Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Spatial variation of ostracod (Crustacea, Ostracoda) egg banks in temporary lakes of a tropical flood plain

Jonathan Rosa https://orcid.org/0000-0002-2407-6240 A , Ramiro de Campos https://orcid.org/0000-0001-7170-3449 A , Koen Martens https://orcid.org/0000-0001-8680-973X B C and Janet Higuti https://orcid.org/0000-0002-3721-9562 A D
+ Author Affiliations
- Author Affiliations

A State University of Maringá, Centre of Research in Limnology, Ichthyology and Aquaculture (Nupélia), Graduate Program in Ecology of Inland Water Ecosystems, Avenida Colombo, 5790, CEP 87020-900, Maringá, PR, Brazil.

B Royal Belgian Institute of Natural Sciences, OD Natural Environments, Freshwater Biology, Vautierstraat 29, 1000 Brussels, Belgium.

C University of Ghent, Department of Biology, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium.

D Corresponding author. Email: janethiguti@gmail.com

Marine and Freshwater Research 72(1) 26-34 https://doi.org/10.1071/MF19081
Submitted: 9 March 2019  Accepted: 20 February 2020   Published: 31 March 2020

Abstract

Ostracods are microcrustaceans that produce resting eggs under adverse conditions. In this study we evaluated the spatial variation of ostracod resting eggs in different regions of temporary lakes in a Brazilian flood plain. Based on the homogenisation effect of flood pulses on aquatic communities in flood plains, we hypothesised that the composition and abundance of ostracod eggs in the centre of temporary lakes would be similar to those in edge regions. Samples were collected from the centre and edge regions of five temporary lakes. Sediment was oven dried, rehydrated and hatching was monitored in germinating chambers. Twelve ostracod species hatched from the egg banks during our experiments. The abundance and species composition were similar between the two regions of the lakes. Flood events may be responsible for the homogenisation of the egg banks as a result of the connection of lakes with principal river channels. During flooding, water masses powerfully enter lakes and can redistribute sediments. This study shows that egg banks have the potential to contribute to the maintenance of local biodiversity and the resilience of biodiversity of temporary lake ecosystems.

Additional keywords: dormancy, hatching, microcrustaceans, passive community.


References

Agostinho, A. A., Thomaz, S. M., and Gomes, L. C. (2004a). Threats for biodiversity in the floodplain of the Upper Paraná River: effects of hydrological regulation by dams. Ecohydrology & Hydrobiology 4, 255–268.

Agostinho, A. A., Gomes, L. C., Thomaz, S. M., and Hahn, N. S. (2004b). The upper Paraná River and its floodplain: main characteristics and perspectives for management and conservation. In ‘The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation’. (Eds S. M. Thomaz, A. A. Agostinho, and N. S. Hahn.) pp. 381–393. (Backhuys Publishers: Leiden, Netherlands.)

Agostinho, A. A., Pelicice, F. M., and Gomes, L. C. (2008). Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Brazilian Journal of Biology 68, 1119–1132.
Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries.Crossref | GoogleScholarGoogle Scholar |

Anderson, M. J. (2005). ‘PERMANOVA: a FORTRAN computer program for permutational multivariate analysis of variance.’ (Department of Statistics, University of Auckland: Auckland, New Zealand.)

Bozelli, R. L., Thomaz, S. M., Padial, A. A., Lopes, P. M., and Bini, L. M. (2015). Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system. Hydrobiologia 753, 233–241.
Floods decrease zooplankton beta diversity and environmental heterogeneity in an Amazonian floodplain system.Crossref | GoogleScholarGoogle Scholar |

Brendonck, L., and De Meester, L. (2003). Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment. Hydrobiologia 491, 65–84.
Egg banks in freshwater zooplankton: evolutionary and ecological archives in the sediment.Crossref | GoogleScholarGoogle Scholar |

Bright, E. G., and Bergey, E. A. (2015). Spatial distribution of resting stages of crustaceans and other aquatic invertebrates in playa wetlands. Journal of Crustacean Biology 35, 515–521.
Spatial distribution of resting stages of crustaceans and other aquatic invertebrates in playa wetlands.Crossref | GoogleScholarGoogle Scholar |

Brock, M. A., Nielsen, D. L., Shiel, R., Green, J. D., and Langley, J. D. (2003). Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands. Freshwater Biology 48, 1207–1218.
Drought and aquatic community resilience: the role of eggs and seeds in sediments of temporary wetlands.Crossref | GoogleScholarGoogle Scholar |

