Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
REVIEW

Ecology, adaptation and acclimatisation mechanisms of Bythograeidae Williams, 1980, a unique endemic hydrothermal vent crabs family: current state of knowledge

V. Leignel A D , L. A. Hurtado B and M. Segonzac C
+ Author Affiliations
- Author Affiliations

A Le Mans Université, Laboratoire Mer Molécule Santé EA2160 FR-CNRS 3473 IUML, F-72085 Le Mans, France.

B Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX 77843-2258, USA.

C Département Systématique et évolution, Muséum National d’Histoire Naturelle, 57 rue Cuvier, F-75005 Paris, France.

D Corresponding author. Laboratoire Mer Molécules Santé EA2160 FR CNRS 3473 IUML, Université du Maine, Avenue Olivier Messiaen, F-72085 Le Mans, France. Email: vincent.leignel@univ-lemans.fr

Marine and Freshwater Research 69(1) 1-15 https://doi.org/10.1071/MF17007
Submitted: 12 January 2017  Accepted: 9 June 2017   Published: 22 August 2017

Abstract

Diversified fauna have colonised the deep-sea hydrothermal vents, an environment characterised by high metallic concentrations and sulfide-rich waters. In 1977–79, brachyuran crabs were collected in hydrothermal vents around the Galapagos Rift, allowing description in 1980 of Bythograea thermydron and the new family Bythograeidae (and the superfamily Bythogreoidea). This family has a worldwide distribution and currently includes 13 species classified in 6 genera: Allograea (1 species), Austinograea (3 species), Bythograea (5 species), Cyanagraea (1 species), Gandalfus (2 species) and Segonzacia (1 species). These crabs have distinctive morphological and physiological characteristics, which reflect adaptations to particular deep-sea hydrothermal vent conditions. This review is the first on Bythograeidae, documenting the state of our knowledge regarding their taxonomy, evolution, ecology, morphology and physiology (i.e. osmoregulation, oxygen consumption, sulfide and metal detoxification, temperature tolerance). We also report on recent progress in maintaining bythograeids in an artificial ex situ environment.

Additional keywords: biogeography, evolution, physiology.


References

Ahyong, S. T. (2008). Deepwater crabs from seamounts and chemosynthetic habitats off Eastern New Zealand (Crustacea: Decapoda: Brachyura). Zootaxa 1708, 1–72.

Airriess, C. N., and Childress, J. J. (1994). Homeoviscous properties implicated by the interactive effects of pressure and temperature on the hydrothermal vent crab Bythograea thermydron. The Biological Bulletin 187, 208–214.
Homeoviscous properties implicated by the interactive effects of pressure and temperature on the hydrothermal vent crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar |

Arp, A. J., and Childress, J. J. (1981). Functional characteristics of he blood of the deep sea hydrothermal vent brachyuran crab. Science 214, 559–561.
Functional characteristics of he blood of the deep sea hydrothermal vent brachyuran crab.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXmtVSrsbw%3D&md5=d9bc8260d99f4c6c9a46ce3ed7f94c34CAS |

Atwater, T. (1989). Plate tectonic history of the northeast Pacific and Western North America (Chapter 4). In ‘The Geology of North America. Vol. N. The Eastern Pacific Ocean and Hawaii’. pp. 21–72. (The Geological Society of America.)

Bennett, J. T., and Turekian, K. K. (1984). Radiometric ages of brachyuran crabs from the Galapagos spreading center hydrothermal vent field. Limnology and Oceanography 29, 1088–1091.
Radiometric ages of brachyuran crabs from the Galapagos spreading center hydrothermal vent field.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXlvVOgur0%3D&md5=dd296ad4f998c0c5f6624b3c93f730feCAS |

Berg, C. J., and Van Dover, C. L. (1987). Benthopelagic macrozooplankton communities at and near deep-sea hydrothermal vents in the Eastern Pacific Ocean and Gulf of California. Deep-Sea Research 34, 379–401.
Benthopelagic macrozooplankton communities at and near deep-sea hydrothermal vents in the Eastern Pacific Ocean and Gulf of California.Crossref | GoogleScholarGoogle Scholar |

Biscoito, M., and Saldanha, L. (2000). Occurrence of Chaceon affinis (Decapoda, Geryonidae) in the vicinity of a hydrothermal vent site on the Mid-Atlantic Ridge. Journal of Crustacean Biology 20, 128–131.
Occurrence of Chaceon affinis (Decapoda, Geryonidae) in the vicinity of a hydrothermal vent site on the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar |

Bridges, C. R. (2001). Modulation of haemocyanin oxygen affinity: proper- ties and physiological implications in a changing world. The Journal of Experimental Biology 204, 1021–1032.
| 1:CAS:528:DC%2BD3MXislCltL8%3D&md5=dc48803d71bb64bb6ac79a8f01a25670CAS |

Brösing, A., Richter, S., and Scholtz, G. (2007). Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon. Journal of Zoological Systematics and Evolutionary Research 45, 20–32.
Phylogenetic analysis of the Brachyura (Crustacea, Decapoda) based on characters of the foregut with establishment of a new taxon.Crossref | GoogleScholarGoogle Scholar |

Bui, Q.-T., Casse, N., Leignel, V., Nicolas, V., and Chénais, B. (2008). Widespread occurrence of mariner transposons in coastal crabs. Molecular Phylogenetics and Evolution 47, 1181–1189.
Widespread occurrence of mariner transposons in coastal crabs.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1cXmtlyhtbY%3D&md5=62721d340bc2cdc5407602112d9a9ec9CAS |

Chausson, F. (2001). Adaptation au milieu hydrothermal profond: etude comparative de l’écophysiologie respiratoire des crustacés décapodes des dorsales pacifique et atlantique. Ph.D. Thesis, Université Pierre et Marie Curie, Paris, France.

