Register      Login
Marine and Freshwater Research Marine and Freshwater Research Society
Advances in the aquatic sciences
RESEARCH ARTICLE

Effects of zooplankton and nutrients on phytoplankton: an experimental analysis in a eutrophic tropical reservoir

Juliana dos Santos Severiano A , Viviane Lúcia dos Santos Almeida-Melo B , Enaide Marinho de Melo-Magalhães C , Maria do Carmo Bittencourt-Oliveira D and Ariadne do Nascimento Moura A E
+ Author Affiliations
- Author Affiliations

A Área de Botânica, Departamento de Biologia, Universidade Federal Rural de Pernambuco – UFRPE, Rua D. Manoel de Medeiros, s/n, Dois Irmãos, 52171-030, Recife, PE, Brazil.

B Universidade de Pernambuco – UPE, Campus Mata Norte, Rua Amaro Maltez, 201, Centro, Nazaré da Mata, 55800-000, Recife, PE, Brazil.

C Laboratórios Integrados de Ciências do Mar e Naturais, Universidade Federal de Alagoas – UFAL, Rua Aristeu de Andrade, 452, Farol, 57021-090, Maceió, AL, Brazil.

D Departamento de Ciências Biológicas, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo – USP, Avenida Pádua Dias 11, 13418-900, Piracicaba, SP, Brazil.

E Corresponding author. Email: ariadne_moura@hotmail.com

Marine and Freshwater Research 68(6) 1061-1069 https://doi.org/10.1071/MF15393
Submitted: 18 October 2015  Accepted: 4 July 2016   Published: 22 August 2016

Abstract

Experiments were conducted to evaluate the N : P ratio, as well as the effects of the interaction between this ratio and zooplankton, on phytoplankton in a tropical reservoir. Three experiments were performed in the presence (+Z) or absence (–Z) of zooplankton and the addition of N and P in different ratios (N : P molar ratio of 5, 16 and 60). In Experiment I, the total phytoplankton biomass and biomass by taxonomic class and species of the N : P 16–Z treatment did not differ significantly from that of the control, whereas for N : P 16+Z, there was a reduction in total phytoplankton. In Experiment II, there was a significant increase in Bacillariophyceae and the biomass of two species in the N : P 60–Z treatment. For the N : P 60+Z treatment, a significant reduction was observed in the total phytoplankton biomass and the biomass of three phytoplankton classes and three species. In Experiment III, there was an increase in the biomass of Dinophyceae with the N : P 5–Z treatment. In the N : P 5+Z treatment, there was a significant reduction in total phytoplankton biomass and the biomass of the phytoplankton class and five species. The findings of the present study reveal that zooplankton species native to a tropical reservoir can change the structure of the phytoplankton community and the response of these organisms to variations in nutrients.

Additional keywords: herbivory, nitrogen, N : P ratio, phosphorus.


References

Abell, J. M., Özkundakci, D., and Hamilton, D. P. (2010). Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems 13, 966–977.
Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3cXht1GktbfK&md5=9440aeceb693114c213226b24da36d34CAS |

Almeida, V. L. S., Melão, M. G. G., and Moura, A. N. (2012). Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil. Anais da Academia Brasileira de Ciencias 84, 537–550.
Plankton diversity and limnological characterization in two shallow tropical urban reservoirs of Pernambuco State, Brazil.Crossref | GoogleScholarGoogle Scholar |

Ayres, M., Ayres Júnior, M., Ayres, D. L., and Santos, A. A. (2007). ‘BIOESTAT – Aplicações estatísticas nas áreas das ciências bio-médicas.’ (ONG Mamiraua: Belém.)

Bergquist, A. M., and Carpenter, S. R. (1986). Limnetic herbivory: effects on phytoplankton populations and primary production. Ecology 67, 1351–1360.
Limnetic herbivory: effects on phytoplankton populations and primary production.Crossref | GoogleScholarGoogle Scholar |

Câmara, L. A. K. A., Rocha, O., and Chellappa, N. T. (2009). The role of nutrient dynamics on the phytoplankton biomass (chlorophyll-a) of a reservoir–channel continuum in a semi-arid tropical region. Acta Limnologica Brasiliensia 21, 431–439.

