It’s a catfish! Novel approaches are needed to study the effects of rapid decompression on benthic species
Luiz G. M. Silva A B F , Bernardo V. Beirão A C , Ricardo C. Falcão D , Andrey L. F. de Castro E and Edson W. Dias EA Graduate Program in Technologies for Sustainable Development (PPGTDS), Universidade Federal de São João del-Rei (UFSJ), Rodovia MG 443, quilômetro 7, 36420-000, Ouro Branco, MG, Brazil.
B Institute for Land, Water and Society, Charles Sturt University, PO Box 789, Albury, NSW 2640, Australia.
C Pacific Northwest National Laboratory, Ecology Group, Richland, WA 99352, USA.
D Department of Physics and Mathematics (DEFIM), Universidade Federal de São João del-Rei (UFSJ), Rodovia MG 443, quilômetro 7, 36420-000, Ouro Branco, MG, Brazil.
E Department of Natural Sciences (DCNAT), Universidade Federal de São João del-Rei (UFSJ), Praça Frei Orlando 170, 36307-352, São João del-Rei, MG, Brazil.
F Corresponding author. Email: luictio@gmail.com
Marine and Freshwater Research 69(12) 1922-1933 https://doi.org/10.1071/MF18267
Submitted: 26 July 2018 Accepted: 27 July 2018 Published: 13 November 2018
Abstract
Barotrauma as a result of rapid decompression has been recorded as the most common injury among fish captured in the tailrace of hydropower dams in Brazil, with catfishes representing the majority of them. Nevertheless, studies investigating barotrauma on catfish are scarce, with the majority determining dose–response curves and thresholds of pressure changes for nektonic species, such as salmonids. Experiments conducted with Pimelodus pictus showed that the current hypo-hyperbaric chambers used to study barotrauma in nektonic species can have limitations when applied to benthic groups. The negative buoyancy showed by the catfish prevented the definition of the acclimation pressure of the fish before exposure to decompression and, therefore, the method had to be adapted to allow the calculation of the ratio of pressure change (RPC). The adaptation involved anaesthetising the fish, which added a potential bias to the experiments. Therefore, new approaches deemed to be needed to complement barotrauma studies with benthic fish. We aimed to discuss the limitations observed for studies with benthic species and present potential methods to overcome them. The diversification of approaches for barotrauma studies with benthic species is critical to provide information for the development of mitigation and new turbine designs that would improve protection of this group.
Additional keywords: draft tubes, fish mortality, hydropower, pressure changes.
References
Alexander, R. M. (1959). The physical properties of the swimbladders of fish other than Cypriniformes. The Journal of Experimental Biology 36, 347–354.ASTM International (2002). ‘D638-02a: Standard Test Method for Tensile Properties of Plastics.’ (ASTM International: West Conshohocken, PA, USA).
Baumgartner, L. J., Thorncraft, G., Phonekhampheng, O., Boys, C., Navarro, A., Robinson, W., Brown, R., and Deng, Z. D. (2017). High fluid shear strain causes injury in silver shark: preliminary implications for Mekong hydropower turbine design. Fisheries Management and Ecology 24, 193–198.
| High fluid shear strain causes injury in silver shark: preliminary implications for Mekong hydropower turbine design.Crossref | GoogleScholarGoogle Scholar |
Beirão, B. V. (2015). Avaliação e desenvolvimento de método para estudo de barotrauma em peixes em turbinas de usinas hidrelétricas. M.Sc. Thesis, Universidade Federal de São João del-Rei, Ouro Branco, Brazil.
Beirão, B. V., Marciano, N. C. B., Dias, L. S., Falcão, R. C., Dias, E. W., Fabrino, D. L., Martinez, C. B., Silva, L. G. M., Walker, R., Brown, R. S., and Deng, Z. D. (2015). Barotrauma em peixes em usinas hidrelétricas: ferramentas para o estudo. Boletim – Sociedade Brasileira de Ictiologia 115, 26–36.