Chausson, F., Bridges, C. R., Sarradin, P.-M., Green, B. N., Riso, R., Caprais, J.-C., and Lallier, F. H. (2001). Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab. Proteins 45, 351–359.
Structural and functional properties of hemocyanin from Cyanagraea praedator, a deep-sea hydrothermal vent crab.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XksFensg%3D%3D&md5=1847f2404892d968f564f97f9d3de4f5CAS |

Chausson, F., Sanglier, S., Leize, E., Hagège, A., Bridges, C. R., Sarradin, P.-M., Shillito, B., Lallier, F. H., and Zal, F. (2004a). Respiratory adaptations of deep-sea hydrothermal vent crab. Micron 35, 27–29.
Respiratory adaptations of deep-sea hydrothermal vent crab.Crossref | GoogleScholarGoogle Scholar |

Chausson, F., Sanglier, S., Leize, E., Hagège, A., Bridges, C. R., Sarradin, P.-M., Shillito, B., Lallier, F. H., and Zal, F. (2004b). Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge. Micron 35, 31–41.
Respiratory adaptations to the deep-sea hydrothermal vent environment: the case of Segonzacia mesatlantica, a crab from the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2cXptV2nug%3D%3D&md5=db915b88e697b59eee9ea377674237e1CAS |

Chevaldonné, P., Jollivet, D., Desbruyères, D., Lutz, R., and Vrijenhoek, R. (2002). Sister-species of Eastern Pacific hydrothermal vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial COI clock calibration. Cahiers de Biologie Marine 43, 367–370.

Childress, J. J., and Fisher, C. R. (1992). The biology of hydrothermal vent animals: physiology, biochemistry, and autotrophic symbioses. Oceanography and Marine Biology – an Annual Review 30, 337–441.

Colaço, A., Bustamante, P., Fouquet, Y., Sarradin, P. M., and Serrao-Santos, R. (2006). Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food wed. Chemosphere 65, 2260–2267.
Bioaccumulation of Hg, Cu, and Zn in the Azores triple junction hydrothermal vent fields food wed.Crossref | GoogleScholarGoogle Scholar |

Company, J. B., Thuesen, E. V., Childress, J. J., Rotllant, G., and Zal, F. (2008). Effects of food deprivation on enzymatic activities of the Mediterranean deep-sea crab, Geryon longipes A. Milne-Edwards, 1882, and the Pacific hydrothermal vent crab, Bythograea thermydron Williams, 1980 (Decapoda, Brachyura). Crustaceana 81, 67–85.
Effects of food deprivation on enzymatic activities of the Mediterranean deep-sea crab, Geryon longipes A. Milne-Edwards, 1882, and the Pacific hydrothermal vent crab, Bythograea thermydron Williams, 1980 (Decapoda, Brachyura).Crossref | GoogleScholarGoogle Scholar |

Corliss, J. B., and Ballard, R. D. (1977). Oases of life in the cold abyss. National Geographic 152, 441–454.

Corliss, J. B., Dymond, J., Gordon, L. I., Edmond, J. M., Von Herzen, R. P., Ballard, R. D., Green, K., Williams, D., Bainbridge, A., Crane, K., and Van Andel, T. H. (1979). Submarine thermal springs on the Galapagos Rift. Science 203, 1073–1083.
Submarine thermal springs on the Galapagos Rift.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaE1MXhslajs7s%3D&md5=fecd75a837ffa00ecb7a8ee911796d86CAS |

Cosson, R. P., and Vivier, J. P. (1997). Interaction of metallic elements and organisms within hydrothermal vents. Cahiers de Biologie Marine 38, 43–50.

Dahlhoff, E., and Somero, G. N. (1991). Pressure and temperature adaptation of cytosolic malate dehydrogenases of shallow- and deep-living marine invertebrates: evidence for high body temperatures in hydrothermal vent animals. The Journal of Experimental Biology 159, 473–487.
| 1:CAS:528:DyaK3MXmsFantL8%3D&md5=ac7747549d5a925fede8f10427006c5cCAS |

Dahlhoff, E., O’Brien, J., Somero, G. N., and Vetter, R. R. (1991). Temperature effects on mitochondrial from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures. Physiological Zoology 64, 1490–1508.
Temperature effects on mitochondrial from hydrothermal vent invertebrates: evidence for adaptation to elevated and variable habitat temperatures.Crossref | GoogleScholarGoogle Scholar |

Davie, P. J. F. (2002). ‘Zoological Catalogue of Australia. Vol. 19.3B. Crustacea: Malacostraca: Eucarida: Decapoda – Anomura, Brachyura.’ (Eds A. Wells and W. W. K. Houston.) (CSIRO Publishing: Melbourne, Vic., Australia.)

de Saint Laurent, M. (1984). Crustacés décapodes d’un site hydrothermal actif de la dorsale du Pacifique oriental (13° Nord), en provenance de la campagne française Biocyatherm. Compte Rendus de l’Académie des Sciences. 9, 356–360.

de Saint Laurent, M. (1988). Les mégalopes et jeunes stades crabe de trois espèces du genre Bythograea Williams, 1980 (Crustacea Decapoda Brachyura). Oceanologica Acta XX, 99–107.

