Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Regionalisation is key to establishing reference conditions for neotropical savanna streams

Isabela Martins A E , Raphael Ligeiro B , Robert M. Hughes C , Diego R. Macedo D and Marcos Callisto A
+ Author Affiliations
- Author Affiliations

A Laboratório de Ecologia de Bentos, Departamento de Biologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, CP 486, CEP 31270-901, Belo Horizonte, MG, Brazil.

B Laboratório de Ecologia e Conservação, Instituto de Ciências Biológicas, Universidade Federal do Pará, Rua Augusto Corrêa 01, CEP 66075-110, Belém, PA, Brazil.

C Amnis Opes Institute and Department of Fisheries and Wildlife, Oregon State University, 104 Nash Hall, Corvallis, OR 97331-4501, USA.

D Departamento de Geografia, Instituto de Geociências, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, CEP 31270-901, Belo Horizonte, MG, Brazil.

E Corresponding author. Email: isa.bela57@hotmail.com

Marine and Freshwater Research 69(1) 82-94 https://doi.org/10.1071/MF16381
Submitted: 18 November 2016  Accepted: 23 May 2017   Published: 1 August 2017

Abstract

Areas with minimal anthropogenic influences are frequently used as reference sites and represent the best ecological state available in a region. Streams in such conditions are necessary for evaluating the conservation status of aquatic ecosystems of a region and to monitor them, taking natural environmental variability into consideration. Therefore, the aim of the present study was to analyse whether hydrological units are reliable regional units for aggregating reference sites. To this end, reference sites were studied in three different landscape units of the same hydrological unit. The study tested the hypothesis that water quality, physical habitat structure and the composition and structure of macroinvertebrate assemblages will be more similar for sites in the same landscape unit than for sites located in different landscape units in the same hydrological unit. The study showed that taxonomic richness and composition of the macroinvertebrate assemblages were negatively affected by site slope and positively affected by the presence of leaf packs on the streambed. The three landscape units supported significantly different macroinvertebrate assemblages and indicator taxa. Therefore, a hydrological unit does not constitute a homogeneous entity in terms of environmental variables and biological composition if it incorporates high landscape heterogeneity. These results should improve and facilitate the selection of reference sites for biomonitoring programs and for managing tropical headwater streams.

Additional keywords: benthic macroinvertebrates, bioindicators, Brazil, ecoregions, headwater streams, landscape units, least-disturbed conditions.


References

Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Ng, R., Sindorf, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., Lopez, H. L., Reis, R. E., Lundberg, J. G., Perez, M. H. S., and Petry, P. (2008). Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58, 403–414.
Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation.Crossref | GoogleScholarGoogle Scholar |

Agra, J. U. M. (2014). Condições de referência em riachos de cabeceira tropicais. M.Sc. Thesis, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.

Allan, J. D. (2004). Landscapes and riverscapes: the influence of land use on stream ecosystems. Annual Review of Ecology and Systematics 35, 257–284.
Landscapes and riverscapes: the influence of land use on stream ecosystems.Crossref | GoogleScholarGoogle Scholar |

American Public Health Association (1998). ‘Standard Methods for the Examination of Water and Wastewater.’ (APHA: Washington, DC, USA.)

Anderson, M. J., Ellinqsen, K. E., and McArdle, B. H. (2006). Multivariate dispersion as a measure of beta diversity. Ecology Letters 9, 683–693.
Multivariate dispersion as a measure of beta diversity.Crossref | GoogleScholarGoogle Scholar |

Anselin, L., and Bera, K. A. (1998). Spatial dependence in linear regression models with an introduction to spatial econometrics. In ‘Handbook of Applied Economic Statistics’. (Eds A. Ullah and D. E. A. Giles.) pp. 237–290. (Marcel Dekker: New York, NY, USA.)

Bailey, R. G. (1980). Descriptions of the Ecoregions of the United States. Miscellaneous Publication number 1391, USDA Forest Service, Ogden, UT, USA. Available at Descriptions of the Ecoregions of the United States. Miscellaneous Publication number 1391 [Verified 27 July 2017].

Bailey, R. G. (1995). ‘Ecosystem Geography.’ (Springer-Verlag: New York, NY, USA.)

Bailey, R. C., Norris, R. H., and Reynoldson, T. B. (2004). ‘Bioassessment of Freshwater Ecosystems Using the Reference Condition Approach.’ (Kluwer Academic Publishers: Boston, MA, USA.)