Beirão, B. V., Silva, L. G. M., Brown, R. S., and Walker, R. W. (2018). Determining barotrauma in the Pictus catfish Pimelodus pictus experimentally exposed to simulated hydropower turbine passage. Marine and Freshwater Research 69, 1913–1921.
| Determining barotrauma in the Pictus catfish Pimelodus pictus experimentally exposed to simulated hydropower turbine passage.Crossref | GoogleScholarGoogle Scholar |
Birindelli, J. L., and Shibatta, O. A. (2011). Morphology of the gas bladder in bumblebee catfishes (Siluriformes, Pseudopimelodidae). Journal of Morphology 272, 890–896.
| Morphology of the gas bladder in bumblebee catfishes (Siluriformes, Pseudopimelodidae).Crossref | GoogleScholarGoogle Scholar |
Birindelli, J. L. O., Sousa, L. M., and Sabaj Pérez, M. H. (2009). Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae). Proceedings of the Academy of Natural Sciences of Philadelphia 158, 261–296.
| Morphology of the gas bladder in thorny catfishes (Siluriformes: Doradidae).Crossref | GoogleScholarGoogle Scholar |
Boys, C. A., Robinson, W., Miller, B., Pflugrath, B., Baumgartner, L. J., Navarro, A., Brown, R., and Deng, Z. (2016a). A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure. Journal of Fish Biology 88, 1677–1692.
| A piecewise regression approach for determining biologically relevant hydraulic thresholds for the protection of fishes at river infrastructure.Crossref | GoogleScholarGoogle Scholar |
Boys, C. A., Robinson, W., Miller, B., Pflugrath, B., Baumgartner, L. J., Navarro, A., Brown, R., and Deng, Z. (2016b). How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression. Biology Open 5, 786–793.
| How low can they go when going with the flow? Tolerance of egg and larval fishes to rapid decompression.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Carlson, T. J., Welch, A. E., Stephenson, J. R., Abernethy, C. S., Ebberts, B. D., Langeslay, M. J., Ahmann, M. L., Feil, D. H., Skalski, J. R., and Townsend, R. L. (2009). Assessment of barotrauma from rapid decompression of depth-acclimated juvenile Chinook salmon bearing radiotelemetry transmitters. Transactions of the American Fisheries Society 138, 1285–1301.
| Assessment of barotrauma from rapid decompression of depth-acclimated juvenile Chinook salmon bearing radiotelemetry transmitters.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Pflugrath, B. D., Colotelo, A. H., Brauner, C. J., Carlson, T. J., Deng, Z. D., and Seaburg, A. G. (2012a). Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law. Fisheries Research 121–122, 43–50.
| Pathways of barotrauma in juvenile salmonids exposed to simulated hydroturbine passage: Boyle’s law vs. Henry’s law.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Carlson, T. J., Gingerich, A. J., Stephenson, J. R., Pflugrath, B. D., Welch, A. E., Langeslay, M. J., Ahmann, M. L., Johnson, R. L., Skalski, J. R., Seaburg, A. G., and Townsend, R. L. (2012b). Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage. Transactions of the American Fisheries Society 141, 147–157.
| Quantifying mortal injury of juvenile Chinook salmon exposed to simulated hydro-turbine passage.Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Cook, K. V., Pflugrath, B. D., Rozeboom, L. L., Johnson, R. C., McLellan, J. G., Linley, T. J., Gao, Y., Baumgartner, L. J., Dowell, F. E., Miller, E. A., and White, T. A. (2013). Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure? Conservation Physiology 1, cot019.
| Vulnerability of larval and juvenile white sturgeon to barotrauma: can they handle the pressure?Crossref | GoogleScholarGoogle Scholar |
Brown, R. S., Colotelo, A. H., Pflugrath, B. D., Boys, C. A., Baumgartner, L. J., Deng, Z. D., Silva, L. G. M., Brauner, C. J., Mallen-Cooper, M., Phonekhampeng, O., Thorncraft, G., and Singhanouvong, D. (2014). Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources. Fisheries 39, 108–122.
| Understanding barotrauma in fish passing hydro structures: a global strategy for sustainable development of water resources.Crossref | GoogleScholarGoogle Scholar |
Čada, G. F. (2001). The development of advanced hydroelectric turbines to improve fish passage survival. Fisheries 26, 14–23.
| The development of advanced hydroelectric turbines to improve fish passage survival.Crossref | GoogleScholarGoogle Scholar |
Čada, G., and Schweizer, P. E. (2012). ‘The Application of Traits-based Assessment Approaches to Estimate the Efects of Hydroelectric Turbine Passage on Fish Populations.’ (Oak Ridge National Laboratory: Oak Ridge, TN, USA.)