DeBevoise, A. E., Childress, J. J., and Withers, N. W. (1990). Carotenoids indicate differences in diet of the hydrothermal vent crab. Bythograea thermydron. Marine Biology 105, 109–115.
Carotenoids indicate differences in diet of the hydrothermal vent crab. Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK3cXksFOrurk%3D&md5=dd649079c3f4fd752882a37f4cc0b069CAS |

Decelle, J., Andersen, A., and Hourdez, S. (2010). Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold seeps. Marine Biology 157, 1259–1269.
Morphological adaptations to chronic hypoxia in deep-sea decapod crustaceans from hydrothermal vents and cold seeps.Crossref | GoogleScholarGoogle Scholar |

Desbruyères, D., Segonzac, M., and Bright, M. (Eds) (2006). ‘Handbook of Deep-Sea Hydrothermal Vent Fauna.’ (Land Oberösterreich, Biologiezentrum der Oberösterreichische Landesmuseen: Linz, Austria.)

Dittel, A. I., Epifanio, C. E., and Perovich, G. (2005). Food sources for the early life history stages of the hydrothermal vent crab Bythograea thermydron: a stable isotope approach. Hydrobiologia 544, 339–346.
Food sources for the early life history stages of the hydrothermal vent crab Bythograea thermydron: a stable isotope approach.Crossref | GoogleScholarGoogle Scholar |

Dittel, A. I., Perovich, G., and Epifanio, C. E. (2008). Biology of the vent crab Bythograea thermydron: a brief review. Journal of Shellfish Research 27, 63–77.
Biology of the vent crab Bythograea thermydron: a brief review.Crossref | GoogleScholarGoogle Scholar |

Epifanio, C. E., Perovich, G., Dittel, A. I., and Cary, S. C. (1999). Development and behavior of megalopa larvae and juveniles of the hydrothermal vent crab Bythograea thermydron. Marine Ecology Progress Series 185, 147–154.
Development and behavior of megalopa larvae and juveniles of the hydrothermal vent crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar |

Fisher, C. R., Childress, J. J., Arp, A. J., Brooks, J. M., Distel, D., Favuzzi, J. A., Felbeck, H., Hessler, R., Johnson, K. S., Kennicutt, M. C. I. I., Macko, S. A., Newton, A., Powell, M. A., Somero, G. N., and Soto, T. (1988). Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at the Rose Garden vent on the Galapagos Rift. Deep-Sea Research 35, 1769–1791.
Microhabitat variation in the hydrothermal vent mussel, Bathymodiolus thermophilus, at the Rose Garden vent on the Galapagos Rift.Crossref | GoogleScholarGoogle Scholar |

Fridovich, I. (1998). Oxygen toxicity: a radical explanation. The Journal of Experimental Biology 201, 1203–1209.
| 1:CAS:528:DyaK1cXjvVOns74%3D&md5=ce4ae27d20ad8d2d36ced19c2c79ed2dCAS |

Gonzalez-Rey, M., Serafim, A., Company, R., and Bebianno, M. J. (2007). Adaptation to metal toxicity: a comparison of hydrothermal vent and coastal shrimps. Marine Ecology 28, 100–107.
Adaptation to metal toxicity: a comparison of hydrothermal vent and coastal shrimps.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXkvFegsb4%3D&md5=163ee806864a73e1c7b67832c8d7e8efCAS |

Gorodezky, L. A., and Childress, J. J. (1994). Effects of sulfide exposure history and hemolymph thiosulfate on oxygen-consumption rates and regulation in the hydrothermal vent crab Bythograea thermydron. Marine Biology 120, 123–131.
| 1:CAS:528:DyaK2MXht1ajsrc%3D&md5=0aeda22c58f93606ec871a4bac97d319CAS |

Grassle, J. F., Berg, C. J., Chilmdress, J. J., Hessler, R. R., Jannasch, H. J., Karl, D. M., Lutz, R. A., Mickel, T. J., Rhoads, D. C., Sanders, H. L., Smith, K. L., Somero, G. N., Turner, R. D., Tuttle, J. H., Walsh, P. J., and Williams, A. J. (1979). Galàpagos ’79: initial findings of a deep-sea biological quest. Oceanus 22, 1–10.

Guinot, D. (1988). Les crabs des sources hydrothermales de la dorsale du Pacifique oriental (Campagne BIOCYARISE 1984). In Actes du colloque ‘Les sources hydrothermales de la ride du Pacifique oriental. Biologie et Ecologie’, 4–7 Novembre 1985, Paris. Oceanologica Acta 8, 109–118.

Guinot, D. (1989). Description de Segonzacia gen. nov. et remarques sur Segonzacia mesatlantica (Williams): champagne HYDROSNAKE 1988 sur la dorsale médio-Atlantique (Crustaca Decapoda Brachyura). Bulletin du Muséum National d’Histoire Naturelle, Paris – 4e Série 11, 203–231.

Guinot, D. (1990). Austinograea alaysaea sp. nov., crabe hydrothermal découvert dans le bassin de Lau, Pacifique Sud-Occidental (Crustacea Decapoda Brachyura). Bulletin du Muséum National d’Histoire Naturelle, Paris – 4e Série 11, 879–903.

Guinot, D., and Hurtado, L. (2003). Two new species of hydrothermal vent crabs of the genus Bythograea from the Southern East Pacific Rise and from the Galapagos Rift (Crustacea Decapoda Brachyura Bythograeidae). Comptes Rendus Biologies 326, 423–439.
Two new species of hydrothermal vent crabs of the genus Bythograea from the Southern East Pacific Rise and from the Galapagos Rift (Crustacea Decapoda Brachyura Bythograeidae).Crossref | GoogleScholarGoogle Scholar |

Guinot, D., and Segonzac, M. (1997). Description d’un crabe hydrothermal nouveau du genre Bythograea (Crustacea, Decapoda, Brachyura) et remarques sur les Bythograeidae de la dorsale du Pacifique oriental. Zoosystema 19, 121–149.

