pCO2 on physiology and skeletal mineralogy in a tidal pool coralline alga Corallina elongata.Crossref | GoogleScholarGoogle Scholar |
Egilsdottir, H., Olafsson, J., and Martin, S. (2016). Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongata (Corallinales, Rhodophyta) from intertidal rock pools. European Journal of Phycology 51, 59–70.
| Photosynthesis and calcification in the articulated coralline alga Ellisolandia elongata (Corallinales, Rhodophyta) from intertidal rock pools.Crossref | GoogleScholarGoogle Scholar |
Erftemeijer, P. L. A., and Middelburg, J. J. (1993). Sediment-nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi Indonesia. Marine Ecology Progress Series 102, 187–198.
| Sediment-nutrient interactions in tropical seagrass beds: a comparison between a terrigenous and a carbonate sedimentary environment in South Sulawesi Indonesia.Crossref | GoogleScholarGoogle Scholar |
Fabricius, K. E., Kluibenschedl, A., Harrington, L., Noonan, S., and De’ath, G. (2015). In situ changes of tropical crustose coralline algae along carbon dioxide gradients. Scientific Reports 5, 9537.
| In situ changes of tropical crustose coralline algae along carbon dioxide gradients.Crossref | GoogleScholarGoogle Scholar | 25835382PubMed |
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., and Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305, 362–366.
| Impact of anthropogenic CO2 on the CaCO3 system in the oceans.Crossref | GoogleScholarGoogle Scholar | 15256664PubMed |
Foster, M. S., Riosmena-Rodríguez, R., Steller, D. L., and Woelkerling, W. J. (1997). Living rhodolith beds in the Gulf of California and their implications for paleo environmental interpretation. Geological Society of America Bulletin 318, 127–139.
Fourqurean, J. W., and Zieman, J. C. (2002). Nutrient content of the seagrass halassiae studinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA. Biogeochemistry 61, 229–245.
| Nutrient content of the seagrass halassiae studinum reveals regional patterns of relative availability of nitrogen and phosphorus in the Florida Keys USA.Crossref | GoogleScholarGoogle Scholar |
Gabrielson, P. W., Hughey, J. R., and Diaz-Pulido, G. (2018). Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta). Journal of Phycology 54, 429–434.
| Genomics reveals abundant speciation in the coral reef building alga Porolithon onkodes (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 29920669PubMed |
Gao, K., and Zheng, Y. (2010). Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta). Global Change Biology 16, 2388–2398.
| Combined effects of ocean acidification and solar UV radiation on photosynthesis, growth, pigmentation and calcification of the coralline alga Corallina sessilis (Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Gao, K., Aruga, Y., Asada, K., and Kiyohara, M. (1993). Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. Journal of Applied Phycology 5, 563–571.
| Influence of enhanced CO2 on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis.Crossref | GoogleScholarGoogle Scholar |
Gattuso, J. P., Magnan, A., Billé, R., Cheung, W. W. L., Howes, E. L., Joos, F., Allemand, D., Bopp, L., Cooley, S. R., Eakin, C. M., Hoegh-Guldberg, O., Kelly, R. P., Pörtner, H.-O., Rogers, A. D., Baxter, J. M., Laffoley, D., Osborn, D., Rankovic, A., Rochette, J., Sumaila, U. R., Treyer, S., and Turley, C. (2015). Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios. Science 349, aac4722.
| Contrasting futures for ocean and society from different anthropogenic CO2 emissions scenarios.Crossref | GoogleScholarGoogle Scholar | 26138982PubMed |
Gil-Díaz, T., Haroun, R., Tuya, F., Betancor, S., and Viera-Rodríguez, M. A. (2014). Effects of ocean acidification on the brown alga Padina pavonica: Decalcification due to acute and chronic events. PLoS One 9, e108630.
| Effects of ocean acidification on the brown alga Padina pavonica: Decalcification due to acute and chronic events.Crossref | GoogleScholarGoogle Scholar | 25268231PubMed |
Gómez-Lemos, L. A., Doropoulos, C., Bayraktarov, E., and Diaz-Pulido, G. (2018). Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae. Scientific Reports 8, 17557.
| Coralline algal metabolites induce settlement and mediate the inductive effect of epiphytic microbes on coral larvae.Crossref | GoogleScholarGoogle Scholar | 30510183PubMed |
Graba-Landry, A., Hoey, A. S., Matley, J. K., Sheppard-Brennand, H., Poore, A. G. B., Byrne, M., and Dworjanyn, S. A. (2018). Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae. Marine Ecology Progress Series 595, 55–69.
| Ocean warming has greater and more consistent negative effects than ocean acidification on the growth and health of subtropical macroalgae.Crossref | GoogleScholarGoogle Scholar |
Guy-Haim, T., Silverman, J., Raddatz, S., Wahl, M., Israel, A., and Rilov, G. (2016). The carbon turnover response to thermal stress of a dominant coralline alga on the fast warming Levant coast. Limnology and Oceanography 61, 1120–1133.
| The carbon turnover response to thermal stress of a dominant coralline alga on the fast warming Levant coast.Crossref | GoogleScholarGoogle Scholar |
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M., Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. (2008). Volcanic carbon dioxide vents show ecosystem effects of ocean acidification. Nature 454, 96–99.
| Volcanic carbon dioxide vents show ecosystem effects of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 18536730PubMed |
Hillis-Colinvaux, L. (1980). Ecology and taxonomy of Halimeda: primary producer of coral reefs. Advances in Marine Biology 17, 1–327.
| Ecology and taxonomy of Halimeda: primary producer of coral reefs.Crossref | GoogleScholarGoogle Scholar |
Hoegh-Guldberg, O. (2014). Coral reef sustainability through adaptation: glimmer of hope or persistent mirage? Current Opinion in Environmental Sustainability 7, 127–133.
| Coral reef sustainability through adaptation: glimmer of hope or persistent mirage?Crossref | GoogleScholarGoogle Scholar |
Hofmann, L. C., and Bischof, K. (2014). Ocean acidification effects on calcifying macroalgae. Aquatic Biology 22, 261–279.
| Ocean acidification effects on calcifying macroalgae.Crossref | GoogleScholarGoogle Scholar |
Hou, J., Xu, T., Su, D., Wu, Y., Cheng, L., Wang, J., Zhou, Z., and Wang, Y. (2018). RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis. Frontiers in Genetics 9, 37.