Cardoso Ávila, A., Boelter, T., dos Santos, R. M., Stenert, C., Würdig, N. L., Rocha, O., and Maltchik, L. (2015). The effects of different rice cultivation systems and ages on resting stages of wetland invertebrates in southern Brazil. Marine and Freshwater Research 66, 276–285.
The effects of different rice cultivation systems and ages on resting stages of wetland invertebrates in southern Brazil.Crossref | GoogleScholarGoogle Scholar |

Constable, A. J. (1999). Ecology of benthic macro-invertebrates in soft-sediment environments: a review of progress towards quantitative models and predictions. Australian Journal of Ecology 24, 452–476.
Ecology of benthic macro-invertebrates in soft-sediment environments: a review of progress towards quantitative models and predictions.Crossref | GoogleScholarGoogle Scholar |

Dajoz, R. (1973). ‘Ecologia geral.’ (Vozes Editora Universal: São Paulo, Brasil.)

Dumont, H. J., Nandini, S., and Sarma, S. S. S. (2002). Cyst ornamentation in aquatic invertebrates: a defence against egg-predation. Hydrobiologia 486, 161–167.
Cyst ornamentation in aquatic invertebrates: a defence against egg-predation.Crossref | GoogleScholarGoogle Scholar |

Eletrosul (1986). ‘Ilha Grande: a vegetação da área de influência do reservatório da Usina Hidrelétrica de Ilha Grande (PR/MS).’ (Relatório de pesquisa, levantamento na escala 1:250.00: Florianópolis, Brazil.)

Fernandes, A. P. C., Braghin, L. D. S. M., Nedli, J., Palazzo, F., Lansac-Tôha, F. A., and Bonecker, C. C. (2012). Passive zooplankton community in different environments of a neotropical floodplain. Acta Scientiarum. Biological Sciences 34, 413–418.
Passive zooplankton community in different environments of a neotropical floodplain.Crossref | GoogleScholarGoogle Scholar |

García-Roger, E. M., Carmona, M. J., and Serra, M. (2006). Patterns in rotifer diapausing egg banks: density and viability. Journal of Experimental Marine Biology and Ecology 336, 198–210.
Patterns in rotifer diapausing egg banks: density and viability.Crossref | GoogleScholarGoogle Scholar |

Gerhard, M., Iglesias, C., Clemente, J. M., Goyenola, G., Meerhoff, M., Pacheco, J. P., Mello, F. T., and Mazzeo, N. (2017). What can resting egg banks tell about cladoceran diversity in a shallow subtropical lake? Hydrobiologia 798, 75–86.
What can resting egg banks tell about cladoceran diversity in a shallow subtropical lake?Crossref | GoogleScholarGoogle Scholar |

Gleason, R. A., Euliss, N. H., Hubbard, D. E., and Duffy, W. G. (2003). Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23, 26–34.
Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks.Crossref | GoogleScholarGoogle Scholar |

Gurnell, A., Thompson, K., Goodson, J., and Moggridge, H. (2008). Propagule deposition along river margins: linking hydrology and ecology. Journal of Ecology 96, 553–565.
Propagule deposition along river margins: linking hydrology and ecology.Crossref | GoogleScholarGoogle Scholar |

Hairston, N. G. (1996). Zooplankton egg banks as biotic reservoirs in changing environments. Limnology and Oceanography 41, 1087–1092.
Zooplankton egg banks as biotic reservoirs in changing environments.Crossref | GoogleScholarGoogle Scholar |

Hauer, C., Leitner, P., Unfer, G., Pulg, U., Habersack, H., and Graf, W. (2018). The role of sediment and sediment dynamics in the aquatic environment. In ‘Riverine Ecosystem Management’. (Eds S. Schmutz and J. Sendzimir.) pp. 151–169. (Springer: Cham, Switzerland.)