Guinot, D., and Segonzac, M. (2006). Crustacea, Brachyura. In ‘Handbook of Deep-Sea Hydrothermal Vent Fauna’, 2nd edn. (Eds D. Desbruyères, M. Segonzac, and M. Bright.) pp. 455–475. (Land Oberösterreich, Biologiezentrum der Oberösterreichische Landesmuseen: Linz, Austria.)

Guinot, D., Hurtado, L., and Vrijenhoek, R. C. (2002). New genus and species of brachyuran crab from the Southern East Pacific Rise (Crustacea Decapoda Brachyura Bythograeidae). Comptes Rendus Biologies 325, 1143–1152.
New genus and species of brachyuran crab from the Southern East Pacific Rise (Crustacea Decapoda Brachyura Bythograeidae).Crossref | GoogleScholarGoogle Scholar |

Guinot, D., Hurtado, L., and Vrijenhoek, R. C. (2006). Brachyuran crabs. In ‘Handbook of Deep-Sea Hydrothermal Vent Fauna’, 2nd edn. (Eds D. Desbruyères, M. Segonzac, and M. Bright.) pp. 455–474. (Land Oberösterreich, Biologiezentrum der Oberösterreichische Landesmuseen: Linz, Austria.)

Guri, M., Durand, L., Cueff-Gauchard, V., Zhindem, M., Crassous, P., Shillito, B., and Cambon-Bonavita, M.-A. (2012). Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata. The ISME Journal 6, 597–609.
Acquisition of epibiotic bacteria along the life cycle of the hydrothermal shrimp Rimicaris exoculata.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XisVGgsbg%3D&md5=48dd0155041e37987947cd18520640d4CAS |

Hamasaki, K., Nakajima, K., Tsuchida, S., Kado, R., and Kitada, S. (2010). Number and duration of zoeal stages of the hydrothermal vent crab Gandalfus yunohana from laboratory reared specimens. Journal of Crustacean Biology 30, 236–240.
Number and duration of zoeal stages of the hydrothermal vent crab Gandalfus yunohana from laboratory reared specimens.Crossref | GoogleScholarGoogle Scholar |

Hand, S. C., and Somero, G. N. (1983). Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and sulfide-rich deep-sea environment. The Biological Bulletin 165, 167–181.
Energy metabolism pathways of hydrothermal vent animals: adaptations to a food-rich and sulfide-rich deep-sea environment.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3sXlslehtbo%3D&md5=3a3cab79a7cffb6f6cfd583590eabb7bCAS |

Hartwig, A. (1998). Carcinogenicity of metals compounds: possible role of DNA repair inhibition. Toxicology Letters 102–103, 235–239.
Carcinogenicity of metals compounds: possible role of DNA repair inhibition.Crossref | GoogleScholarGoogle Scholar |

Haymon, R. M., Fornari, D. J., Von Damm, K. L., Lilley, M. D., Perfit, M. R., Edmond, J. M., Shanks, W. C., Lutz, R. A., Grebmeier, J. M., Carbotte, S., Wright, D., McLaughlin, E., Smith, M., Beedle, N., and Olson, E. (1993). Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′N: direct submersible observations of seafloor phenomenon associated with an eruption event in April 1991. Earth and Planetary Science Letters 119, 85–101.
Volcanic eruption of the mid-ocean ridge along the East Pacific Rise crest at 9°45–52′N: direct submersible observations of seafloor phenomenon associated with an eruption event in April 1991.Crossref | GoogleScholarGoogle Scholar |

Hessler, R. R., and Martin, J. W. (1989). Austinograea williamsi, new genus, new species, a hydrothermal vent crab (Decapoda, Bythograeidae) from the Mariana Back-Arc Basin, Western Pacific. Journal of Crustacean Biology 9, 645–661.
Austinograea williamsi, new genus, new species, a hydrothermal vent crab (Decapoda, Bythograeidae) from the Mariana Back-Arc Basin, Western Pacific.Crossref | GoogleScholarGoogle Scholar |

Hessler, R. R., Smithley, W. M., and Keller, C. H. (1985). Spatial and temporal variation of giant clams, tube worms, and mussels at deep-sea hydrothermal vents. Bulletin of the Biological Society of Washington 6, 411–428.

Hilário, A., Vilar, S., Cunha, M. R., and Tyler, P. (2009). Reproductive aspects of two bythograeid crab species from hydrothermal vents in the Pacific–Antarctic Ridge. Marine Ecology Progress Series 378, 153–160.
Reproductive aspects of two bythograeid crab species from hydrothermal vents in the Pacific–Antarctic Ridge.Crossref | GoogleScholarGoogle Scholar |

Hourdez, S., and Lallier, F. H. (2007). Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates. Reviews in Environmental Science and Biotechnology 6, 143–159.
Adaptations to hypoxia in hydrothermal-vent and cold-seep invertebrates.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXjs1WntL8%3D&md5=5713197de259121cd32f87b343769749CAS |

Jamieson, B. G. M., and Tudge, C. C. (2000). Crustacea–Decapoda. In ‘Reproductive Biology of Invertebrates’. (Ed. B. G. M. Jamieson.) pp. 1–95. (Wiley: Chichester, UK.)