| RNA-Seq reveals extensive transcriptional response to heat stress in the stony coral Galaxea fascicularis.Crossref | GoogleScholarGoogle Scholar | 29487614PubMed |
Huggett, M. J., McMahon, K., and Bernasconi, R. (2018). Future warming and acidification result in multiple ecological impacts to a temperate coralline alga. Environmental Microbiology 20, 2769–2782.
| Future warming and acidification result in multiple ecological impacts to a temperate coralline alga.Crossref | GoogleScholarGoogle Scholar | 29575500PubMed |
Ichiki, S., Mizuta, H., and Yamamoto, H. (2000). Effects of irradiance, water temperature and nutrients on the growth of sporelings of the crustose coralline alga Lithophyllum yessoense Foslie (Corallinales, Rhodophyceae). Phycological Research 48, 115–120.
| Effects of irradiance, water temperature and nutrients on the growth of sporelings of the crustose coralline alga Lithophyllum yessoense Foslie (Corallinales, Rhodophyceae).Crossref | GoogleScholarGoogle Scholar |
Intergovernment Panel on Climate Change (2013). ‘Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.’ (Cambridge University Press: Cambridge, UK.)
Jesionek, M. B., Bahia, R. G., Hernández-Kantún, J., Adey, W. H., Yoneshigue-Valentin, Y., Longo, L. L., and Amado-Filho, G. M. (2016). A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae – Korean Phycological Society 31, 317–340.
| A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil.Crossref | GoogleScholarGoogle Scholar |
Johnson, M. D., and Carpenter, R. C. (2012). Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing. Journal of Experimental Marine Biology and Ecology 434–435, 94–101.
| Ocean acidification and warming decrease calcification in the crustose coralline alga Hydrolithon onkodes and increase susceptibility to grazing.Crossref | GoogleScholarGoogle Scholar |
Johnson, M. D., and Carpenter, R. C. (2018). Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline algae. Biology Letters 14, 20180371.
| Nitrogen enrichment offsets direct negative effects of ocean acidification on a reef-building crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 29997188PubMed |
Johnson, M. D., Moriarty, V. W., and Carpenter, R. C. (2014). Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2. PLoS One 9, e87678.
| Acclimatization of the crustose coralline alga Porolithon onkodes to variable pCO2.Crossref | GoogleScholarGoogle Scholar | 24831228PubMed |
Johnson, M. D., Comeau, S., Lantz, C. A., and Smith, J. E. (2017). Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages. Coral Reefs 36, 1059–1070.
| Complex and interactive effects of ocean acidification and temperature on epilithic and endolithic coral-reef turf algal assemblages.Crossref | GoogleScholarGoogle Scholar |
Kamenos, N. A., and Law, A. (2010). Temperature controls on coralline algal skeletal growth. Journal of Phycology 46, 331–335.
| Temperature controls on coralline algal skeletal growth.Crossref | GoogleScholarGoogle Scholar |
Kamenos, N. A., Burdett, H. L., Aloisio, E., Findlay, H. S., Martin, S., Longbone, C., Dunn, J., Widdicombe, S., and Calosi, P. (2013). Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Global Change Biology 19, 3621–3628.
| Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification.Crossref | GoogleScholarGoogle Scholar | 23943376PubMed |
Kamenos, N., Perna, G., Gambi, M., Micheli, F., and Kroeker, K. (2016). Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size. Proceedings of the Royal Society of London – B. Biological Sciences 283, 20161159.
| Coralline algae in a naturally acidified ecosystem persist by maintaining control of skeletal mineralogy and size.Crossref | GoogleScholarGoogle Scholar |
Kaniewska, P., Campbell, P. R., Kline, D. I., Rodriguez-Lanetty, M., Miller, D. J., Dove, S., and Hoegh-Guldberg, O. (2012). Major cellular and physiological impacts of ocean acidification on a reef building coral. PLoS One 7, e34659.
| Major cellular and physiological impacts of ocean acidification on a reef building coral.Crossref | GoogleScholarGoogle Scholar | 22509341PubMed |
Kato, A., Hikami, M., Kumagai, N. H., Suzuki, A., Nojiri, Y., and Sakai, K. (2014). Negative effects of ocean acidification on two crustose coralline species using genetically homogenous samples. Marine Environmental Research 94, 1–6.
| Negative effects of ocean acidification on two crustose coralline species using genetically homogenous samples.Crossref | GoogleScholarGoogle Scholar | 24239067PubMed |
Kawahata, C., Yamamuro, M., and Shiraiwa, Y. (2013). Changes in alkaline band formation and calcification of corticated charophyte Chara globularis. SpringerPlus 2, 85–90.
| Changes in alkaline band formation and calcification of corticated charophyte Chara globularis.Crossref | GoogleScholarGoogle Scholar | 23543879PubMed |
Kim, K. M., Yang, E. C., Kim, J. H., Nelson, W. A., and Yoon, H. S. (2015). Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta). Mitochondrial DNA 26, 155–156.
| Complete mitochondrial genome of a rhodolith, Sporolithon durum (Sporolithales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 23901926PubMed |
Kim, J., Min, J., Kang, E. J., and Kim, K. Y. (2018). Elevated temperature and changed carbonate chemistry: Effects on calcification, photosynthesis, and growth of Corallina officinalis (Corallinales, Rhodophyta). Phycologia 57, 280–286.
| Elevated temperature and changed carbonate chemistry: Effects on calcification, photosynthesis, and growth of Corallina officinalis (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Kim, J., Kim, N., Moon, H., Lee, S., Jeong, S. Y., Diaz-Pulido, G., Edwards, M. S., Kang, J., Kang, E. J., Oh, H., Hwang, J., and Kime, I. (2020). Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae. Marine Pollution Bulletin 157, 111324.
| Global warming offsets the ecophysiological stress of ocean acidification on temperate crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 32658689PubMed |
King, R. J., and Schramm, W. (1982). Calcification in the maerl coralline alga Phymatolithon calcaerum: effects of salinity and temperature. Marine Biology 70, 197–204.