Čada, G., Loar, J., Garrison, L., Fisher, R., and Neitzel, D. (2006). Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses. Environmental Management 37, 898–906.
| Efforts to reduce mortality to hydroelectric turbine-passed fish: locating and quantifying damaging shear stresses.Crossref | GoogleScholarGoogle Scholar |
Carvalho, G. L., Fonseca, L. R. O., Martins, D. S., Menezes, S. S., and Silva, L. G. M. (2017). Usinas hidrelétricas e mortandade de peixes: desenvolvimento de tecnologia para estudo e mitigação do impacto visando a sustentabilidade no setor elétrico. In ‘Prêmio Odebrecht para o Desenvolvimento Sustentável: Compilação dos Melhores Projetos. (Eds C. Pires, C. Vilela, and S. Leão.) Vol. 1, pp. 70–86. (Odebrecht: São Paulo, Brazil.)
Colotelo, A. H., Pflugrath, B. D., Brown, R. S., Brauner, C. J., Mueller, R. P., Carlson, T. J., Deng, Z. D., Ahmann, M. L., and Trumbo, B. A. (2012). The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities. Fisheries Research 129–130, 17–20.
| The effect of rapid and sustained decompression on barotrauma in juvenile brook lamprey and Pacific lamprey: implications for passage at hydroelectric facilities.Crossref | GoogleScholarGoogle Scholar |
Cousins, S., Kennard, M. J., and Ebner, B. C. (2017). Depth-related composition and structuring of tropical riverine fish assemblages revealed by baited video. Marine and Freshwater Research 68, 1965–1975.
| Depth-related composition and structuring of tropical riverine fish assemblages revealed by baited video.Crossref | GoogleScholarGoogle Scholar |
Currie, H., Garcia, G. E., Martin, N. F., and Parkes, M. (2016). Barriers to migration: the impacts of barotrauma and parasites on fish physiology. Group Design Project Report FEEG6030, University of Southampton, Faculty of Engineering & the Environment, Southampton, UK.
de Andrade, F., Prado, I. G., Loures, R. C., and Godinho, A. L. (2012). Evaluation of techniques used to protect tailrace fishes during turbine maneuvers at Tres Marias Dam, Brazil. Neotropical Ichthyology 10, 723–730.
| Evaluation of techniques used to protect tailrace fishes during turbine maneuvers at Tres Marias Dam, Brazil.Crossref | GoogleScholarGoogle Scholar |
Deng, Z., Carlson, T. J., Dauble, D. D., and Ploskey, G. R. (2011). Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling. Energies 4, 57–67.
| Fish passage assessment of an advanced hydropower turbine and conventional turbine using blade-strike modeling.Crossref | GoogleScholarGoogle Scholar |
Dugan, P. J., Barlow, C., Agostinho, A. A., Baran, E., Čada, G. F., Chen, D., Cowx, I. G., Ferguson, J. W., Jutagate, T., Mallen-Cooper, M., Marmulla, G., Nestler, J., Petrere, M., Welcomme, R. L., and Winemiller, K. O. (2010). Fish migration, dams, and loss of ecosystem services in the Mekong Basin. Ambio 39, 344–348.
| Fish migration, dams, and loss of ecosystem services in the Mekong Basin.Crossref | GoogleScholarGoogle Scholar |
Dumbarton, T. C., Stoyek, M., Croll, R. P., and Smith, F. M. (2010). Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio). The Journal of Experimental Biology 213, 2536–2546.
| Adrenergic control of swimbladder deflation in the zebrafish (Danio rerio).Crossref | GoogleScholarGoogle Scholar |
Ebner, B. C., and Morgan, D. L. (2013). Using remote underwater video to estimate freshwater fish species richness. Journal of Fish Biology 82, 1592–1612.
| Using remote underwater video to estimate freshwater fish species richness.Crossref | GoogleScholarGoogle Scholar |
Fänge, R. (1983). Gas exchange in fish swim bladder. Reviews of Physiology, Biochemistry and Pharmacology 97, 111–158.
| Gas exchange in fish swim bladder.Crossref | GoogleScholarGoogle Scholar |
Franz, G. (1937). The gas secretion reflex (gasspucken) in fish and the function of the Weberian apparatus. Journal of Comparative Physiology 25, 193–238.