Barbour, M. T., Gerritsen, J., Snyder, B. D., and Stribling, J. B. (1999). Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. EPA 841-B-99-002. Environmental Protection Agency, Washington, DC, USA.

Benda, L., Hassan, M. A., Church, M., and May, C. L. (2005). Geomorphology of steepland headwaters: the transition from hillslopes to channels. Journal of the American Water Resources Association 41, 835–851.
Geomorphology of steepland headwaters: the transition from hillslopes to channels.Crossref | GoogleScholarGoogle Scholar |

Bouchard, R. W., Niemela, S., Genet, J. A., Yoder, C. O., Sandberg, J., Chirhart, J. W., Feist, M., Lundeen, B., and Helwig, D. (2016). A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape. Environmental Monitoring and Assessment 188, 196.
A novel approach for the development of tiered use biological criteria for rivers and streams in an ecologically diverse landscape.Crossref | GoogleScholarGoogle Scholar |

Bowman, M. F., and Somers, K. M. (2005). Considerations when using the reference condition approach for bioassessment of freshwater ecosystems. Water Quality Research Journal of Canada 40, 347–360.
| 1:CAS:528:DC%2BD2MXht1yksrfL&md5=57b038c2e7813f4c649d3da7841db235CAS |

Boyero, L., Pearson, R. G., Gessner, M. O., Dudgeon, D., Ramírez, A., Yule, C. M., Callisto, M., Pringle, C. M., Encalada, A. C., Arunachalam, M., Mathooko, J., Helson, J. E., Rincón, J., Bruder, A., Cornejo, A., Flecker, A. S., Mathuriau, C., M’Erimba, C., Gonçalves, J. F., Moretti, M., and Jinggut, T. (2015). Leaf-litter breakdown in tropical streams: is variability the norm? Freshwater Science 34, 759–769.
Leaf-litter breakdown in tropical streams: is variability the norm?Crossref | GoogleScholarGoogle Scholar |

Bryce, S. A., Lomnicky, G. A., and Kaufmann, P. R. (2010). Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria. Journal of the North American Benthological Society 29, 657–672.
Protecting sediment-sensitive aquatic species in mountain streams through the application of biologically based streambed sediment criteria.Crossref | GoogleScholarGoogle Scholar |

Burnham, K., and Anderson, D. (2002). ‘Model Selection and Multimodel Inference: a Practical Information–Theoretical Approach.’ (Springer: New York, NY, USA.)

Buss, D. F., Carlisle, D., Chon, T. S., Culp, J., Harding, J. S., Keizer-Vlek, H. E., Robinson, W. A., Strachan, S., Thirion, C., and Hughes, R. M. (2015). Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environmental Monitoring and Assessment 187, 4132.
Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs.Crossref | GoogleScholarGoogle Scholar |

Callisto, M., Alves, C. B. M., Lopes, J. M., and Castro, M. A. (2014). ‘Ecological Conditions in Hydropower Basins’. (Companhia Energética de Minas Gerais: Belo Horizonte, Brazil.)

Carmouze, J. P. (1994). ‘O metabolismo dos ecossistemas aquáticos: fundamentos teóricos, métodos de estudo e análises químicas.’ (Edgar Blücher Ltda/Fundação de Amparo à Pesquisa do Estado de São Paulo: São Paulo, Brazil.)

Chen, K., Hughes, R. M., Xu, S., Zhang, J., Cai, D., and Wang, B. (2014). Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples. Ecological Indicators 36, 142–151.
Evaluating performance of macroinvertebrate-based adjusted and unadjusted multi-metric indices (MMI) using multi-season and multi-year samples.Crossref | GoogleScholarGoogle Scholar |

Chessman, B. C. (2004). Bioassessment without reference sites: use of environmental filters to predict natural assemblages of river macroinvertebrates. Journal of the North American Benthological Society 23, 599–615.
Bioassessment without reference sites: use of environmental filters to predict natural assemblages of river macroinvertebrates.Crossref | GoogleScholarGoogle Scholar |

Cooper, D. J., Andersen, D. C., and Chimner, R. A. (2003). Multiple pathways for woody plant establishment on floodplains at local and regional scales. Journal of Ecology 91, 182–196.
Multiple pathways for woody plant establishment on floodplains at local and regional scales.Crossref | GoogleScholarGoogle Scholar |

Corbet, P. S. (1999) ‘Dragonflies: Behavior and Ecology of Odonata.’ (Comstock Publishing Associates: Ithaca, NY, USA.)