Havel, J. E., Eisenbacher, E. M., and Black, A. A. (2000). Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks. Aquatic Ecology 34, 63–76.
Diversity of crustacean zooplankton in riparian wetlands: colonization and egg banks.Crossref | GoogleScholarGoogle Scholar |

Higuti, J., Declerck, S. A., Lansac-Tôha, F. A., Velho, L. F. M., and Martens, K. (2010). Variation in ostracod (Crustacea, Ostracoda) communities in the alluvial valley of the upper Paraná River (Brazil) in relation to substrate. Hydrobiologia 644, 261–278.
Variation in ostracod (Crustacea, Ostracoda) communities in the alluvial valley of the upper Paraná River (Brazil) in relation to substrate.Crossref | GoogleScholarGoogle Scholar |

Higuti, J., Schön, I., Audenaert, L., and Martens, K. (2013). On the Strandesia obtusata/elliptica lineage (Ostracoda, Cyprididae) in the alluvial valley of the upper Paraná River (Brazil), with the description of three new species. Crustaceana 86, 182–211.
On the Strandesia obtusata/elliptica lineage (Ostracoda, Cyprididae) in the alluvial valley of the upper Paraná River (Brazil), with the description of three new species.Crossref | GoogleScholarGoogle Scholar |

Higuti, J., Conceição, E. O., Campos, R., Ferreira, V. G., Rosa, J., Pinto, M. B. O., and Martens, K. (2017). Periphytic community structure of Ostracoda (Crustacea) in the river–floodplain system of the Upper Paraná River. Acta Limnoliga Brasiliensia 29, .
Periphytic community structure of Ostracoda (Crustacea) in the river–floodplain system of the Upper Paraná River.Crossref | GoogleScholarGoogle Scholar |

Horne, D. J., and Martens, K. (1998). An assessment of the importance of resting eggs for the evolutionary success of Mesozoic non-marine cypridoidean Ostracoda (Crustacea). Archiv für Hydrobiologie 52, 549–561.

Kita, K. K., and De Souza, C. M. (2003). Levantamento florístico e fitofisionomia da lagoa Figueira e seu entorno, planície alagável do alto rio Paraná, Porto Rico, Estado do Paraná, Brasil. Acta Scientiarum. Biological Sciences 25, 145–155.

Legendre, P., and Legendre, L. (1998). ‘Numerical Ecology.’ (Elsevier Science: Amsterdam, Netherlands.)

Maia-Barbosa, P. M., Eskinazi-Sant’anna, E. M., Valadares, C. F., and Pessoa, G. C. D. (2003). The resting eggs of zooplankton from a tropical, eutrophic reservoir (Pampulha Reservoir, south-east Brazil). Lakes and Reservoirs: Research and Management 8, 269–275.
The resting eggs of zooplankton from a tropical, eutrophic reservoir (Pampulha Reservoir, south-east Brazil).Crossref | GoogleScholarGoogle Scholar |

Martens, K., and Behen, F. (1994). A checklist of the recent non-marine ostracods (Crustacea, Ostracoda) from the inland waters of South America and adjacent islands. (Travaux scientifiques du Musée d’Histoire naturelle de Luxembourg: Luxembourg.)

Martens, K., Ortal, R., and Meisch, C. (1992). The ostracod fauna of Mamilla Pool (Jerusalem, Israel) (Crustacea, Ostracoda). Zoology in the Middle East 7, 95–114.
The ostracod fauna of Mamilla Pool (Jerusalem, Israel) (Crustacea, Ostracoda).Crossref | GoogleScholarGoogle Scholar |

Masero, R., and Villate, F. (2004). Composition, vertical distribution and age of zooplankton benthic eggs in the sediments of two contrasting estuaries of the Bay of Biscay. Hydrobiologia 518, 201–212.
Composition, vertical distribution and age of zooplankton benthic eggs in the sediments of two contrasting estuaries of the Bay of Biscay.Crossref | GoogleScholarGoogle Scholar |

Matsuda, J. T., Lansac-Tôha, F. A., Martens, K., Velho, L. F. M., Mormul, R. P., and Higuti, J. (2015). Association of body size and behavior of freshwater ostracods (Crustacea, Ostracoda) with aquatic macrophytes. Aquatic Ecology 49, 321–331.
Association of body size and behavior of freshwater ostracods (Crustacea, Ostracoda) with aquatic macrophytes.Crossref | GoogleScholarGoogle Scholar |

Meisch, C. (2000). Freshwater Ostracoda of western and central Europe. In ‘Süsswasserfauna von Mitteleuropa’. Vol. 8/3. (Eds J. Schwoerbel and P. Zwick.) pp. 1–522. (Akademischer Verlag Spektrum: Berlin, Germany.)

Meisch, C., Smith, R. J., and Martens, K. (2019). A subjective global checklist of the recent non-marine Ostracoda (Crustacea). European Journal of Taxonomy 492, 1–135.
A subjective global checklist of the recent non-marine Ostracoda (Crustacea).Crossref | GoogleScholarGoogle Scholar |

Morais Junior, C. S., Diniz, L. P., Sousa, F. D. R., Gonçalves-Souza, T., Elmoor-Loureiro, L. M. A., and Melo Júnior, M. (2019). Bird feet morphology drives the dispersal of rotifers and microcrustaceans in a Neotropical temporary pond. Aquatic Sciences 81, 1–9.