Jannasch, H. W., and Taylor, C. D. (1984). Deep-sea microbiology. Annual Review of Microbiology 38, 487–514.
Deep-sea microbiology.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2cXmtVOhtrc%3D&md5=9a3db9852950363f4a072ce386fb9e10CAS |

Jinks, R. N., Markley, T. L., Taylor, E. E., Perovich, G., Dittel, A. I., Epifanio, C. E., and Cronin, T. W. (2002). Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab. Nature 420, 68–70.
Adaptive visual metamorphosis in a deep-sea hydrothermal vent crab.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVCmu7s%3D&md5=0ee7e7713fdc4cda3a2a2e8ce8897f76CAS |

Johnson, K. S., Beehler, C. L., Sakamoto-Arnold, C. M., and Childress, J. J. (1986). In situ measurements of chemical distributions in a deep-sea hydrothermal vent field. Science 231, 1139–1141.
In situ measurements of chemical distributions in a deep-sea hydrothermal vent field.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28XhsFGns7w%3D&md5=570d144e9158f8b6b3fd3f46c8fd7c69CAS |

Kádár, E., Costa, V., and Segonzac, M. (2007). Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge. The Science of the Total Environment 373, 464–472.
Trophic influences of metal accumulation in natural pollution laboratories at deep-sea hydrothermal vents of the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar |

Kim, S. L., Mullineaux, L. S., and Helfrich, K. R. (1994). Larval dispersal via entrainment into hydrothermal vent plumes. Journal of Geophysical Research 99, 12655–12665.
Larval dispersal via entrainment into hydrothermal vent plumes.Crossref | GoogleScholarGoogle Scholar |

Kim, S.-J., Kim, H. S., and Ju, S.-J. (2014). Mitochondrial genome of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae): genetic differences between individuals from Tofua Arc and Manus Basin. Mitochondrial DNA 25, 251–252.
Mitochondrial genome of the hydrothermal vent crab Austinograea alayseae (Crustacea: Bythograeidae): genetic differences between individuals from Tofua Arc and Manus Basin.Crossref | GoogleScholarGoogle Scholar |

Kim, S.-J., Moon, J.-W., and Ju, S.-J. (2016). Complete mitochondrial genome of the blind vent crab Gandalfus puia (Crustacea, Bythograeidae) from the Tonga Arc. Mitochondrial DNA 27, 2719–2720.
| 1:CAS:528:DC%2BC2sXltlyntbs%3D&md5=e680472f2c2f54fbd95806c32f0e699cCAS |

Lallier, F., Campus, L., Chausson, F., and Truchot, J.-P. (1998). Structure and function of hydrothermal crustacean haemocyanin: an update. Cahiers de Biologie Marine 39, 313–316.

Land, M. F. (2002). What is a naked retina good for? Nature 420, 30.
What is a naked retina good for?Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XosVCmtbk%3D&md5=fcd828c285d59aeea26328c8a057de94CAS |

Leignel, V., Cibois, M., Moreau, B., and Chénais, B. (2007). Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae. Gene 396, 84–92.
Identification of new subgroup of HSP70 in Bythograeidae (hydrothermal crabs) and Xanthidae.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXmtVSrs7c%3D&md5=2f5ad3c371def7423124e81846243f3dCAS |

Leignel, V., Marchand, J., Moreau, B., and Chénais, B. (2008). Metallothionein genes from hydrothermal crabs (Bythograeidae, Decapoda): characterization, sequence analysis, gene expression and comparison with coastal crabs. Comparative Biochemistry and Physiology – C. Toxicology & Pharmacology 148, 6–13.
Metallothionein genes from hydrothermal crabs (Bythograeidae, Decapoda): characterization, sequence analysis, gene expression and comparison with coastal crabs.Crossref | GoogleScholarGoogle Scholar |

Lonsdale, P. (1977). Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers. Deep-Sea Research 24, 857–863.
Clustering of suspension-feeding macrobenthos near abyssal hydrothermal vents at oceanic spreading centers.Crossref | GoogleScholarGoogle Scholar |

Macgregor, R. B. (2002). The interactions of nucleic acids at elevated hydrostatic pressure. Biochimica et Biophysica Acta 1595, 266–276.
The interactions of nucleic acids at elevated hydrostatic pressure.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xjt1Srsr8%3D&md5=f323dfc3ffdaee32625af2e66e9f9dc5CAS |

Marchand, J., Leignel, V., Moreau, B., and Chénais, B. (2009). Characterization and sequence analysis of manganese superoxide dismutases from Brachyura (Crustacea: Decapoda): hydrothermal Bythograeidae versus littoral crabs. Comparative Biochemistry and Physiology – B. Comparative Biochemistry 153, 191–199.
Characterization and sequence analysis of manganese superoxide dismutases from Brachyura (Crustacea: Decapoda): hydrothermal Bythograeidae versus littoral crabs.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD1MzgtVeltQ%3D%3D&md5=d20a8ae7f9b50dc237d9c5e304a9d476CAS |

Marie, B., Genard, B., Rees, J.-F., and Zal, F. (2006). Effect of ambient oxygen concentration on activites of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei. Marine Biology 150, 273–284.
Effect of ambient oxygen concentration on activites of enzymatic antioxidant defences and aerobic metabolism in the hydrothermal vent worm, Paralvinella grasslei.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1elsbvM&md5=9096f8a7adc44b8d0d2bce55b29e18c3CAS |

Martin, J. W., and Dittel, A. (2007). The megalopa stage of the hydrothermal vent crab genus Bythograea (Crustacea, Decapoda, Bythograeidae). Zoosystema 29, 365–379.