Costa, C., Ide, S., and Simonka, C. E. (2006). ‘Insetos Imaturos-Metamorfose e Identificacão.’ (Holos: Ribeirao Preto, Brazil.)

Cummins, K. W., Peterson, R. C., Howard, F. O., Wuychek, J. C., and Holt, V. I. (1973). The utilization of leaf litter by stream detritivores. Ecology 54, 336–345.
The utilization of leaf litter by stream detritivores.Crossref | GoogleScholarGoogle Scholar |

Davies, S. P., and Jackson, S. K. (2006). The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems. Ecological Applications 16, 1251–1266.
The biological condition gradient: a descriptive model for interpreting change in aquatic ecosystems.Crossref | GoogleScholarGoogle Scholar |

Davies, P. E., Harris, J., Hillman, T., and Walker, K. (2010). The Sustainable Rivers Audit: assessing river ecosystem health in the Murray–Darling Basin, Australia. Marine and Freshwater Research 61, 764–777.
The Sustainable Rivers Audit: assessing river ecosystem health in the Murray–Darling Basin, Australia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXptFGrs7Y%3D&md5=a4aae469978adb34a4fe930b25fa079eCAS |

De Cáceres, M., and Legendre, P. (2009). Associations between species and groups of sites: indices and statistical inference. Ecology 90, 3566–3574.
Associations between species and groups of sites: indices and statistical inference.Crossref | GoogleScholarGoogle Scholar |

de Castro Vasconcelos, M., and Melo, A. S. (2008). An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream. Hydrobiologia 610, 321–329.
An experimental test of the effects of inorganic sediment addition on benthic macroinvertebrates of a subtropical stream.Crossref | GoogleScholarGoogle Scholar |

de Oliveira-Junior, J. M. B., Shimano, Y., Gardner, T. A., Hughes, R. M., De Marco Júnior, P., and Juen, L. (2015). Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon. Austral Ecology 40, 733–744.
Neotropical dragonflies (Insecta: Odonata) as indicators of ecological condition of small streams in the eastern Amazon.Crossref | GoogleScholarGoogle Scholar |

Diniz-Filho, J. A. F., Bini, L. M., and Hawkins, B. A. (2003). Spatial autocorrelation and red herrings in geographical ecology. Global Ecology and Biogeography 12, 53–64.
Spatial autocorrelation and red herrings in geographical ecology.Crossref | GoogleScholarGoogle Scholar |

Dufrene, M., and Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67, 345–366.

Elias, C. L., Calapez, A. R., Almeida, S. F. P., Chessman, B., Simões, N., and Feio, M. J. (2016). Predicting reference conditions for river bioassessment by incorporating boosted trees in the environmental filters method. Ecological Indicators 69, 239–251.
Predicting reference conditions for river bioassessment by incorporating boosted trees in the environmental filters method.Crossref | GoogleScholarGoogle Scholar |

Feio, M. J., Reynoldson, T. B., Ferreira, V., and Graça, M. A. S. (2007). A predictive model for freshwater bioassessment (Mondego River, Portugal). Hydrobiologia 589, 55–68.
A predictive model for freshwater bioassessment (Mondego River, Portugal).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXotVagurw%3D&md5=c011ccf5075c9bbe6eaae91a089ca614CAS |

Feio, M. J., Norris, R. H., Graça, M. A. S., and Nichols, S. (2009). Water quality assessment of Portuguese streams: regional or national predictive models? Ecological Indicators 9, 791–806.
Water quality assessment of Portuguese streams: regional or national predictive models?Crossref | GoogleScholarGoogle Scholar |

Feio, M. J., Ferreira, W. R., Macedo, D. R., Eller, A. P., Alves, C. B. M., França, J. S., and Callisto, M. (2015). Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions. River Research and Applications 31, 70–84.
Defining and testing targets for the recovery of tropical streams based on macroinvertebrate communities and abiotic conditions.Crossref | GoogleScholarGoogle Scholar |

Feminella, J. W. (2000). Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USA. Journal of the North American Benthological Society 19, 442–461.
Correspondence between stream macroinvertebrate assemblages and 4 ecoregions of the southeastern USA.Crossref | GoogleScholarGoogle Scholar |

Fernández, H. R., and Domínguez, E. (2001). ‘Guia para la Determinación de los Artrópodos Bentônicos Sudamericanos.’ (Universidad Nacional de Tucumán: San Miguel de Tucumán, Argentina.)