Moretto, Y., Simões, N. R., Benedito, E., and Higuti, J. (2013). Effect of trophic status and sediment particle size on diversity and abundance of aquatic Oligochaeta (Annelida) in neotropical reservoirs. Annales de Limnologie-International Journal of Limnology 49, 65–78.
Effect of trophic status and sediment particle size on diversity and abundance of aquatic Oligochaeta (Annelida) in neotropical reservoirs.Crossref | GoogleScholarGoogle Scholar |

Oksanen, J., Blanchet, G. F., Friendly, M., Kindit, R., Legendre, P., McGlinn, D., Minchin, P. R. O., O’hara, R. N., Simpson, G. L., Solymos, P., Stevens, M. H. H., Szoecs, E., and Wagner, H. (2018). Vegan: community ecology package. R package version 2.4–0. Available at https://CRAN.R-project.org/package=vegan [verified 20 June 2018].

Pinceel, T., Vanschoenwinkel, B., Weckx, M., and Brendonck, L. (2019). An empirical test of the impact of drying events and physical disturbance on wind erosion of zooplankton egg banks in temporary ponds. Aquatic Ecology 54, 137–144.

Portinho, J. L., Nielsen, D. L., Ning, N., Paul, W., and Nogueira, M. (2017). Spatial variability of aquatic plant and microfaunal seed and egg bank communities within a forested floodplain system of a temperate Australian river. Aquatic Sciences 79, 515–527.
Spatial variability of aquatic plant and microfaunal seed and egg bank communities within a forested floodplain system of a temperate Australian river.Crossref | GoogleScholarGoogle Scholar |

R Development Core Team (2013). ‘R: A Language and Environment for Statistical Computing.’ (R Foundation for Statistical Computing: Vienna, Austria.)

Roessler, E. W. (1985). Estudios taxonomicos, ontogeneticos, ecologicos y etologicos sobre los ostracodos de agua dulce en Colombia: V. Estudio taxonomico del genero Chlamydotheca Saussure 1858 (Ostracoda, Podocopida, Cyprididae) Parte I. Aspectos morfológicos de una nueva especie colombiana del genero Chlamydotheca. Caldasia 14, 329–354.

Rossi, V., Bartoli, M., Bellavere, C., Gandolfi, A., Salvador, E., and Menozzi, P. (2004). Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): hatching phenology of resting eggs. The Italian Journal of Zoology 71, 223–231.
Heterocypris (Crustacea: Ostracoda) from the Isole Pelagie (Sicily, Italy): hatching phenology of resting eggs.Crossref | GoogleScholarGoogle Scholar |

Rossi, V., Albini, D., Benassi, G., and Menozzi, P. (2012). To rest in hydration: hatching phenology of resting eggs of Heterocypris incongruens (Crustacea: Ostracoda). Fundamental and Applied Limnology 181, 49–58.
To rest in hydration: hatching phenology of resting eggs of Heterocypris incongruens (Crustacea: Ostracoda).Crossref | GoogleScholarGoogle Scholar |

Santangelo, J. M., Lopes, P. M., Nascimento, M. O., Fernandes, A. P., Bartole, S., Figueiredo-Barros, M. P., Leal, J. J. F., Esteves, F. A., Farjalla, V. F., Bonecker, C. C., and Bozelli, R. L. (2015). Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes. Hydrobiologia 758, 183–195.
Community structure of resting egg banks and concordance patterns between dormant and active zooplankters in tropical lakes.Crossref | GoogleScholarGoogle Scholar |

Sars, G. O. (1901). Contributions to the knowledge of the fresh-water Entomostraca of South America as shown by artificial hatching from dried material. Part II. Copepoda-Ostracoda. Archiv for mathematik og naturvidenskab 24, 1–52.

Schön, I., Eggermont, H., Verheyen, E., and Martens, K. (2012). Palaeogenetics for ostracods (Crustacea, Ostracoda). In ‘Ostracoda as Proxies for Quaternary Climate Change’. (Eds D. J. Horne, J. A. Holmes, J. Rodriguez-Lazaro, and F. Viehberg.) pp. 297–304. (Elsevier: London, UK.)

Simpson, G. L. (2018). Permute: functions for generating restricted permutations of data. R Package 0.9-4. Available at https://cran.r-project.org/package=permute [verified 20 June 2018].