Martin, J. W., and Haney, T. A. (2005). Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005. Zoological Journal of the Linnean Society 145, 445–522.
Decapod crustaceans from hydrothermal vents and cold seeps: a review through 2005.Crossref | GoogleScholarGoogle Scholar |

Martin, J. W., Jourharzadeh, P., and Fitterer, P. H. (1998). Description and comparison of major foregut ossicles in hydrothermal vent crabs. Marine Biology 131, 259–267.
Description and comparison of major foregut ossicles in hydrothermal vent crabs.Crossref | GoogleScholarGoogle Scholar |

Martinez, A.-S., Toullec, J.-Y., Shillito, B., Charmantier-Daures, M., and Charmantier, G. (2001). Hydromineral regulation in the hydrothermal vent crab Bythograea thermydron. The Biological Bulletin 201, 167–174.
Hydromineral regulation in the hydrothermal vent crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BD3MnmvFChsQ%3D%3D&md5=769de2cc9c2c9a739298593ed1f93efbCAS |

Mateos, M., Hurtado, L. A., Santamaria, C. A., Leignel, V., and Guinot, D. (2012). Molecular systematics of the deep-sea hydrothermal vent endemic brachyuran family Bythograeidae: a comparison of three Bayesian species tree methods. PLoS One 7, e32066.
Molecular systematics of the deep-sea hydrothermal vent endemic brachyuran family Bythograeidae: a comparison of three Bayesian species tree methods.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XjvFajt7c%3D&md5=03b244f673aecbbe40d5e2e852d1cd57CAS |

McLay, C. (2007). New crabs from hydrothermal vents of the Kermadec Ridge submarine volcanoes, New Zealand: Gandalfus gen. nov. (Bythograeidae) and Xenograpsus (Varunidae) (Decapoda, Brachyura). Zootaxa 1524, 1–22.

McMullin, E. R., Bergquist, D. C., and Fisher, C. R. (2000). Metazoans in extreme environments: adaptations of hydrothermal vent and hydrocarbon seep fauna. Gravitational and Space Biology Bulletin 13, 13–24.
| 1:STN:280:DC%2BD3MnmtFylsw%3D%3D&md5=dd44590eb8b2b076ec2f48b7d97575beCAS |

Michell, F., Peterson, C., Mullineaux, L. S., Fisher, C. R., Mills, S. W., Sancho, G., Johnson, G. A., and Lenthan, H. (2002). Predation structures communities at deep-sea hydrothermal vents. Ecological Monographs 72, 365–382.
Predation structures communities at deep-sea hydrothermal vents.Crossref | GoogleScholarGoogle Scholar |

Mickel, T. J., and Childress, J. J. (1982a). Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). The Biological Bulletin 162, 70–82.
Effects of pressure and temperature on the EKG and heart rate of the hydrothermal vent crab Bythograea thermydron (Brachyura).Crossref | GoogleScholarGoogle Scholar |

Mickel, T. J., and Childress, J. J. (1982b). Effects of temperature, pressure, and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura). Physiological Zoology 55, 199–207.
Effects of temperature, pressure, and oxygen concentration on the oxygen consumption rate of the hydrothermal vent crab Bythograea thermydron (Brachyura).Crossref | GoogleScholarGoogle Scholar |

Mills, S. W., Beaulieu, S. E., and Mullineaux, L. S. (Eds) (2009). Photographic identification guide to larvae at hydrothermal vents. Technical Report WHOI-2009–05, p. 104, Woods Hole Oceanographic Institute, Woods Hole, MA, USA.

Miyake, H., Kitada, M., Tschida, S., Okuyama, Y., and Nakamura, K. (2007). Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure. Marine Ecology 28, 86–92.
Ecological aspects of hydrothermal vent animals in captivity at atmospheric pressure.Crossref | GoogleScholarGoogle Scholar |

Mullineaux, L. S., Adams, D. K., Mills, S. W., and Beaulieu, S. E. (2010). Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption. Proceedings of the National Academy of Sciences of the United States of America 107, 7829–7834.
Larvae from afar colonize deep-sea hydrothermal vents after a catastrophic eruption.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXls1amtLw%3D&md5=54116b85d45553f0e0b8b923ef2bad9fCAS |

Nakajima, K., Hamasaki, K., Tshuchida, S., Kado, R., and Kitada, S. (2010). First zoeal stage of the hydrothermal vent crab, Gandalfus yunohana (Decapoda, Brachyura, Bythograeidae). Crustaceana 83, 525–537.
First zoeal stage of the hydrothermal vent crab, Gandalfus yunohana (Decapoda, Brachyura, Bythograeidae).Crossref | GoogleScholarGoogle Scholar |

Nègre-Sadargues, G., Castillo, R., and Segonzac, M. (2000). Carotenoid pigments and trophic behavior of deep-sea shrimps (Crustacea, Decapoda, Alvinocarididae) from a hydrothermal area of the Mid-Atlantic Ridge. Comparative Biochemistry and Physiology – A. Molecular & Integrative Physiology 127, 293–300.
Carotenoid pigments and trophic behavior of deep-sea shrimps (Crustacea, Decapoda, Alvinocarididae) from a hydrothermal area of the Mid-Atlantic Ridge.Crossref | GoogleScholarGoogle Scholar |

Ng, P. K. L., Guinot, D., and Davie, P. J. F. (2008). Systema brachyurorum: part I. An annotated checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology 17, 1–286.

Perovich, G. M., Epifanio, C. E., Dittel, A. I., and Tyler, P. A. (2003). Spatial and temporal patterns on development of eggs in the vent crab Bythograea thermydron. Marine Ecology Progress Series 251, 211–220.
Spatial and temporal patterns on development of eggs in the vent crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar |

Phleger, C. F., Nelson, M. M., Groce, A. K., Cary, S. C., Coyne, K. J., and Nichols, P. D. (2005). Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp. Comparative Biochemistry and Physiology – B. Toxicology & Pharmacology 141, 196–210.
Lipid composition of deep-sea hydrothermal vent tubeworm Riftia pachyptila, crabs Munidopsis subsquamosa and Bythograea thermydron, mussels Bathymodiolus sp. and limpets Lepetodrilus spp.Crossref | GoogleScholarGoogle Scholar |

Ravaux, J., Zbinden, M., Voss-Foucart, M. F., Compère, P., Goffinet, G., and Gaill, F. (2003). Comparative degradation rates of chitinous exoskeletons from deep-sea environments. Marine Biology 143, 405–412.
Comparative degradation rates of chitinous exoskeletons from deep-sea environments.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXmvVWqsLk%3D&md5=c85209c3bbaec0b102daee0e1e1f232fCAS |

Sanders, N. K., and Childress, J. J. (1992). Specific effects of thiosulphate and l-lactate on hemocyanin–O2 affinity in a brachyuran hydrothermal vent crab. Marine Biology 113, 175–180.