| Calcification in the maerl coralline alga Phymatolithon calcaerum: effects of salinity and temperature.Crossref | GoogleScholarGoogle Scholar |
Kojima, R., Hanyuda, T., and Kawai, H. (2015). Taxonomic re-examination of Japanese Halimeda species using genetic markers, and proposal of a new species Halimeda ryukyuensis (Bryopsidales, Chlorophyta). Phycological Research 63, 178–188.
| Taxonomic re-examination of Japanese Halimeda species using genetic markers, and proposal of a new species Halimeda ryukyuensis (Bryopsidales, Chlorophyta).Crossref | GoogleScholarGoogle Scholar |
Kooistra, W. H. C. F., Coppejans, E. G. G., and Payri, C. (2002). Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales). Molecular Phylogenetics and Evolution 24, 121–138.
| Molecular systematics, historical ecology, and phylogeography of Halimeda (Bryopsidales).Crossref | GoogleScholarGoogle Scholar |
Kornder, N. A., Riegl, B. M., and Figueiredo, J. (2018). Thresholds and drivers of coral calcification responses toclimate change. Global Change Biology 24, 5084–5095.
| Thresholds and drivers of coral calcification responses toclimate change.Crossref | GoogleScholarGoogle Scholar | 30152194PubMed |
Kram, S. L., Price, N. N., Donham, E. M., Johnson, M. D., Kelly, E. L. A., Hamilton, S. L., and Smith, J. E. (2016). Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming. ICES Journal of Marine Science 73, 693–703.
| Variable responses of temperate calcified and fleshy macroalgae to elevated pCO2 and warming.Crossref | GoogleScholarGoogle Scholar |
Kroeker, K. J., Kordas, R. L., Crim, R. N., and Singh, G. G. (2010). Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecology Letters 13, 1419–1434.
| Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms.Crossref | GoogleScholarGoogle Scholar | 20958904PubMed |
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G. S., Duartes, C. M., and Gattuso, J. P. (2013). Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming. Global Change Biology 19, 1884–1896.
| Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming.Crossref | GoogleScholarGoogle Scholar | 23505245PubMed |
Kvale, K., Koeve, W., and Mengis, N. (2021). Calcifying phytoplankton demonstrate an enhanced role in greenhouse atmospheric CO2 regulation. Frontiers in Marine Science 7, 583989.
| Calcifying phytoplankton demonstrate an enhanced role in greenhouse atmospheric CO2 regulation.Crossref | GoogleScholarGoogle Scholar |
Larkum, A. W. D., Salih, A., and Kuhl, M. (2011). Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga, Halimeda macroloba. PLoS One 6, e20841.
| Rapid mass movement of chloroplasts during segment formation of the calcifying siphonalean green alga, Halimeda macroloba.Crossref | GoogleScholarGoogle Scholar |
Latham, H. (2008). Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase. Bioscience Horizons: The International Journal of Student Research 1, 104–113.
| Temperature stress-induced bleaching of the coralline alga Corallina officinalis: a role for the enzyme bromoperoxidase.Crossref | GoogleScholarGoogle Scholar |
Lee, D., and Carpenter, S. J. (2001). Isotopic disequilibrium in marine calcified algae. Chemical Geology 172, 307–329.
| Isotopic disequilibrium in marine calcified algae.Crossref | GoogleScholarGoogle Scholar |
Lee, J. M., Song, H. J., Park, S. I., Lee, Y. M., Jeong, S. Y., Cho, T. O., Kim, J. H., Choi, H. G., Choi, C. G., and Nelson, W. A. (2018). Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles. Genome Biology and Evolution 10, 2961–2972.
| Mitochondrial and plastid genomes from coralline red algae provide insights into the incongruent evolutionary histories of organelles.Crossref | GoogleScholarGoogle Scholar | 30364957PubMed |
Legrand, E., Riera, P., Lutier, M., Coudret, J., Grall, J., and Martin, S. (2019). Grazers increase the sensitivity of coralline algae to ocean acidification and warming. Journal of Sea Research 148–149, 1–7.
| Grazers increase the sensitivity of coralline algae to ocean acidification and warming.Crossref | GoogleScholarGoogle Scholar |
Lei, X., Jiang, L., Zhang, Y., Zhou, G., Lian, J., and Huang, H. (2020). Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH. Acta Oceanologica Sinica 39, 132–137.
| Response of coralline algae Porolithon onkodes to elevated seawater temperature and reduced pH.Crossref | GoogleScholarGoogle Scholar |
Lin, Y., and Singer, P. C. (2006). Inhibition of calcite precipitation by orthophosphate: speciation and thermodynamic considerations. Geochimica et Cosmochimica Acta 70, 2530–2539.
| Inhibition of calcite precipitation by orthophosphate: speciation and thermodynamic considerations.Crossref | GoogleScholarGoogle Scholar |
Liou, C. Y., Yang, S. Y., and Chen, C. A. (2017). Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority. Coral Reefs 36, 1253.
| Unprecedented calcareous algal reefs in northern Taiwan merit high conservation priority.Crossref | GoogleScholarGoogle Scholar |
Littler, M. M. (1976). Calcification and its role among the macroalagae. Micronesica 12, 27–41.
Littler, M. M., Littler, D. S., Blair, S. M., and Norris, J. N. (1985). Deepest known plant life is discovered on an uncharted seamount. Science 227, 57–59.
| Deepest known plant life is discovered on an uncharted seamount.Crossref | GoogleScholarGoogle Scholar | 17810025PubMed |
Mackinder, L., Wheeler, G., Schroeder, D., von Dassow, P., Riebesell, U., and Brownlee, C. (2011). Expression of biomineralization-related ion transport genes in Emiliania huxleyi. Environmental Microbiology 13, 3250–3265.
| Expression of biomineralization-related ion transport genes in Emiliania huxleyi.Crossref | GoogleScholarGoogle Scholar | 21902794PubMed |
Manning, J. C., Carpenter, R. C., and Miranda, E. A. (2019). Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta). Journal of Experimental Marine Biology and Ecology 520, 151225.
| Ocean acidification reduces net calcification and wound healing in the tropical crustose coralline alga, Porolithon onkodes (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Martin, S., and Gattuso, J. P. (2009). Response of Mediterranean coralline algae to ocean acidification and elevated temperature. Global Change Biology 15, 2089–2100.