Cottingham, K. L. (1999). Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure. Limnology and Oceanography 44, 810–827.
Nutrients and zooplankton as multiple stressors of phytoplankton communities: evidence from size structure.Crossref | GoogleScholarGoogle Scholar |

Cottingham, K. L., Glaholt, S., and Brown, A. C. (2004). Zooplankton community structure affects how phytoplankton respond to nutrient pulses. Ecology 85, 158–171.
Zooplankton community structure affects how phytoplankton respond to nutrient pulses.Crossref | GoogleScholarGoogle Scholar |

Cuvin-Aralar, M. L., Focken, U., Becker, K., and Aralar, E. V. (2004). Effects of low nitrogen–phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines. Aquatic Ecology 38, 387–401.
Effects of low nitrogen–phosphorus ratios in the phytoplankton community in Laguna de Bay, a shallow eutrophic lake in the Philippines.Crossref | GoogleScholarGoogle Scholar |

Cyr, H., and Curtis, J. M. (1999). Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities. Oecologia 118, 306–315.
Zooplankton community size structure and taxonomic composition affects size-selective grazing in natural communities.Crossref | GoogleScholarGoogle Scholar |

Delazari-Barroso, A., Giivarini, K., Miranda, T. O., and Sterza, J. M. (2011). Phytoplankton–zooplankton interactions at Duas Bocas Reservoir, Espirito Santo State, Brazil: growth responses in the absence of grazing. Neotropical Biology Conservation 6, 27–34.
Phytoplankton–zooplankton interactions at Duas Bocas Reservoir, Espirito Santo State, Brazil: growth responses in the absence of grazing.Crossref | GoogleScholarGoogle Scholar |

Fernando, C. H. (1994). Zooplankton, fish and fisheries in tropical freshwaters. Hydrobiologia 272, 105–123.
Zooplankton, fish and fisheries in tropical freshwaters.Crossref | GoogleScholarGoogle Scholar |

González, E. J. (2000). Nutrient enrichment and zooplankton effects on the phytoplankton community in microcosms from El Andino Reservoir (Venezuela). Hydrobiologia 434, 81–96.
Nutrient enrichment and zooplankton effects on the phytoplankton community in microcosms from El Andino Reservoir (Venezuela).Crossref | GoogleScholarGoogle Scholar |

Hillebrand, H., Dürselen, C.-D., Kirschtel, D., Pollingher, U., and Zohary, T. (1999). Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35, 403–424.
Biovolume calculation for pelagic and benthic microalgae.Crossref | GoogleScholarGoogle Scholar |

John, D. M., Whitton, B. A., and Brook, A. J. (2002). ‘The Freshwater Algal Flora of the British Isles.’ (Cambridge University Press: Cambridge.)

Kirk, K. L., and Gilbert, J. J. (1992). Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria. Ecology 73, 2208–2217.
Variation in herbivore response to chemical defenses: zooplankton foraging on toxic cyanobacteria.Crossref | GoogleScholarGoogle Scholar |

Kneitel, J. M., and Chase, J. M. (2004). Trade-offs in community ecology: linking spatial scales and species coexistence. Ecology Letters 7, 69–80.
Trade-offs in community ecology: linking spatial scales and species coexistence.Crossref | GoogleScholarGoogle Scholar |

Komárek, J., and Anagnostidis, K. (1989). Modern approach to the classification system of Cyanophytes, 4: Nostocales. Algological Studies 56, 247–345.

Komárek, J., and Anagnostidis, K. (1999). Cyanoprokaryota 1. Teil: Chroococcales. In ‘Süßwasserflora von Mitteleuropa’. (Eds H. Ettl, G. Gärtner, H. Heyning, D. Möllenhauer.) Vol. 19, pp. 1–548. (Gustav Fischer Verlag: Stutgart.)

Komárek, J., and Anagnostidis, K. (2005). Cyanoprokayota 2. Teil: Oscillatoriales. In ‘Süßwasserflora von Mitteleuropa’ (Eds B. Bridel, L. Krienitz, G. Gartner, M. Schargerl.) Vol. 19, pp. 1–759. (Elsevier Spektrum Akademescher Verlag: München.)

Komárek, J., and Cronberg, G. (2001). Some Chroococcalean and Oscilatorialen Cyanoprokaryotes from southern African lakes, ponds and pools. Nova Hedwigia 73, 129–160.

Komárek, J., and Fott, B. (1983). ‘Chlorophyceae: Chlorococcales.’ (Begründent von August Thienemann: Stuttgart.)

Koroleff, F. (1976). Determination of nutrients. In ‘Methods of Seawater Analysis’. (Ed. K. Grasshoff.) pp. 117–187. (Verlag Chemie: Weinheim.)