Godinho, A. L., and Loures, R. C. (2017). Risk of fish death at Brazilian hydropower plants. In ‘Risk Assessment of Fish Death at Hydropower Plants in Southeastern Brazil’. (Eds R. C. Loures and A. L. Godinho.) Vol. 1, pp. 19–36. (CEMIG: Belo Horizonte, Brazil.)
Humphrey, J. D. (2003). Continuum biomechanics of soft biological tissues. Proceedings of the Royal Society. Mathematical, Physical and Engineering Sciences 459, 3–46.
| Continuum biomechanics of soft biological tissues.Crossref | GoogleScholarGoogle Scholar |
Jones, F. R. H., and Marshall, N. B. (1953). The structure and functions of the teleostean swimbladder. Biological Reviews of the Cambridge Philosophical Society 28, 16–82.
| The structure and functions of the teleostean swimbladder.Crossref | GoogleScholarGoogle Scholar |
Mattson, N. S., and Riple, T. H. (1989). Metomidae, a better anesthetic for cod (Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and phenoxyethanol. Aquaculture 83, 89–94.
| Metomidae, a better anesthetic for cod (Gadus morhua) in comparison with benzocaine, MS-222, chlorobutanol, and phenoxyethanol.Crossref | GoogleScholarGoogle Scholar |
Neitzel, D. A., Dauble, D. D., Čada, G. F., Richmond, M. C., Guensch, G. R., Mueller, R. P., Abernethy, C. S., and Amidan, B. (2004). Survival estimates for juvenile fish subjected to a laboratory-generated shear environment. Transactions of the American Fisheries Society 133, 447–454.
| Survival estimates for juvenile fish subjected to a laboratory-generated shear environment.Crossref | GoogleScholarGoogle Scholar |
Ogden, R. W. (1984). ‘Non-linear Elastic Deformations.’ (Halsted Press: New York, NY, USA.)
Ogden, R. W., Saccomandi, G., and Sgura, I. (2004). Fitting hyperelastic models to experimental data. Computational Mechanics 34, 484–502.
| Fitting hyperelastic models to experimental data.Crossref | GoogleScholarGoogle Scholar |
Pérez, A. G. (2014). Deslocamentos e Mortalidade de Peixes nos Rios Grande e Paranaíba. PhD Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
Pflugrath, B. D., Brown, R. S., and Carlson, T. J. (2012). Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage. Transactions of the American Fisheries Society 141, 520–525.
| Maximum neutral buoyancy depth of juvenile Chinook salmon: implications for survival during hydroturbine passage.Crossref | GoogleScholarGoogle Scholar |
Pompeu, P. S., Horta, L. F. M., and Martinez, C. B. (2009). Evaluation of the effects of pressure gradients on four Brazilian freshwater fish species. Brazilian Archives of Biology and Technology 52, 111–118.
| Evaluation of the effects of pressure gradients on four Brazilian freshwater fish species.Crossref | GoogleScholarGoogle Scholar |
Pracheil, B. M., DeRolph, C. R., Schramm, M. P., and Bevelhimer, M. S. (2016). A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage. Reviews in Fish Biology and Fisheries 26, 153–167.
| A fish-eye view of riverine hydropower systems: the current understanding of the biological response to turbine passage.Crossref | GoogleScholarGoogle Scholar |
Prado, I. G., and Pompeu, P. S. (2014). Vertical and seasonal distribution of fish in Três Marias reservoir. Lake and Reservoir Management 30, 393–404.
| Vertical and seasonal distribution of fish in Três Marias reservoir.Crossref | GoogleScholarGoogle Scholar |
Rego, A. C. L., Prado, I. G., Silva, T. T., Loures, R. C., Silva, R. J., Monteiro, A. B., and Godinho, A. L. (2017). Fish affected by operational procedures of hydropower plants in southeastern Brazil. In ‘Risk Assessment of Fish Death at Hydropower Plants in Southeastern Brazil’. (Eds R. C. Loures and A. L. Godinho.) pp. 71–96. (CEMIG: Belo Horizonte, Brazil.)