Ferreira, W. R., Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Oliveira, L. G., and Callisto, M. (2014). Importance of environmental factors on the richness and distribution of benthic macroinvertebrates in tropical headwater streams. Freshwater Science 33, 860–871.
Importance of environmental factors on the richness and distribution of benthic macroinvertebrates in tropical headwater streams.Crossref | GoogleScholarGoogle Scholar |

Ferreira, W. R., Ligeiro, R., Macedo, D. R., Hughes, R. M., Kaufmann, P. R., Oliveira, L. G., and Callisto, M. (2015). Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado? Annales de Limnologie 51, 115–127.
Is the diet of a typical shredder related to the physical habitat of headwater streams in the Brazilian Cerrado?Crossref | GoogleScholarGoogle Scholar |

França, J. S., Gregório, R. S., De Paula, J. D., Gonçalves, J. F., Ferreira, F. A., and Callisto, M. (2009). Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream. Marine and Freshwater Research 60, 990–998.
Composition and dynamics of allochthonous organic matter inputs and benthic stock in a Brazilian stream.Crossref | GoogleScholarGoogle Scholar |

Golterman, H. L., Clymo, R. S., and Ohmstad, M. A. M. (1978). ‘Methods for Physical and Chemical Analysis of Freshwaters.’ (Blackwell Scientific: London, UK.)

Gonçalves, J. F., and Callisto, M. (2013). Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brasil. Aquatic Botany 109, 8–13.
Organic-matter dynamics in the riparian zone of a tropical headwater stream in Southern Brasil.Crossref | GoogleScholarGoogle Scholar |

Gotelli, N. J., and Ellison, A. M. (2004). ‘A Primer of Ecological Statistics.’ (Sinauer Associates: Boston, MA, USA)

Graça, M. A. S., Ferreira, W. R., Firmiano, K., França, J., and Callisto, M. (2015). Macroinvertebrate identity, not diversity, is affected by substrate particle size in selected low order tropical streams. Limnetica 34, 29–40.

Hamada, N., Nessimian, J. L., and Querino, R. B. (2014). ‘Insetos Aquáticos na Amazônia Brasileira: Taxonomia, Biologia e Ecologia.’ (Editora do INPA: Manaus, Brazil.)

Harrell, F. E. (2001). ‘Regression Modeling Strategies: with Applications to Linear Models. Logistic Regression and Survival Analysis.’ (Springer: New York, NY, USA.)

Hawkins, C. P., Norris, R. H., Gerritsen, J., Hughes, R. M., Jackson, S. K., Johnson, R. K., and Stevenson, R. J. (2000). Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations. Journal of the North American Benthological Society 19, 541–556.
Evaluation of the use of landscape classifications for the prediction of freshwater biota: synthesis and recommendations.Crossref | GoogleScholarGoogle Scholar |

Heino, J., Mykra, H., Kotanen, J., and Muotka, T. (2007). Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path? Ecography 30, 217–230.
Ecological filters and variability in stream macroinvertebrate communities: do taxonomic and functional structure follow the same path?Crossref | GoogleScholarGoogle Scholar |

Heino, J., Melo, A. S., Bini, L. M., Altermatt, F., Al-shami, S. A., Angeler, D. G., Bonada, N., Brand, C., Callisto, M., Cottenie, K., Dangles, O., Dudgeon, D., Encalada, A., Gothie, E., Gronroos, M., Hamada, N., Jacobsen, D., Landeiro, V. L., Ligeiro, R., Martins, R. T., Miserendino, M. L., Rawi, C. S. M., Rodrigues, M. E., Roque, F. O., Sandin, L., Schmera, D., Sgarbi, L. F., Simaika, J. P., Siqueira, T., Thompson, R. M., and Townsend, C. R. (2015). A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels. Ecology and Evolution 5, 1235–1248.
A comparative analysis reveals weak relationships between ecological factors and beta diversity of stream insect metacommunities at two spatial levels.Crossref | GoogleScholarGoogle Scholar |

Herlihy, A. T., Paulsen, S. G., Van Sickle, J., Stoddard, J. L., Hawkins, C. P., and Yuan, L. L. (2008). Striving for consistency in a national assessment: the challenges of applying a reference-condition approach at a continental scale. Journal of the North American Benthological Society 27, 860–877.
Striving for consistency in a national assessment: the challenges of applying a reference-condition approach at a continental scale.Crossref | GoogleScholarGoogle Scholar |

Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., and Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25, 1965–1978.
Very high resolution interpolated climate surfaces for global land areas.Crossref | GoogleScholarGoogle Scholar |

Hughes, R. M., Larsen, D. P., and Omernik, J. M. (1986). Regional reference sites: a method for assessing stream potentials. Environmental Management 10, 629–635.
Regional reference sites: a method for assessing stream potentials.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL28Xlt1Shu78%3D&md5=e3224757ae8c1fed17d60dfe39032b21CAS |

Hughes, R. M., Heiskary, S. A., Matthews, W. J., and Yoder, C. O. (1994). Use of ecoregions in biological monitoring. In ‘Biological Monitoring of Freshwater Ecosystems’. (Ed. S. L. Loeb.) pp. 125–151. (Lewis: Chelsea, MI, USA.)