Kosten, S., Huszar, V. L. M., Mazzeo, N., Scheffer, M., Sternberg, S. L., and Jeppesen, E. (2009). Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecological Applications 19, 1791–1804.
Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes.Crossref | GoogleScholarGoogle Scholar | 19831070PubMed |

Krammer, K., and Lange-Bertalot, H. (1991a). Bacillariophyceae 3. Teil: Centrales, Fragilariaceae, Eunotiaceae. In ‘Süßwasser flora von Mitteleuropa’. (Eds H. Ettl, J. Gerloff, H. Heynig, D. Mollenhauer.) Vol. 2/3, pp. 1–576. (Gustav Fischer Verlag: Stuttgart.)

Krammer, K., and Lange-Bertalot, H. (1991b). Bacillariophyceae 4. Teil: Achananthaceae, Kritische Ergänzungen zu Navicula (Lineolatae) und Gomphonema Gesamthitraturverzeichnis. In ‘Süßwasserflora von Mitteleuropa’. (Eds H. Ettl, G. Gärtner, J. Gerloff, H. Heynig, D. Mollenhauer.) Vol. 2/4, pp. 1–437. (Gustav Fischer Verlag: Stuttgart.)

Kruk, C., Huszar, V. L. M., Peeters, E. H. M., Bonilla, S., Costa, L., Lürling, M., Reynolds, C. S., and Scheffer, M. (2010). A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55, 614–627.
A morphological classification capturing functional variation in phytoplankton.Crossref | GoogleScholarGoogle Scholar |

Litchman, E. (2007). Resource competition and the ecological success of phytoplankton. In ‘Evolution of Primary Producers in the Sea’. (Eds P. G. Falkowski and A. H. Knoll.) pp. 351–375. (Academic Press: London.)

Litchman, E., Klausmeier, C. A., Miller, J. R., Schofield, O. M., and Falkowski, P. G. (2006). Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences Discussions 3, 585–606.
Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD2sXivF2htrg%3D&md5=7dcbe99344b2cb33d0c1f15bab176e50CAS |

Low, E. W., Clews, E., Todd, P. A., Tai, Y. C., and Ng, P. K. L. (2010). Top-down control of phytoplankton by zooplankton in tropical reservoirs in Singapore? The Raffles Bulletin of Zoology 58, 311–322.

Lürling, M. (2003). Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology. Annales de Limnologie – International Journal of Limnology 39, 85–101.
Phenotypic plasticity in the green algae Desmodesmus and Scenedesmus with special reference to the induction of defensive morphology.Crossref | GoogleScholarGoogle Scholar |

Mackereth, F.J.H., Heron, J., and Talling, J.F. (1978). Water analysis: some revised methods for limnologists. Freshwater Biological Association Scientific Publication, number 36. Titus Wilson and Sons, Kendall.

McQueen, D. J., Johannes, M. R. S., and Post, J. R. (1989). Bottom-up and top-down impacts on freshwater pelagic community structure. Ecological Monographs 59, 289–309.
Bottom-up and top-down impacts on freshwater pelagic community structure.Crossref | GoogleScholarGoogle Scholar |

Pinto-Coelho, R. M. (2004). Métodos de coleta, preservação, contagem e determinação de biomassa em zooplâncton de águas epicontinentais. In ‘Amostragem em Limnologia’. (Eds C. E. M. Bicudo and D. C. Bicudo.) pp. 149–166. (RiMa: São Carlos.)

Popovský, J., and Pfiester, L. A. (1990). Dinophyceae (Dinoflagellida). In ‘Süßwasserflora von Mitteleuropa’. (Eds H. Ettl, J. Gerloff, H. Heyning, and D. Mollenhauer.) Vol. 6, pp.1–262. (Gustav Fischer Verlag: Stuttgart.)

Pourriot, R. (1977). Food and feeding habits of the Rotifera. Archiv für Hydrobiologie–Beiheft Ergebnisse der Limnologie 8, 243–260.

Prescott, G. W., Bicudo, C. E. M., and Vinyard, W. C. (1982). ‘A Synopsis of North American Desmids.’ (University of Nebraska Press: Lincoln, NB, USA.)