| Response of Mediterranean coralline algae to ocean acidification and elevated temperature.Crossref | GoogleScholarGoogle Scholar |
Martin, S., and Hall-Spencer, J. M. (2017). Effects of ocean warming and acidification on rhodolith/maërl beds. Coastal Research Library 15, 55–85.
| Effects of ocean warming and acidification on rhodolith/maërl beds.Crossref | GoogleScholarGoogle Scholar |
Martin, S., Cohu, S., Vignot, C., Zimmerman, G., and Gattuso, J. P. (2013). One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature. Ecology and Evolution 3, 676–693.
| One-year experiment on the physiological response of the Mediterranean crustose coralline alga, Lithophyllum cabiochae, to elevated pCO2 and temperature.Crossref | GoogleScholarGoogle Scholar | 23533024PubMed |
Mayakun, J., Kim, J. H., Lapointe, B. E., and Prathep, A. (2017). Resource allocation of Halimeda macroloba Decaisne in relation to nitrogen and phosphorus enrichment. Songklanakarin Journal of Science and Technology 39, 269–273.
McCoy, S. J., and Kamenos, N. A. (2015). Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology 51, 6–24.
| Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change.Crossref | GoogleScholarGoogle Scholar | 26986255PubMed |
McCoy, S. J., and Ragazzola, F. (2014). Skeletal trade-offs in coralline algae in response to ocean acidification. Nature Climate Change 4, 719–723.
| Skeletal trade-offs in coralline algae in response to ocean acidification.Crossref | GoogleScholarGoogle Scholar |
McNicholl, C., Koch, M. S., and Hofmann, L. C. (2019). Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: a proposed mechanism to sustain calcification under ocean acidification. Journal of Experimental Marine Biology and Ecology 521, 151208.
| Photosynthesis and light-dependent proton pumps increase boundary layer pH in tropical macroalgae: a proposed mechanism to sustain calcification under ocean acidification.Crossref | GoogleScholarGoogle Scholar |
McNicholl, C., Koch, M. S., Swarzenski, P. W., Oberhaensli, F. R., Taylor, A., Batista, M. G., and Metian, M. (2020). Ocean acidification effects on calcification and dissolution in tropical reef macroalgae. Coral Reefs 39, 1635–1647.
| Ocean acidification effects on calcification and dissolution in tropical reef macroalgae.Crossref | GoogleScholarGoogle Scholar |
Medaković, D., Popovic, S., Zavodnik, N., Grzeta, B., and Plazonic, M. (1995). X-ray diffraction study of mineral components in calcified algae (Corallinaceae, Rhodophyta). Marine Biology 122, 479–485.
| X-ray diffraction study of mineral components in calcified algae (Corallinaceae, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Meyer, F. W., Schubert, N., Diele, K., Teichberg, M., Wild, C., and Enríquez, S. (2016). Effect of inorganic and organic carbon enrichments (DIC and DOC) on the photosynthesis and calcification rates of two calcifying green algae from a Caribbean reef lagoon. PLoS One 11, e0160268.
| Effect of inorganic and organic carbon enrichments (DIC and DOC) on the photosynthesis and calcification rates of two calcifying green algae from a Caribbean reef lagoon.Crossref | GoogleScholarGoogle Scholar | 27487195PubMed |
Morse, J. W., Andersson, A. J., and Mackenzie, F. T. (2006). Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘ocean acidification’: role of high Mg-calcites. Geochimica et Cosmochimica Acta 70, 5814–5830.
| Initial responses of carbonate-rich shelf sediments to rising atmospheric pCO2 and ‘ocean acidification’: role of high Mg-calcites.Crossref | GoogleScholarGoogle Scholar |
Moura, R. L., Abieri, M. L., Castro, G. M., Carlos-Júnior, L. A., Chiroque-Solano, P. M., Fernandes, N. C., Teixeira, C. D., Ribeiro, F. V., Salomon, P. S., Freitas, M. O., Gonçalves, J. T., Neves, L. M., Hackradt, C. W., Felix-Hackradt, F., Rolim, F. A., Motta, F. S., Gadig, O. B. F., Pereira-Filho, G. H., and Bastos, A. C. (2021). Tropical rhodolith beds are a major and belittled reef fish habitat. Scientific Reports 11, 794.
| Tropical rhodolith beds are a major and belittled reef fish habitat.Crossref | GoogleScholarGoogle Scholar | 33436906PubMed |
Moya, A., Tambutte, S., Tambutte, E., Zoccola, D., Caminiti, N., and Allemand, D. (2006). Study of calcification during a daily cycle of the coral Stylophora pistillata: implications forlight-enhanced calcification. The Journal of Experimental Biology 209, 3413–3419.
| Study of calcification during a daily cycle of the coral Stylophora pistillata: implications forlight-enhanced calcification.Crossref | GoogleScholarGoogle Scholar | 16916976PubMed |
Muñoz, P. T., Sáez, C. A., and Martínez-Callejas, M. B. (2018). Short-term interactive effects of increased temperatures and acidification on the calcifying macroalgae Lithothamnion crispatum and Sonderophycus capensis. Aquatic Botany 148, 46–52.
| Short-term interactive effects of increased temperatures and acidification on the calcifying macroalgae Lithothamnion crispatum and Sonderophycus capensis.Crossref | GoogleScholarGoogle Scholar |
Nannini, M., De Marchi, L., Lombardi, C., and Ragazzola, F. (2015). Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N–W Mediterranean Sea. Marine Environmental Research 112, 11–19.
| Effects of thermal stress on the growth of an intertidal population of Ellisolandia elongata (Rhodophyta) from N–W Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar | 26004519PubMed |
Nash, M. C., and Adey, W. (2017). Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales). Journal of Phycology 53, 970–984.
| Multiple phases of mg-calcite in crustose coralline algae suggest caution for temperature proxy and ocean acidification assessment: lessons from the ultrastructure and biomineralization in Phymatolithon (Rhodophyta, Corallinales).Crossref | GoogleScholarGoogle Scholar | 28671731PubMed |
Nash, M. C., Opdyke, B. N., Troitzsch, U., and Russell, B. D. (2013). Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Climate Change 3, 268–272.
| Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions.Crossref | GoogleScholarGoogle Scholar |
Nash, M. C., Russell, B. D., Dixon, K. R., Liu, M., and Xu, H. (2015). Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta). Journal of Phycology 51, 403–407.
| Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 26986657PubMed |
Nash, M. C., Martin, S., and Gattuso, J. P. (2016). Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming. Biogeosciences 13, 5937–5945.
| Mineralogical response of the Mediterranean crustose coralline alga Lithophyllum cabiochae to near-future ocean acidification and warming.Crossref | GoogleScholarGoogle Scholar |
Nash, M. C., Diaz-Pulido, G., Harvey, A. S., and Adey, W. (2019). Coralline algal calcification: a morphological and process-based understanding. PLoS One 14, e0221396.
| Coralline algal calcification: a morphological and process-based understanding.Crossref | GoogleScholarGoogle Scholar | 31557180PubMed |
Nelson, W. A. (2009). Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review. Marine and Freshwater Research 60, 787–801.
| Calcified macroalgae – critical to coastal ecosystems and vulnerable to change: a review.Crossref | GoogleScholarGoogle Scholar |
Ni-Ni-Win, , Hanyuda, T., Arai, S., Uchimura, M., Prathep, A., Draisma, S. G. A., Phang, S. M., Abbott, I. A., Millar, A. J. K., and Kawai, H. (2011). A taxonomic study of the genus Padina (Dictyotales, Phaeophyceae) including the descriptions of four new species from Japan, Hawaii, and the Andaman Sea. Journal of Phycology 47, 1193–1209.
| A taxonomic study of the genus Padina (Dictyotales, Phaeophyceae) including the descriptions of four new species from Japan, Hawaii, and the Andaman Sea.Crossref | GoogleScholarGoogle Scholar |
Noble, J. N. (1986). Halimeda magnidisca (Caulerpales, Chlorophyta), a new species from the Great Barrier Reef, Australia. Phycologia 25, 331–339.
| Halimeda magnidisca (Caulerpales, Chlorophyta), a new species from the Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |
Noisette, F., Egilsdottir, H., Davoult, D., and Martin, S. (2013a). Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification. Journal of Experimental Marine Biology and Ecology 448, 179–187.
| Physiological responses of three temperate coralline algae from contrasting habitats to near-future ocean acidification.Crossref | GoogleScholarGoogle Scholar |
Noisette, F., Duong, G., Six, C., Davoult, D., and Martin, S. (2013b). Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures. Journal of Phycology 49, 746–757.
| Effects of elevated pCO2 on the metabolism of a temperate rhodolith Lithothamnion corallioides grown under different temperatures.Crossref | GoogleScholarGoogle Scholar | 27007207PubMed |
O’Leary, J. K., Barry, J. P., Gabrielson, P. W., Rogers-Bennett, L., Potts, D. C., Palumbi, S. R., and Micheli, F. (2017). Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification. Scientific Reports 7, 5774.
| Calcifying algae maintain settlement cues to larval abalone following algal exposure to extreme ocean acidification.Crossref | GoogleScholarGoogle Scholar | 28720836PubMed |
Ordoñez, A., Wangpraseurt, D., Lyndby, N. H., Kühl, M., and Diaz-Pulido, G. (2019). Elevated CO2 leads to enhanced photosynthesis but decreased growth in early life stages of reef building coralline algae. Frontiers in Marine Science 5, 495.
| Elevated CO2 leads to enhanced photosynthesis but decreased growth in early life stages of reef building coralline algae.Crossref | GoogleScholarGoogle Scholar |
Page, T. M., and Diaz-Pulido, G. (2020). Plasticity of adult coralline algae to prolonged increased temperature and pCO2 exposure but reduced survival in their first generation. PLoS One 6, 0235125.
Page, T. M., McDougall, C., and Diaz-Pulido, G. (2019). De novo transcriptome assembly for four species of crustose coralline algae and analysis of unique orthologous genes. Scientific Reports 9, 12611.
| De novo transcriptome assembly for four species of crustose coralline algae and analysis of unique orthologous genes.Crossref | GoogleScholarGoogle Scholar | 31471551PubMed |
Peach, K. E., Koch, M. S., Blackwelder, P. L., and Manfrino, C. (2017a). Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs. Journal of Experimental Marine Biology and Ecology 486, 114–126.
| Calcification and photophysiology responses to elevated pCO2 in six Halimeda species from contrasting irradiance environments on Little Cayman Island reefs.Crossref | GoogleScholarGoogle Scholar |
Peña, V., Hernandez-kantun, J. J., Ade, Y. W. H., and Gall, L. L. (2018). Assessment of coralline species diversity in the European coasts supported by sequencing of type material: the case study of Lithophyllum nitorum (Corallinales, Rhodophyta). Cryptogamie. Algologie 39, 123–137.
| Assessment of coralline species diversity in the European coasts supported by sequencing of type material: the case study of Lithophyllum nitorum (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Pentecost, A. (1991). Calcification processes in algae and Cyanobacteria. In ‘Calcified Algae and Stromatolites’. (Ed. R. Riding.) pp. 3–20. (Springer-Verlag.)
Porzio, L., Buia, M. C., and Hall-Spencer, J. M. (2011). Effects of ocean acidification on macroalgal communities. Journal of Experimental Marine Biology and Ecology 400, 278–287.
| Effects of ocean acidification on macroalgal communities.Crossref | GoogleScholarGoogle Scholar |
Prathep, A., Kaewsrikhaw, R., Mayakun, J., and Darakrai, A. (2018). The effects of light intensity and temperature on the calcification rate of Halimeda macroloba. Journal of Applied Phycology 30, 3405–3412.
| The effects of light intensity and temperature on the calcification rate of Halimeda macroloba.Crossref | GoogleScholarGoogle Scholar |
Price, N. N., Hamilton, S. L., and Smith, J. E. (2011). Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda. Marine Ecology Progress Series 440, 67–78.
| Species-specific consequences of ocean acidification for the calcareous tropical green algae Halimeda.Crossref | GoogleScholarGoogle Scholar |
Qui-Minet, Z. N., Coudret, J., Davoult, D., Grall, J., Mendez-Sandin, M., Cariou, T., and Martin, S. (2019). Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species. Ecology and Evolution 9, 13787–13807.