Jerez, V., and Moroni, J. (2006). Diversity of freshwater beetles of Chile. Gayana 70, 72–81.

Kaufmann, P. R., and Hughes, R. M. (2006). Geomorphic and anthropogenic influences on fish and amphibians in Pacific Northwest coastal streams. In ‘Landscape Influences on Stream Habitat and Biological Assemblages’. (Eds R. M. Hughes, L. Wang, and P. W. Seelbach.) pp. 429–455. (American Fisheries Society: Bethesda, MD, USA).

Kaufmann, P. R., Levine, P., Robison, E. G., Seeliger, C., and Peck, D. V. (1999). Quantifying physical habitat in wadeable stream. EPA/620/R-99/003, US Environmental Protection Agency, Washington DC, USA.

Legendre, P., and Legendre, L. (1998). ‘Numerical Ecology.’ (Elsevier: Amsterdam, Netherlands.)

Ligeiro, R., Hughes, R. M., Kaufmann, P. R., Macedo, D. R., Firmiano, K. R., Ferreira, W. R., Oliveira, O., Melo, A. S., and Callisto, M. (2013). Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness. Ecological Indicators 25, 45–57.
Defining quantitative stream disturbance gradients and the additive role of habitat variation to explain macroinvertebrate taxa richness.Crossref | GoogleScholarGoogle Scholar |

Little, T. D., Lindenberger, U., and Nesselroade, J. R. (1999). On selecting indicators for multivariate measurement and modeling with latent variables: when ‘good’ indicators are bad and ‘bad’ indicators are good. Psychological Methods 4, 192–211.
On selecting indicators for multivariate measurement and modeling with latent variables: when ‘good’ indicators are bad and ‘bad’ indicators are good.Crossref | GoogleScholarGoogle Scholar |

Macedo, D. R., Hughes, R. M., Ligeiro, R., Ferreira, W. R., Castro, M. A., Junqueira, N. T., Oliveira, D. R., Firmiano, K. R., Kaufmann, P. R., Pompeu, P. S., and Callisto, M. (2014). The relative influence of catchment and site variables on fish and macroinvertebrate richness in Cerrado biome streams. Landscape Ecology 29, 1001–1016.
The relative influence of catchment and site variables on fish and macroinvertebrate richness in Cerrado biome streams.Crossref | GoogleScholarGoogle Scholar |

Macedo, D. R., Hughes, R. M., Ferreira, W. R., Firmiano, K. R., Silva, D. R. O., Ligeiro, R., Kaufmann, P. R., and Callisto, M. (2016). Development of a benthic macroinvertebrate multimetric index (MMI) for neotropical savanna headwater streams. Ecological Indicators 64, 132–141.
Development of a benthic macroinvertebrate multimetric index (MMI) for neotropical savanna headwater streams.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F. J. H., Heron, J., and Talling, J. F. (1978). ‘Water Analysis: Some Revised Methods for Limnologists.’ (Freshwater Biological Association: Ambleside, UK.)

Merritt, R. W., and Cummins, K. W. (1996). ‘An Introduction to the Aquatic Insects of North America.’ (Kendall/Hunt Publishing: Dubuque, ID, USA)

Montgomery, D. R., Grant, G. E., and Sullivan, K. (1995). Watershed analysis as a framework for implementing ecosystem management. Water Resources Bulletin 31, 369–386.
Watershed analysis as a framework for implementing ecosystem management.Crossref | GoogleScholarGoogle Scholar |

Moretti, M. S., Loyola, R. D., Becker, B., and Callisto, M. (2009). Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae). Hydrobiologia 630, 199–206.
Leaf abundance and phenolic concentrations codetermine the selection of case-building materials by Phylloicus sp. (Trichoptera, Calamoceratidae).Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXmvVOhsLY%3D&md5=002a9f88d403229635732d2dae287725CAS |