Ribeiro, J., Lopes, H., Mendonça, B., and Martins, P. (2012). Determinação do campo de deslocamentos de tecidos biológicos hiperelásticos. Revista Iberoamericana de Ingeneria Mecanica 16, 37–50.
Schmid, K., Reis-Filho, J. A., Harvey, E., and Giarrizzo, T. (2017). Baited remote underwater video as a promising nondestructive tool to assess fish assemblages in clearwater Amazonian rivers: testing the effect of bait and habitat type. Hydrobiologia 784, 93–109.
| Baited remote underwater video as a promising nondestructive tool to assess fish assemblages in clearwater Amazonian rivers: testing the effect of bait and habitat type.Crossref | GoogleScholarGoogle Scholar |
Stephenson, J. R., Gingerich, A. J., Brown, R. S., Pflugrath, B. D., Deng, Z., Carlson, T. J., Langeslay, M. J., Ahmann, M. L., Johnson, R. L., and Seaburg, A. G. (2010). Assessing barotrauma in neutrally and negatively buoyant juvenile salmonids exposed to simulated hydro-turbine passage using a mobile aquatic barotrauma laboratory. Fisheries Research 106, 271–278.
| Assessing barotrauma in neutrally and negatively buoyant juvenile salmonids exposed to simulated hydro-turbine passage using a mobile aquatic barotrauma laboratory.Crossref | GoogleScholarGoogle Scholar |
Suzuki, F. M., Dunham, J. B., Silva, L. G. M., Alves, C. B. M., and Pompeu, P. S. (2017). Factors influencing movements of two migratory fishes within the tailrace of a large Neotropical dam and their implications for hydropower impacts. River Research and Applications 33, 514–523.
| Factors influencing movements of two migratory fishes within the tailrace of a large Neotropical dam and their implications for hydropower impacts.Crossref | GoogleScholarGoogle Scholar |
Webster, M. R., De Vita, R., Twigg, J. N., and Socha, J. J. (2011). Mechanical properties of tracheal tubes in the American cockroach (Periplaneta americana). Smart Materials and Structures 20, 094017.
| Mechanical properties of tracheal tubes in the American cockroach (Periplaneta americana).Crossref | GoogleScholarGoogle Scholar |
Winemiller, K. O., McIntyre, P. B., Castello, L., Fluet-Chouinard, E., Giarrizzo, T., Nam, S., Baird, I. G., Darwall, W., Lujan, N. K., Harrison, I., Stiassny, M. L., Silvano, R. A., Fitzgerald, D. B., Pelicice, F. M., Agostinho, A. A., Gomes, L. C., Albert, J. S., Baran, E., Petrere, M., Zarfl, C., Mulligan, M., Sullivan, J. P., Arantes, C. C., Sousa, L. M., Koning, A. A., Hoeinghaus, D. J., Sabaj, M., Lundberg, J. G., Armbruster, J., Thieme, M. L., Petry, P., Zuanon, J., Torrente Vilara, G., Snoeks, J., Ou, C., Rainboth, W., Pavanelli, C. S., Akama, A., van Soesbergen, A., and Saenz, L. (2016). Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351, 128–129.
| Development and environment. Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong.Crossref | GoogleScholarGoogle Scholar |
Zarfl, C., Lumsdon, A. E., Berlekamp, J., Tydecks, L., and Tockner, K. (2015). A global boom in hydropower dam construction. Aquatic Sciences 77, 161–170.
| A global boom in hydropower dam construction.Crossref | GoogleScholarGoogle Scholar |
Ziv, G., Baran, E., Nam, S., Rodriguez-Iturbe, I., and Levin, S. A. (2012). Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin. Proceedings of the National Academy of Sciences of the United States of America 109, 5609–5614.
| Trading-off fish biodiversity, food security, and hydropower in the Mekong River Basin.Crossref | GoogleScholarGoogle Scholar |