| Combined effects of global climate change and nutrient enrichment on the physiology of three temperate maerl species.Crossref | GoogleScholarGoogle Scholar | 31938482PubMed |
Rahman, M. A., and Halfar, J. (2015). First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Scientific Reports 4, 6162.
| First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum.Crossref | GoogleScholarGoogle Scholar |
Rahman, M. A., Halfar, J., Adey, W. H., Nash, M., Paulo, C., and Dittrich, M. (2019). The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum. Scientific Reports 9, 11869.
| The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum.Crossref | GoogleScholarGoogle Scholar | 31417166PubMed |
Rashidi, K., and Schlagintweit, F. (2019). Dissocladella compressa n. sp., a new Dasycladale (green algae) from the Upper Maastrichtian of Iran. Arabian Journal of Geosciences 12, 247.
| Dissocladella compressa n. sp., a new Dasycladale (green algae) from the Upper Maastrichtian of Iran.Crossref | GoogleScholarGoogle Scholar |
Rees, S. A., Opdyke, B. N., Wilson, P. A., and Henstock, T. J. (2007). Significance of Halimeda bioherms to the global carbonate budget based on ageological sediment budget for the Northern Great Barrier Reef, Australia. Coral Reefs 26, 177–188.
| Significance of Halimeda bioherms to the global carbonate budget based on ageological sediment budget for the Northern Great Barrier Reef, Australia.Crossref | GoogleScholarGoogle Scholar |
Rendina, F., Bouchet, P. J., Appolloni, L., Russo, G. F., Sandulli, R., Kolzenburg, R., Putra, A., and Ragazzola, F. (2019). Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events. Marine Environmental Research 150, 104764.
| Physiological response of the coralline alga Corallina officinalis L. to both predicted long-term increases in temperature and short-term heatwave events.Crossref | GoogleScholarGoogle Scholar | 31376632PubMed |
Rich, W. A., Schubert, N., Schläpfer, N., Carvalho, V. F., Horta, A. C. L., and Horta, P. A. (2018). Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory. Marine Environmental Research 142, 100–107.
| Physiological and biochemical responses of a coralline alga and a sea urchin to climate change: Implications for herbivory.Crossref | GoogleScholarGoogle Scholar | 30293660PubMed |
Riding, R. (2006). Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology 4, 299–316.
| Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition.Crossref | GoogleScholarGoogle Scholar |
Riding, R., and Braga, J. C. (2005). Halysis Høeg, 1932 – an Ordovician coralline red alga? Journal of Paleontology 79, 835–841.
| Halysis Høeg, 1932 – an Ordovician coralline red alga?Crossref | GoogleScholarGoogle Scholar |
Ries, J. B. (2009). Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea-evidence from recent experiments and the geological record. Terra Nova 21, 323–339.
| Effects of secular variation in seawater Mg/Ca ratio (calcite-aragonite seas) on CaCO3 sediment production by the calcareous algae Halimeda, Penicillus and Udotea-evidence from recent experiments and the geological record.Crossref | GoogleScholarGoogle Scholar |
Ries, J. B. (2011). A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification. Geochimica et Cosmochimica Acta 75, 4053–4064.
| A physicochemical framework for interpreting the biological calcification response to CO2-induced ocean acidification.Crossref | GoogleScholarGoogle Scholar |
Ries, J. B. (2011a). Skeletal mineralogy in a high-CO2 world. Journal of Experimental Marine Biology and Ecology 403, 54–64.
| Skeletal mineralogy in a high-CO2 world.Crossref | GoogleScholarGoogle Scholar |
Ries, J. B., Ghazaleh, M. N., Connolly, B., Westfield, I., and Castillo, K. D. (2016). Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25°C) on the dissolution kinetics of whole-shell biogenic carbonates. Geochimica et Cosmochimica Acta 192, 318–337.
| Impacts of seawater saturation state (ΩA = 0.4–4.6) and temperature (10, 25°C) on the dissolution kinetics of whole-shell biogenic carbonates.Crossref | GoogleScholarGoogle Scholar |
Rindi, F., Braga, J. C., Martin, S., Peña, V., Gall, L. L., Caragnano, A., and Aguirre, J. (2019). Coralline algae in a changing Mediterranean Sea: how can we predict their future, if we do not know their present? Frontiers in Marine Science 6, 723.
| Coralline algae in a changing Mediterranean Sea: how can we predict their future, if we do not know their present?Crossref | GoogleScholarGoogle Scholar |
Rodríguez-Prieto, C. (2016). Light and temperature requirements for survival, growth and reproduction of the crustose coralline Lithophyllum stictaeforme from the Mediterranean Sea. Botanica Marina 59, 95–104.
| Light and temperature requirements for survival, growth and reproduction of the crustose coralline Lithophyllum stictaeforme from the Mediterranean Sea.Crossref | GoogleScholarGoogle Scholar |
Roleda, M. Y., Cornwall, C. E., Feng, Y. Y., McGraw, C. M., Smith, A. M., and Hurd, C. L. (2015). Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage. PLoS One 10, e0140394.
| Effect of ocean acidification and pH fluctuations on the growth and development of coralline algal recruits, and an associated benthic algal assemblage.Crossref | GoogleScholarGoogle Scholar | 26469945PubMed |
Rösler, A., Perfectti, F., Peña, V., and Braga, J. C. (2016). Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. Journal of Phycology 52, 412–431.
| Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines.Crossref | GoogleScholarGoogle Scholar | 27273534PubMed |
Rossbach, S., Saderne, V., Anton, A., and Duarte, C. M. (2019). Light-dependent calcification in Red Sea giant clam Tridacna maxima. Biogeosciences 16, 2635–2650.
| Light-dependent calcification in Red Sea giant clam Tridacna maxima.Crossref | GoogleScholarGoogle Scholar |
Sand-Jensen, K., Jensen, R. S., Gomes, M., Kristensen, E., Martinsen, K. T., Kragh, T., Baastrup-Spohr, L., and Borum, J. (2018). Photosynthesis and calcification of charophytes. Aquatic Botany 149, 46–51.
| Photosynthesis and calcification of charophytes.Crossref | GoogleScholarGoogle Scholar |
Sarkar, S. (2015). Calcified algal-rich carbonate sediments from Assam Shelf, N-E India: an overview of the palaeoenvironmental implications. In ‘Petroleum Geosciences: Indian Contexts’. (Ed. S. Mukherjee.) pp. 175–189. (Springer Geology.)