Moya, N., Tomanova, S., and Oberdorff, T. (2007). Initial development of a multi-metric index based on aquatic macroinvertebrates to assess streams condition in the Upper Isiboro-Sé cure Basin, Bolivian Amazon. Hydrobiologia 589, 107–116.
Initial development of a multi-metric index based on aquatic macroinvertebrates to assess streams condition in the Upper Isiboro-Sé cure Basin, Bolivian Amazon.Crossref | GoogleScholarGoogle Scholar |

Moya, N., Hughes, R. M., Dominguez, E., Gibon, F.-M., Goita, E., and Oberdorff, T. (2011). Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams. Ecological Indicators 11, 840–847.
Macroinvertebrate-based multimetric predictive models for measuring the biotic condition of Bolivian streams.Crossref | GoogleScholarGoogle Scholar |

Mugnai, R., Nessimian, J. L., and Baptista, D. F. (2010). ‘Manual de Identificação de Macroinvertebrados Aquáticos do Estado do Rio de Janeiro.’ (Technical Books Editora: Rio de Janeiro, Brazil.)

Muxika, I., Borja, A., and Bald, J. (2007). Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive. Marine Pollution Bulletin 55, 16–29.
Using historical data, expert judgement and multivariate analysis in assessing reference conditions and benthic ecological status, according to the European Water Framework Directive.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD28Xht1equrrN&md5=7a181ef4b355a9bb4a5b58f7fbd9fe84CAS |

Nijboer, R. C., Johnson, R. K., Verdonschot, P. F. M., Sommerhäuser, M., and Buffagni, A. (2004). Establishing reference conditions for European streams. Hydrobiologia 516, 91–105.
Establishing reference conditions for European streams.Crossref | GoogleScholarGoogle Scholar |

Omernik, J. M. 1995. Ecoregions: a spatial framework for environmental management. In ‘Biological Assessment and Criteria: Tools for Water Resource Planning and Decision Making’. (Eds W. Davis and T. Simon.) pp. 49–62. (Lewis Publishers: Boca Raton, FL, USA.)

Omernik, J. M., and Bailey, R. G. (1997). Distinguishing between watersheds and ecoregions. Journal of the American Water Resources Association 33, 935–949.
Distinguishing between watersheds and ecoregions.Crossref | GoogleScholarGoogle Scholar |

Omernik, J. M., and Griffith, G. E. (2014). Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework. Environmental Management 54, 1249–1266.
Ecoregions of the conterminous United States: evolution of a hierarchical spatial framework.Crossref | GoogleScholarGoogle Scholar |

Omernik, J. M., Griffith, G. E., Hughes, R. M., Weber, M. H., and Glover, J. B. (2017). How misapplication of the hydrologic unit framework diminishes the meaning of watersheds. Environmental Management 60, 1–11.
How misapplication of the hydrologic unit framework diminishes the meaning of watersheds.Crossref | GoogleScholarGoogle Scholar |

Pardo, I., Gómez-Rodríguez, C., Wasson, J. G., Owen, R., van de Bund, W., Kelly, M., Bennett, C., Birk, S., Buffagni, A., Erba, S., Mengin, N., Murray-Bligh, J., and Ofenböeck, G. (2012). The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems. The Science of the Total Environment 420, 33–42.
The European reference condition concept: a scientific and technical approach to identify minimally-impacted river ecosystems.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38Xjt1GgtLk%3D&md5=8050c556063594a12b75211246e588ebCAS |

Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., Lazor-Chak, J. M., McCormick, F. H., Peterson, S. A., Ringold, P. L., Magee, T., and Cappaert, M. R. (2006). Environmental monitoring and assessment program – surface waters western pilot study: field operations manual for wadeable streams. EPA 600/R-06/003, US Environmental Protection Agency, Washington DC, USA.

Pereira, P. S., Souza, N. F., Baptista, D. F., Oliveira, J. L. M., and Buss, D. F. (2016). Incorporating natural variability in the bioassessment of stream condition in the Atlantic Forest biome, Brazil. Ecological Indicators 69, 606–616.
Incorporating natural variability in the bioassessment of stream condition in the Atlantic Forest biome, Brazil.Crossref | GoogleScholarGoogle Scholar |

Pérez, G. R. (1988). ‘Guía para el Estudio de los Macroinvertebrados Acuáticos del Departamento de Antioquia.’ (Editorial Presencia Ltda: Bogotá, Colombia.)