Souza-Filho, E. E., and Stevaux, J. C. (2004). Geology and geomorphology of the Baía-Curutuba-Ivinhema Rive Complex. In ‘The Upper Paraná River and its Floodplain: Physical Aspects, Ecology and Conservation’. (Eds S. M. Thomaz, A. A. Agostinho, and N. S. Hahn.) pp. 1–29. (Backhuys Publishers: Leiden, The Netherlands.)

Stenert, C., Bacca, R. C., Ávila, A. C., Maltchik, L., and Rocha, O. (2010). Do hydrologic regimes used in rice fields compromise the viability of resting stages of aquatic invertebrates? Wetlands 30, 989–996.
Do hydrologic regimes used in rice fields compromise the viability of resting stages of aquatic invertebrates?Crossref | GoogleScholarGoogle Scholar |

Stenert, C., Wüsth, R., Pires, M. M., Freiry, R. F., Nielsen, N., and Maltchik, L. (2017). Composition of cladoceran dormant stages in intermittent ponds with different hydroperiod lengths. Ecological Research 32, 921–930.
Composition of cladoceran dormant stages in intermittent ponds with different hydroperiod lengths.Crossref | GoogleScholarGoogle Scholar |

Suguio, K. (1973). ‘Introdução à sedimentologia.’ (Edgard Blücher/EDUSP: São Paulo, Brazil.)

Thomaz, S. M., Bini, L. M., and Bozelli, R. L. (2007). Floods increase similarity among aquatic habitats in river–floodplain systems. Hydrobiologia 579, 1–13.
Floods increase similarity among aquatic habitats in river–floodplain systems.Crossref | GoogleScholarGoogle Scholar |

Tilbert, S., Castro, F. J. V., Tavares, G., and Nogueira Júnior, M. (2019). Spatial variation of meiofaunal tardigrades in a small tropical estuary (~6°S; Brazil). Marine and Freshwater Research 70, 1094–1104.
Spatial variation of meiofaunal tardigrades in a small tropical estuary (~6°S; Brazil).Crossref | GoogleScholarGoogle Scholar |

Valls, L., Castillo-Escrivà, A., Mesquita-Joanes, F., and Armengol, X. (2016). Human-mediated dispersal of aquatic invertebrates with waterproof footwear. Ambio 45, 99–109.
Human-mediated dispersal of aquatic invertebrates with waterproof footwear.Crossref | GoogleScholarGoogle Scholar | 26216143PubMed |

Vandekerkhove, J., Declerck, S., Jeppesen, E., Conde-Porcuna, J. M., Brendonck, L., and De Meester, L. (2005). Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities. Oecologia 142, 109–116.
Dormant propagule banks integrate spatio-temporal heterogeneity in cladoceran communities.Crossref | GoogleScholarGoogle Scholar | 15378346PubMed |

Vandekerkhove, J., Martens, K., Rossetti, G., Mesquita‐Joanes, F. C., and Namiotko, T. (2013). Extreme tolerance to environmental stress of sexual and parthenogenetic resting eggs of Eucypris virens (Crustacea, Ostracoda). Freshwater Biology 58, 237–247.
Extreme tolerance to environmental stress of sexual and parthenogenetic resting eggs of Eucypris virens (Crustacea, Ostracoda).Crossref | GoogleScholarGoogle Scholar |

Vargas, A. L., Santangelo, J. M., and Bozelli, R. L. (2019). Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs. International Review of Hydrobiology 104, 26–33.
Recovery from drought: viability and hatching patterns of hydrated and desiccated zooplankton resting eggs.Crossref | GoogleScholarGoogle Scholar |

Watkins, S. C., Nielsen, D., Quinn, G. P., and Gawne, B. (2011). The influence of leaf litter on zooplankton in floodplain wetlands: changes resulting from river regulation. Freshwater Biology 56, 2432–2447.
The influence of leaf litter on zooplankton in floodplain wetlands: changes resulting from river regulation.Crossref | GoogleScholarGoogle Scholar |

Wentworth, C. K. (1922). A scale of grade and class terms for clastic sediments. The Journal of Geology 30, 377–392.
A scale of grade and class terms for clastic sediments.Crossref | GoogleScholarGoogle Scholar |

Wood, S. N. (2018). Mixed GAM computation vehicle with automatic smoothness estimation. R package version 1.8–12. Available at http://CRAN.Rproject. org/package=mgcv [verified 20 June 2018].