Queimaliños, C. P., Modenutti, B. E., and Balseiro, E. G. (1998). Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake. Freshwater Biology 40, 41–49.
Phytoplankton responses to experimental enhancement of grazing pressure and nutrient recycling in a small Andean lake.Crossref | GoogleScholarGoogle Scholar |

Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist 46, 205–221.
| 1:CAS:528:DyaG1cXhtVCmtLg%3D&md5=1d37ee096bcddd1317c7f8d7090a6958CAS |

Reynolds, C. S. (2006). ‘Ecology of Phytoplankton.’ (Cambridge University Press: Cambridge, MA, USA.)

Rhee, G. Y., and Gotham, I. J. (1980). Optimum N : P ratios and coexistence in phytoplankton. Journal of Phycology 16, 486–489.
Optimum N : P ratios and coexistence in phytoplankton.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DyaL3MXhsFelt7Y%3D&md5=09ef3caaf2f15791262772a467aa043bCAS |

Rothhaupt, K. O. (1990a). Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes. Limnology and Oceanography 35, 24–32.
Changes of the functional responses of the rotifers Brachionus rubens and Brachionus calyciflorus with particle sizes.Crossref | GoogleScholarGoogle Scholar |

Rothhaupt, K. O. (1990b). Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Limnology and Oceanography 35, 16–23.
Differences in particle size-dependent feeding efficiencies of closely related rotifer species.Crossref | GoogleScholarGoogle Scholar |

Sarma, S. S. S., Nandini, S., and Gulati, R. D. (2005). Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542, 315–333.
Life history strategies of cladocerans: comparisons of tropical and temperate taxa.Crossref | GoogleScholarGoogle Scholar |

Soares, M. C. S., Lürling, M., Panosso, R., and Huzsar, V. (2009). Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna. Ecotoxicology and Environmental Safety 72, 1183–1189.
Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life-history characteristics of the grazer Daphnia magna.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXkvVWjsbo%3D&md5=b264dfe78210cac8da1f52496512ecc5CAS |

Steiner, C. F. (2003). Keystone predator effects and grazer control of planktonic primary production. Oikos 101, 569–577.
Keystone predator effects and grazer control of planktonic primary production.Crossref | GoogleScholarGoogle Scholar |

Sterner, R. W. (1986). Herbivores’ direct and indirect effects on algal populations. Science 231, 605–607.
Herbivores’ direct and indirect effects on algal populations.Crossref | GoogleScholarGoogle Scholar | 1:STN:280:DC%2BC3cvitl2ltQ%3D%3D&md5=b56cb7f84de835e3f2f55570071937bbCAS | 17750971PubMed |

Strickland, J. D., and Parsons, T. R. (1972). A practical handbook of seawater analysis. Bulletin – Fisheries Research Board of Canada 167, 57–62.

Tilman, D., and Kilham, S. S. (1976). Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. Journal of Phycology 12, 375–383.
| 1:CAS:528:DyaE2sXmvVWltg%3D%3D&md5=47fe857f3cc4a3d45bb111d4551a876fCAS |

Tilman, D., Kilham, S. S., and Kilham, P. (1982). Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology Evolution and Systematics 13, 349–372.
Phytoplankton community ecology: the role of limiting nutrients.Crossref | GoogleScholarGoogle Scholar |

Utermöhl, H. (1958). Zur vervollkommer der quantitativen phytoplankton methodik. Mitteilung Internacionale Vereinigung fuer Theoretische unde Angewandte Limnologie 9, 1–38.

Van Donk, E., Ianora, A., and Vos, M. (2011). Induced defences in marine and freshwater phytoplankton: a review. Hydrobiologia 668, 3–19.
Induced defences in marine and freshwater phytoplankton: a review.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BC3MXlsVCkt7Y%3D&md5=871875138a4f2869902af79aef282180CAS |

von Rückert, G., and Giani, A. (2008). Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton? Journal of Plankton Research 30, 1157–1168.
Biological interactions in the plankton community of a tropical eutrophic reservoir: is the phytoplankton controlled by zooplankton?Crossref | GoogleScholarGoogle Scholar |

Vrede, T., Ballantyn, A., Mille-Lindblom, C., Algesten, G., Gudasz, C., Lindahl, S., and Brunberg, A. K. (2009). Effects of N : P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake. Freshwater Biology 54, 331–344.
Effects of N : P loading ratios on phytoplankton community composition, primary production and N fixation in a eutrophic lake.Crossref | GoogleScholarGoogle Scholar | 1:CAS:528:DC%2BD1MXjt1CrsL0%3D&md5=5a88566664f1e6ba5e6d5973c453dcf5CAS |