Sanders, N. K., Arp, A. J., and Childress, J. J. (1988). Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans. Respiration Physiology 71, 57–67.
Oxygen binding characteristics of the hemocyanins of two deep-sea hydrothermal vent crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL1cXptVSksQ%3D%3D&md5=686b67edfbde0b94f4e7c1a2dd641d42CAS |

Sanglier, S., Leize, E., Van Dorsselaer, A., and Zal, F. (2003). Comparative ESI-MS study of ~2.2 MDa native hemocyanins from deep-sea and shore crabs: from protein oligomeric state to biotope. Journal of the American Society for Mass Spectrometry 14, 419–429.
Comparative ESI-MS study of ~2.2 MDa native hemocyanins from deep-sea and shore crabs: from protein oligomeric state to biotope.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3sXjs1ahtL0%3D&md5=9ca0fe385c017729d0c4e2712d6408c2CAS |

Saunders, P. M., and Fofonoff, N. P. (1976). Conversion of pressure to depth in the ocean. Deep-Sea Research 23, 109–111.

Segonzac, M., de Saint Laurent, M., and Casanova, B. (1993). L’énigme du comportement trophique des crevettes Alvinocarididae des sites hydrothermaux de la dorsale médio-Atlantique. Cahiers de Biologie Marine 34, 535–571.

Sen, A., Becker, E. L., Podowski, E. L., Wickes, L. N., Ma, S., Mullaugh, K. M., Hourdez, S., Luther, G. W., and Fisher, C. R. (2013). Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge. Deep-Sea Research 72, 48–60.
Distribution of mega fauna on sulfide edifices on the Eastern Lau Spreading Center and Valu Fa Ridge.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhsVCltro%3D&md5=a9cc0d340e0f88ea0bcd7f4d7ae175b3CAS |

Shields, J. D., and Segonzac, M. (2007). New nemertean worms (Carcinonemertidae) on bythograeid crabs (Decapoda, Brachyura) from Pacific hydrothermal vent sites. Journal of Crustacean Biology 27, 681–692.
New nemertean worms (Carcinonemertidae) on bythograeid crabs (Decapoda, Brachyura) from Pacific hydrothermal vent sites.Crossref | GoogleScholarGoogle Scholar |

Shillito, B., Gaill, F., and Ravaux, J. (2014). The IPOCAMP pressure incubator for deep-sea fauna. Journal of Marine Science and Technology 22, 97–102.

Shillito, B., Ravaux, J., Sarrazin, J., Zbinden, M., Sarradin, P.-M., and Barthelemy, D. (2015). Long-term maintenance and public exhibition of deep-sea hydrothermal fauna: the abyssBox project. Deep-Sea Research 121, 137–145.
Long-term maintenance and public exhibition of deep-sea hydrothermal fauna: the abyssBox project.Crossref | GoogleScholarGoogle Scholar |

Somero, G. N. (1992). Biochemical ecology of deep-sea animals. Experientia 48, 537–543.
Biochemical ecology of deep-sea animals.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK38XkvVOjtb0%3D&md5=75e461f566aedbf0ae308f08f238e516CAS |

Takeda, M., Hashimoto, J., and Ohta, S. (2000). A new species of the family Bythograeidae (Crustacea, Decapoda, Brachyura) from the hydrothermal vents along volcanic front of the Philippine Sea plate. Bulletin of the National Science Museum – A. Zoology 26, 159–172.

Tapley, D. W., Buettner, G. R., and Shick, J. M. (1999). Free radicals and chemoluminescence as products of the spontaneous oxidation of sulphide in seawaters, and their biological implications. The Biological Bulletin 196, 52–56.
Free radicals and chemoluminescence as products of the spontaneous oxidation of sulphide in seawaters, and their biological implications.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaK1MXhs12gsrs%3D&md5=59d8d7167071264789d4cbbeeaa54841CAS |

Toullec, J. Y., Vinh, J., Le Caer, J. P., and Shillito, B. (2002). Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron. Peptides 23, 31–42.
Structure and phylogeny of the crustacean hyperglycemic hormone and its precursor from a hydrothermal vent crustacean: the crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38XovFClsw%3D%3D&md5=84d422935220dff3a4f214efc5656fa9CAS |

Tsuchida, S., and Fujikura, K. (2000). Heterochely, relative growth, and gonopod morphology in the bythograeid crab, Austinograea williamsi (Decapoda, Brachyura). Journal of Crustacean Biology 20, 407–414.
Heterochely, relative growth, and gonopod morphology in the bythograeid crab, Austinograea williamsi (Decapoda, Brachyura).Crossref | GoogleScholarGoogle Scholar |

Tsuchida, S., and Hashimoto, J. (2002). A new species of Bythograeid crab, Austinograea rodriguezensis (Decapoda, Brachyura), associated with active hydrothermal vents from the Indian Ocean. Journal of Crustacean Biology 22, 642–650.
A new species of Bythograeid crab, Austinograea rodriguezensis (Decapoda, Brachyura), associated with active hydrothermal vents from the Indian Ocean.Crossref | GoogleScholarGoogle Scholar |

Tsuchida, S., Fujikura, K., Hashimoto, J., Fujiwara, Y., Hunt, J. C., and Lindsay, J. (1998). Molting of bythograeid crabs under laboratory conditions. JAMSTEC Journal of Deep-Sea Research 14, 515–520.