Savva, I., Bennett, S., Roca, G., Jordà, G., and Marbà, N. (2018). Thermal tolerance of Mediterranean marine macrophytes: vulnerability to global warming. Ecology and Evolution 8, 12032–12043.
| Thermal tolerance of Mediterranean marine macrophytes: vulnerability to global warming.Crossref | GoogleScholarGoogle Scholar | 30598797PubMed |
Schoenrock, K. M., Schram, J. B., Amsler, C. D., McClintock, J. B., Angus, R. A., and Vohra, Y. K. (2016). Climate change confers a potential advantage to fleshy Antarctic crustose macroalgae over calcified species. Journal of Experimental Marine Biology and Ecology 474, 58–66.
| Climate change confers a potential advantage to fleshy Antarctic crustose macroalgae over calcified species.Crossref | GoogleScholarGoogle Scholar |
Schubert, N., Salazar, V. W., Rich, W. A., Vivanco Bercovich, M., Almeida Saá, A. C., Fadigas, S. D., Silva, J., and Horta, P. A. (2019). Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients. The Science of the Total Environment 676, 455–468.
| Rhodolith primary and carbonate production in a changing ocean: the interplay of warming and nutrients.Crossref | GoogleScholarGoogle Scholar | 31048175PubMed |
Semesi, I. S., Kangwe, J., and Bjork, M. (2009). Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta). Estuarine, Coastal and Shelf Science 84, 337–341.
| Alterations in seawater pH and CO2 affect calcification and photosynthesis in the tropical coralline alga, Hydrolithon sp. (Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Short, F. T. (1987). Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquatic Botany 27, 41–57.
| Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment.Crossref | GoogleScholarGoogle Scholar |
Silbiger, N. J., and Donahue, M. J. (2015). Secondary calcification and dissolution respond differently to future ocean conditions. Biogeosciences 12, 567–578.
| Secondary calcification and dissolution respond differently to future ocean conditions.Crossref | GoogleScholarGoogle Scholar |
Simkiss, K. (1964). Phosphates as crystal poisons of calcification. Biological Reviews of the Cambridge Philosophical Society 39, 487–504.
| Phosphates as crystal poisons of calcification.Crossref | GoogleScholarGoogle Scholar | 14222524PubMed |
Sinutok, S., Hill, R., Doblin, M. A., Wuhrer, R., and Ralph, P. J. (2011). Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers. Limnology and Oceanography 56, 1200–1212.
| Warmer more acidic conditions cause decreased productivity and calcification in subtropical coral reef sediment-dwelling calcifiers.Crossref | GoogleScholarGoogle Scholar |
Sinutok, S. R., Hill, R. W., Doblin, M. A., Kuhl, M., and Ralph, P. J. (2012). Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming. Coral Reefs 31, 1201–1213.
| Microenvironmental changes support evidence of photosynthesis and calcification inhibition in Halimeda under ocean acidification and warming.Crossref | GoogleScholarGoogle Scholar |
Smith, A. D., and Roth, A. A. (1979). Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana. Marine Biology 52, 217–225.
| Effect of carbon dioxide concentration on calcification in the red coralline alga Bossiella orbigniana.Crossref | GoogleScholarGoogle Scholar |
Sordo, L., Santos, R., Barrote, I., and Silva, J. (2018). High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum. Ecology and Evolution 8, 4781–4792.
| High CO2 decreases the long-term resilience of the free-living coralline algae Phymatolithon lusitanicum.Crossref | GoogleScholarGoogle Scholar | 29876057PubMed |
Sordo, L., Santos, R., Barrote, I., and Silva, J. (2019). Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum. Ecology and Evolution 9, 11000–11009.
| Temperature amplifies the effect of high CO2 on the photosynthesis, respiration, and calcification of the coralline algae Phymatolithon lusitanicum.Crossref | GoogleScholarGoogle Scholar | 31641450PubMed |
Stanley, S. M., Ries, J. B., and Hardie, L. A. (2010). Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “calcite sea” level. Journal of Sedimentary Research 80, 6–16.
| Increased production of calcite and slower growth for the major sediment-producing alga Halimeda as the Mg/Ca ratio of seawater is lowered to a “calcite sea” level.Crossref | GoogleScholarGoogle Scholar |
Steller, D. L., Hernández-Ayón, J. M., Riosmena-Rodríguez, R., and Cabello-Pasini, A. (2007). Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae. Ciencias Marinas 33, 441–456.
| Effect of temperature on photosynthesis, growth and calcification rates of the free-living coralline alga Lithophyllum margaritae.Crossref | GoogleScholarGoogle Scholar |
Steneck, R. S. (1986). The ecology of coralline algal crusts: conver-gent patterns and adaptive strategies. Annual Review of Ecology and Systematics 17, 273–303.
| The ecology of coralline algal crusts: conver-gent patterns and adaptive strategies.Crossref | GoogleScholarGoogle Scholar |
Tanaka, Y., Suzuki, A., and Sakai, K. (2017). Effects of elevated seawater temperature and phosphate enrichment on the crustose coralline alga Porolithon onkodes (Rhodophyta). Phycological Research 65, 51–57.
| Effects of elevated seawater temperature and phosphate enrichment on the crustose coralline alga Porolithon onkodes (Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Tebben, J., Motti, C. A., Siboni, N., Tapiolas, D. M., Negri, A. P., Schupp, P. J., Kitamura, M., Hatta, M., Steinberg, P. D., and Harder, T. (2015). Chemical mediation of coral larval settlement by crustose coralline algae. Scientific Reports 5, 10803.
| Chemical mediation of coral larval settlement by crustose coralline algae.Crossref | GoogleScholarGoogle Scholar | 26042834PubMed |
Usov, A. I. (1992). Sulfated polysaccharides of the red seaweeds. Food Hydrocolloids 6, 9–23.
| Sulfated polysaccharides of the red seaweeds.Crossref | GoogleScholarGoogle Scholar |
van der Heijden, L. H., and Kamenos, N. A. (2015). Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial. Biogeosciences 12, 6429–6441.