Pescador, M. L., Rasmussen, A. K., and Harris, S. C. (2004). ‘Identification Manual for the Caddisfly (Trichoptera) Larvae of Florida.’ (Department of Environmental Protection: Tallahassee, FL, USA.)

Petts, G. E. (2000). A perspective on the abiotic processes sustaining the ecological integrity on running waters. Hydrobiologia 422/423, 15–27.
A perspective on the abiotic processes sustaining the ecological integrity on running waters.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3cXlvVamsrk%3D&md5=274e5b2807618e0cbd9cabd821583dd4CAS |

Pinto, B. C. T., Araujo, F. G., Rodriguez, V. D., and Hughes, R. M. (2009). Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paraíba do Sul, Brazil. Freshwater Biology 54, 2600–2615.
Local and ecoregion effects on fish assemblage structure in tributaries of the Rio Paraíba do Sul, Brazil.Crossref | GoogleScholarGoogle Scholar |

Poff, N. L. (1997). Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16, 391–409.
Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology.Crossref | GoogleScholarGoogle Scholar |

Rabeni, C. F., and Doisy, K. R. (2000). Correspondence of stream benthic invertebrate assemblages to regional classifications in Missouri. Journal of the North American Benthological Society 19, 419–428.
Correspondence of stream benthic invertebrate assemblages to regional classifications in Missouri.Crossref | GoogleScholarGoogle Scholar |

Rangel, T. F. L. V. B., Diniz-Filho, J. A. F., and Bini, L. M. (2010). SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33, 46–50.
SAM: a comprehensive application for spatial analysis in macroecology.Crossref | GoogleScholarGoogle Scholar |

Reynoldson, T. B., Rosenberg, D. M., and Resh, V. H. (2001). Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser River catchment, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences 58, 1395–1410.
Comparison of models predicting invertebrate assemblages for biomonitoring in the Fraser River catchment, British Columbia.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD3MXmsV2ksLc%3D&md5=3945e48043da1dea88d4ab4a17fc3e24CAS |

Ribeiro, K. T., and Freitas, L. (2010). Potential impacts of changes to Brazilian forest code in campos rupestres and campos de altitude. Biota Neotropica 10, 239–246.
Potential impacts of changes to Brazilian forest code in campos rupestres and campos de altitude.Crossref | GoogleScholarGoogle Scholar |

Riley, S. J., DeGloria, S. D., and Elliot, R. (1999). A terrain ruggedness index that quantifies topographic heterogeneity. Intermountain Journal of Sciences 5, 23–27.

Sánchez-Montoya, M. M., Puntí, T., Suárez, M. L., Vidal-Abarca, M. R., Rieradevall, M., Poquet, J. M., Zamora-Munõz, C., Robles, S., Álvarez, M., Alba-Tercedor, J., Toro, M., Pujante, A., Munné, A., and Prat, N. (2007). Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams. Freshwater Biology 52, 2240–2255.
Concordance between ecotypes and macroinvertebrate assemblages in Mediterranean streams.Crossref | GoogleScholarGoogle Scholar |

Sánchez-Montoya, M. M., Vidal-Abarca, M. R., Puntí, T., Poquet, J. M., Prat, N., Rieradevall, M., Alba-Tercedor, J., Zamora-Muñoz, C., Toro, M., Robles, S., Álvarez, M., and Suárez, M. L. (2009). Defining criteria to select reference sites in Mediterranean streams. Hydrobiologia 619, 39–54.
Defining criteria to select reference sites in Mediterranean streams.Crossref | GoogleScholarGoogle Scholar |

Silva, D. R. O., Ligeiro, R., Hughes, R. M., and Callisto, M. (2014). Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment 186, 5479–5488.
Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC2cXnslOgu7w%3D&md5=222b01ff9b4faed666efb928be8916a2CAS |

Silva, D. R. O., Herlihy, A. T., Hughes, R. M., and Callisto, M. (2017). An improved macroinvertebrate multimetric index for assessment of wadeable streams in the neotropical savanna, Brazil. Ecological Indicators 81, 514–525.
An improved macroinvertebrate multimetric index for assessment of wadeable streams in the neotropical savanna, Brazil.Crossref | GoogleScholarGoogle Scholar |

Stoddard, J. L., Larsen, D. P., Hawkins, C. P., Johnson, R. K., and Norris, R. H. (2006). Setting expectations for the ecological condition of streams: the concept of reference condition. Ecological Applications 16, 1267–1276.
Setting expectations for the ecological condition of streams: the concept of reference condition.Crossref | GoogleScholarGoogle Scholar |