Tudge, C. C., Jamieson, B. G. M., Segonzac, M., and Guinot, D. (1998). Spermatozoal ultrastructure in three species of hydrothermal vent crab, in the genera Bythograea, Austinograea and Segonzacia (Decapoda, Brachyura, Bythograeidae). Invertebrate Reproduction & Development 34, 13–23.
Spermatozoal ultrastructure in three species of hydrothermal vent crab, in the genera Bythograea, Austinograea and Segonzacia (Decapoda, Brachyura, Bythograeidae).Crossref | GoogleScholarGoogle Scholar |

Tunnicliffe, V. (1991). The biology of hydrothermal vents: ecology and evolution. Oceanography and Marine Biology - an Annual Review 29, 319–407.

Van Dover, C. L. (Ed.) (2000). ‘The Ecology of Deep-Sea Hydrothermal Vents.’ (Princeton University Press: Princeton, NJ, USA.)

Van Dover, C. L., Williams, A. B., and Factor, J. R. (1984). The first zoeal stage of a hydrothermal vent crab (Decapoda: Brachyura: Bythograeidae). Proceedings of the Biological Society of Washington 97, 413–418.

Van Dover, C. L., Factor, J. R., Williams, A. B., and Berg, C. J. (1985). Reproductive patterns of decapod crustaceans from hydrothermal vents. Bulletin of the Biological Society of Washington 6, 223–227.

Vetter, R. D., Wells, M. E., Kurtsman, A. L., and Somero, G. N. (1987). Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans. Physiological Zoology 60, 121–137.
Sulfide detoxification by the hydrothermal vent crab Bythograea thermydron and other decapod crustaceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL2sXitVyqt7o%3D&md5=e7b70293a90f36c986eb72ed81f03f1dCAS |

Voight, J. R. (2002). A review of predators and predation at deep-sea hydrothermal vents. Cahiers de Biologie Marine 41, 155–166.

von Sternberg, R. N. V., Cumberlidge, N., and Rodriguez, G. (1999). On the marine sister groups of the freshwater crabs (Crustace: Decapoda: Brachyura). Journal of Zoological Systematics and Evolutionary Research 37, 19–38.
On the marine sister groups of the freshwater crabs (Crustace: Decapoda: Brachyura).Crossref | GoogleScholarGoogle Scholar |

Wheeler, A. J., Murton, B., Coley, J., Lim, A., Carlsson, J., Collins, P., Dorschel, B., Green, D., Judge, M., Nye, V., Benzie, J., Antoniacomi, A., Coughlan, M., and Morris, K. (2013). Moytirra: discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores. Geochemistry Geophysics Geosystems Journal 14, 4170–4184.
Moytirra: discovery of the first known deep-sea hydrothermal vent field on the slow-spreading Mid-Atlantic Ridge north of the Azores.Crossref | GoogleScholarGoogle Scholar |

Williams, A. B. (1980). A new crab family from the vicinity of submarine thermal vents on the Galápagos Rift (Crustacea: Decapoda: Brachyura). Proceedings of the Biological Society of Washington 93, 443–472.

Williams, A. B. (1988). New marine decapod crustaceans from waters influenced by hydrothermal discharge, brine, and hydrocarbon seepage. Fishery Bulletin 86, 263–287.

Winter, R., and Jeworrek, C. (2009). Effect of pressure on membranes. Soft Matter 5, 3157–3173.
Effect of pressure on membranes.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXhtVSlsLvL&md5=03445bfd909d2986fea412d55318d085CAS |

Wolff, T. (2005). Composition and endemism of the deep-sea hydrothermal vent fauna. Cahiers de Biologie Marine 46, 97–104.

Yang, J.-S., Nagasawa, H., Fujiwara, Y., Tsuchida, S., and Yang, W.-J. (2010). The complete mitogenome of the hydrothermal vent crab Gandalfus yunohana (Crustacea: Decapoda: Brachyura): a link between the Bythograeoidea and Xanthoidea. Zoologica Scripta 39, 621–630.
The complete mitogenome of the hydrothermal vent crab Gandalfus yunohana (Crustacea: Decapoda: Brachyura): a link between the Bythograeoidea and Xanthoidea.Crossref | GoogleScholarGoogle Scholar |

Yang, J.-S., Lu, B., Chen, D.-F., Yu, Y.-Q., Yang, F., Nagasawa, H., Tsuchida, S., Fujiwara, Y., and Yang, W.-J. (2013). When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian oceans. Molecular Biology and Evolution 30, 305–309.
When did decapods invade hydrothermal vents? Clues from the Western Pacific and Indian oceans.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3sXhtFGlsLg%3D&md5=cc3fb3f6b750843639b64d3bc2f9783aCAS |

Young, C. M. (2003). Reproduction, development and life history traits. In ‘Ecosystems of the World, Vol. 28. Ecosystems of the Deep Oceans’. (Ed. P. A. Tyler.) pp. 381–426. (Elsevier: Amsterdam, Netherlands.)

Zal, F., Chausson, F., Leize, E., Van Dorsselaer, A., Lallier, F. H., and Green, B. N. (2002). Quadrupole Time-of-flight mass spectrometry of the native hemocyanin of the deep-sea crab Bythograea thermydron. Biomacromolecules 3, 229–231.
Quadrupole Time-of-flight mass spectrometry of the native hemocyanin of the deep-sea crab Bythograea thermydron.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD38Xpt1Sqtw%3D%3D&md5=11fd1ba734ee4051294b68abd5fe2600CAS |