| Reviews and syntheses: Calculating the global contribution of coralline algae to total carbon burial.Crossref | GoogleScholarGoogle Scholar |
Vásquez-Elizondo, R. M., and Enríquez, S. (2016). Coralline algal physiology is more adversely affected by elevated temperature than reduced pH. Science Reports 6, 19030.
| Coralline algal physiology is more adversely affected by elevated temperature than reduced pH.Crossref | GoogleScholarGoogle Scholar |
Verbruggen, H., and Kooistra, W. H. C. F. (2004). Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales, Chlorophyta). European Journal of Phycology 39, 213–228.
| Morphological characterization of lineages within the calcified tropical seaweed genus Halimeda (Bryopsidales, Chlorophyta).Crossref | GoogleScholarGoogle Scholar |
Verbruggen, H., Littler, D. S., and Littler, M. M. (2007). Halimeda pygmaea and Halimeda pumila (Bryopsidales, Chlorophyta): two new dwarf species from fore reef slopes in Fiji and the Bahamas. Phycologia 46, 513–520.
| Halimeda pygmaea and Halimeda pumila (Bryopsidales, Chlorophyta): two new dwarf species from fore reef slopes in Fiji and the Bahamas.Crossref | GoogleScholarGoogle Scholar |
Vogel, N., Fabricius, K. E., Strahl, J., Noonan, S. H. C., Wild, C., and Uthicke, S. (2015b). Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps. Limnology and Oceanography 60, 263–275.
| Calcareous green alga Halimeda tolerates ocean acidification conditions at tropical carbon dioxide seeps.Crossref | GoogleScholarGoogle Scholar |
Webster, N. S., Soo, R., Cobb, R., and Negri, A. P. (2011). Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae. The ISME Journal 5, 759–770.
| Elevated seawater temperature causes a microbial shift on crustose coralline algae with implications for the recruitment of coral larvae.Crossref | GoogleScholarGoogle Scholar | 20944682PubMed |
Wei, Z. L., Long, C., Yang, F. F., Long, L. J., Huo, Y. Z., Ding, D. W., and Mo, J. H. (2020). Increased irradiance availability mitigates the physiological performance of species of the calcifying green macroalga Halimeda in response to ocean acidification. Algal Research 48, 101906.
| Increased irradiance availability mitigates the physiological performance of species of the calcifying green macroalga Halimeda in response to ocean acidification.Crossref | GoogleScholarGoogle Scholar |
Wilbur, K. M., Collinvaux, L. M., and Watabe, N. (1969). Electron microscope study of calcification in Halimeda (Order Siphonales). Phycologia 8, 27–35.
| Electron microscope study of calcification in Halimeda (Order Siphonales).Crossref | GoogleScholarGoogle Scholar |
Williamson, C. J., Walker, R. H., Robba, L., Yesson, C., Russell, S., Irvine, L. M., and Brodie, J. (2015). Toward resolution of species diversity and distribution in the calcified red algal genera Corallina and Ellisolandia (Corallinales, Rhodophyta) Phycologia 54, 2–11.
| Toward resolution of species diversity and distribution in the calcified red algal genera Corallina and Ellisolandia (Corallinales, Rhodophyta)Crossref | GoogleScholarGoogle Scholar |
Williamson, C., Yesson, C., Briscoe, A. G., and Brodie, J. (2016). Complete mitochondrial genome of the geniculate calcified red alga, Corallina officinalis (Corallinales, Rhodophyta). Mitochondrial DNA – B. Resources 1, 326–327.
| Complete mitochondrial genome of the geniculate calcified red alga, Corallina officinalis (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar | 33644371PubMed |
Wilson, S., Blake, C., Berges, J. A., and Maggs, C. A. (2004). Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation. Biological Conservation 120, 279–289.
| Environmental tolerances of free-living coralline algae (maerl): implications for European marine conservation.Crossref | GoogleScholarGoogle Scholar |
Wizemann, A., Meyer, F. W., and Westphal, H. (2014). A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux). Coral Reefs 33, 951–964.
| A new model for the calcification of the green macro-alga Halimeda opuntia (Lamouroux).Crossref | GoogleScholarGoogle Scholar |
Yang, F. F., Wei, Z. L., and Long, L. J. (2021). Transcriptomic and physiological responses of the tropical reef calcified macroalga Amphiroa fragilissima to elevated temperature. Journal of Phycology 57, 1254–1265.
| Transcriptomic and physiological responses of the tropical reef calcified macroalga Amphiroa fragilissima to elevated temperature.Crossref | GoogleScholarGoogle Scholar |
Yoshioka, S., Kato, A., Koike, K., Murase, N., Baba, M., and Liao, L. M. (2020). Effects of water temperature, light and nitrate on the growth of sporelings of the non-geniculate coralline alga Lithophyllum okamurae (Corallinales, Rhodophyta). Journal of Applied Phycology 32, 1923–1931.
| Effects of water temperature, light and nitrate on the growth of sporelings of the non-geniculate coralline alga Lithophyllum okamurae (Corallinales, Rhodophyta).Crossref | GoogleScholarGoogle Scholar |
Yuan, X. C., Huang, H., Zhou, W. H., Guo, Y. J., Yuan, T., and Liu, S. (2019). Gene expression profiles of two coral species with varied resistance to ocean acidification. Marine Biotechnology 21, 151–160.
| Gene expression profiles of two coral species with varied resistance to ocean acidification.Crossref | GoogleScholarGoogle Scholar |
Zhang, J. L., Kubanek, J., Hay, M. E., Aalbersberg, W., Ye, W. C., and Jiang, R. W. (2011). Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by liquid chromatography–mass spectrometry. Journal of Mass Spectrometry 46, 908–916.
| Rapid identification of triterpenoid sulfates and hydroxy fatty acids including two new constituents from Tydemania expeditionis by liquid chromatography–mass spectrometry.Crossref | GoogleScholarGoogle Scholar | 21915955PubMed |
Zhou, C. X., Jiang, Y., Liu, B. N., Yan, X. J., and Zhang, W. D. (2012). The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae. Acta Ecologica Sinica 32, 38–43.
| The relationship between calcification and photosynthesis in the coccolithophorid Pleurochrysis carterae.Crossref | GoogleScholarGoogle Scholar |