Stoddard, J. L., Herlihy, A. T., Peck, D. V., Hughes, R. M., Whittier, T. R., and Tarquinio, E. (2008). A process for creating multi-metric indices for large-scale aquatic surveys. Journal of the North American Benthological Society 27, 878–891.
A process for creating multi-metric indices for large-scale aquatic surveys.Crossref | GoogleScholarGoogle Scholar |

Strahler, A. N. (1957). Quantitative analysis of watershed geomorphology. Transactions – American Geophysical Union 38, 913–920.
Quantitative analysis of watershed geomorphology.Crossref | GoogleScholarGoogle Scholar |

Tobler, A. W. R. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography 46, 234–240.
A computer movie simulating urban growth in the Detroit region.Crossref | GoogleScholarGoogle Scholar |

US Environmental Protection Agency (2016). National rivers and streams assessment 2008–2009: a collaborative survey. EPA/841/R-16/007. (Office of Water and Office of Research and Development: Washington, DC, USA). Available at http://www.epa.gov/national-aquatic-resource-surveys/nrsa [Verified April 2017].

US Geological Survey (2015). SRTMGL1: NASA Shuttle Radar Topography Mission Global 1 arc second V003. (Land Processes Distributed Active Archive Center.) 10.5067/MEASURES/SRTM/SRTMGL1.003

Van Sickle, J., and Hughes, R. M. (2000). Classification strengths of ecoregions, basins and geographic clusters for aquatic vertebrates in Oregon. Journal of the North American Benthological Society 19, 370–384.
Classification strengths of ecoregions, basins and geographic clusters for aquatic vertebrates in Oregon.Crossref | GoogleScholarGoogle Scholar |

Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R., and Cushing, C. E. (1980). The river continuum concept. Canadian Journal of Fisheries and Aquatic Sciences 37, 130–137.
The river continuum concept.Crossref | GoogleScholarGoogle Scholar |

Villamarín, C., Rieradevall, M., Paul, M. J., Barbour, M. T., and Prat, N. (2013). A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: the IMEERA index. Ecological Indicators 29, 79–92.
A tool to assess the ecological condition of tropical high Andean streams in Ecuador and Peru: the IMEERA index.Crossref | GoogleScholarGoogle Scholar |

von Sperling, E. (2012). Hydropower in Brazil: overview of positive and negative environmental aspects. Energy Procedia 18, 110–118.
Hydropower in Brazil: overview of positive and negative environmental aspects.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC38XpsVWnsL8%3D&md5=672f7743dce8fa333c39355be4091dd4CAS |

Wang, L., Brenden, T., Seelbach, P., Cooper, A., Allan, D., Clark, R., and Wiley, R. (2008). Landscape based identification of human disturbance gradients and reference conditions for Michigan streams. Environmental Monitoring and Assessment 141, 1–17.
Landscape based identification of human disturbance gradients and reference conditions for Michigan streams.Crossref | GoogleScholarGoogle Scholar |

Wasson, J. G., Barrera, S., Barrère, B., Binet, D., Collomb, D., Gonzales, I., Gourdin, F., Guyot, J. L. and Rocabado, G. (2002). Hydro-ecoregions of the Bolivian Amazon: a geographical framework for the functioning of river ecosystems. In ‘The Ecohydrology of South American Rivers and Wetlands’. (Ed. M.E. McClain.) IAHS Special Publication number 6, pp. 69–91. (IAHS Press: Wallingford, UK.)

Whittier, T. R., Hughes, R. M., and Larsen, D. P. (1988). The correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon. Canadian Journal of Fisheries and Aquatic Sciences 45, 1264–1278.
The correspondence between ecoregions and spatial patterns in stream ecosystems in Oregon.Crossref | GoogleScholarGoogle Scholar |

Whittier, T. R., Stoddard, J. L., Larsen, D. P., and Herlihy, A. T. (2007). Selecting reference sites for stream biological assessments: best professional judgment or objective criteria. Journal of the North American Benthological Society 26, 349–360.
Selecting reference sites for stream biological assessments: best professional judgment or objective criteria.Crossref | GoogleScholarGoogle Scholar |

Winkler, L. W. (1888). Die Bertimmung des im wasser gelosten Sauer-stoffs. Berichte der Deutschen Chemischen Gesellschaft 21, 2843–2854.
Die Bertimmung des im wasser gelosten Sauer-stoffs.Crossref | GoogleScholarGoogle Scholar |